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Letters__________________________________________________________________________________________

An Accurate Closed-Form Approximate Representation
for the Hankel Function of the Second Kind

Judd Gardner and R. E. Collin

Abstract—A second-order asymptotic evaluation of the Hankel function
is presented and its numerical evaluation for the case of large orders and
large arguments is compared with the numerical results obtained using for-
ward recursion. It is shown that the second-order results are very accurate
as long as the argument is a few percent larger than the order of the func-
tion.

Index Terms—Cylinder, Hankel function, numerical analysis, orthogonal
functions, scattering.

I. INTRODUCTION

I IN his book,Electromagnetic Radiation from Cylindrical Struc-
tures(New York: Pergamon, 1959), Prof. Wait attributed a second-

order approximation for the derivative of the Hankel function to Som-
merfeld which he employed to enable solving for the far field pattern
of an axial slot on a circular conducting cylinder [1]. A recent study
of the scattering of a Gaussian laser beam from a large perfectly con-
ducting cylinder produced a solution, which, as might be anticipated by
the geometry of the problem, included an integral where the integrand
contained the derivative of the Hankel function of the second kind [2].
An integrable form for the Hankel function derivative was needed to en-
able integration. In addition, the integral was summed over the order of
the Hankel function so that significant contributions were made by the
integral as the order of the Hankel function closely approached the ar-
gument value of the Hankel function. These two stipulations precluded
the use of the standard asymptotic approximations for the Hankel func-
tion given by Gradshteyn [3] and Watson [4]. Therefore, in accordance
with Prof. Wait, a second-order approximation for the Hankel func-
tion was obtained from Sommerfeld’s integral [5] representation of the
Hankel function, which allowed integration and was surprisingly accu-
rate for values where the orders approach the argument.

II. A SYMPTOTIC EXPANSION

The asymptotic expansion of the Hankel function of the second kind
representative of outgoing waves for the choice ofej!t time variation
will be considered, though the Hankel function of the first kind repre-
sentative of incoming waves for the choice ofej!t time variation fol-
lows the same procedure. Sommerfeld’s integral representation of the
Hankel function of the second kind is given by [5]

H
(2)
n [z] =
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where the contour of integration is shown in Fig. 1. The method of
steepest descent may be applied to evaluate the integral in (1). Let�

equal the complex variable,� + j�. The contour for the integral as
shown in Fig. 1 may be deformed into any suitable path providing that
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the end points of the original contour are maintained, and no singu-
larities are incurred. The saddle point is located by differentiating the
exponent of the integrand, setting it equal to zero, and solving for the
values of�

d

d�
(z cos(�) + n�) = �z sin(�) + n = 0 (2a)

� = �0 =
arcsin(n=z); 0 < �0 < �=2

� arcsin(n=z); �=2 < �0 < �
(2b)

where�0 is the location of the saddle point on the� axis. Selecting the
above relation for� in the range from�=2 to � will locate the saddle
point within that range. To evaluate the integral in (1), a Taylor Series
expansion of the exponent of the integrand is found
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The selected expression for�0 from (2) may be substituted to pro-
duce the second-order expression
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This expansion may be substituted into (1) to give the approximation
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where the constant part of the integrand was removed from the integral.
The procedure for the method of steepest descent requires the contour
to be deformed into the path of steepest descent. The steepest descent
path passes through the saddle point along a line making an angle of
�=4 with respect to the real axis. In order to proceed, the following
representation for the expression (� � �0) is used

(�� �0) = � ej�: (4)

Using (4), the integrand of (3) becomes

e
j (
p
z �n )=2 � e

:

From this, it is seen that choosing� = �=4 eliminates the imaginary
part of the exponent, ensures the exponent is negative, and maximizes
its magnitude. The new contour is displayed in Fig. 2, which shows the
contour makes an angle of� = �=4 near the saddle point: A change of
variables for� = �=4 produces:

d� = ej� d� = ej�=4 d�

and the new limits of integration may be obtained from (4). As long
as the exponent is large, the major contribution to the integral occurs
for small values of� so that the error made in replacing the steepest
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Fig. 1. Integration contour for Sommerfeld’s integral representation of the
Hankel function of the second kind.

Fig. 2. New contour path of integration.

TABLE I
COMPARISON OF THEAMPLITUDE OFH (z) USING FORWARD RECURSION

AND THE APPROXIMATION IN (6)

TABLE II
COMPARISON OF THEPHASE FORH (z) USING FORWARD RECURSION AND

THE APPROXIMATION IN (6)

descent path by the straight line extending from minus to plus infinity
along the�=4 line is negligible. The equation in (3) now becomes
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The integral in (5) may be obtained from standard integration tables
and is given by
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This result may be substituted into (5) and rearranged to give a closed
form asymptotic approximation for the Hankel function of the second
kind
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Whenz � n, the standard first order asymptotic expression for the
Hankel function of the second kind is attained. The advantage of the
above approximation is made evident when

p
z2 � n2 is very large

and asn approachesz. Then the above second-order approximation is
much more accurate than the standard first order asymptotic expansion.
This second-order asymptotic expansion is attributed to Sommerfeld by
Wait [1]. This asymptotic expansion may also be found in [4] where the
book by Watson [5] is listed as the reference source, and in a book by
Wong [6]. The formula given in [4] includes correction factors as well.

Several tables of values forH(2)
n (z) have been compiled using for-

ward recursion starting withH(2)
0 (z) andH(2)

1 (z), and were compared
to the results obtained by the asymptotic expression given in (6). For
largen, andz greater than 1.01n, these values are in excellent agree-
ment. Tables I and II display the magnitude and phase, respectively, for
several pertinent excerpts from the original tables given in [2] in order
to highlight the accuracy achieved by the approximation for the Hankel
function of the second kind given by (6).

III. CONCLUSION

A second-order asymptotic expansion of the Hankel function of the
second kind that is accurate when both the order and argument are large,
but with the argument being at least a few percent larger than the order
was presented. Some numerical results obtained from this second-order
asymptotic expansion were compared with numerical results obtained
using forward recursion and shows that the expansion is surprisingly
accurate, even when the argument is only about 1% larger than the
order.
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