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Letters

An Accurate Closed-Form Approximate Representation  the end points of the original contour are maintained, and no singu-

for the Hankel Function of the Second Kind larities are incurred. The saddle point is located by differentiating the
exponent of the integrand, setting it equal to zero, and solving for the
Judd Gardner and R. E. Collin values of¢
d o n=0 5
Abstract—A second-order asymptotic evaluation of the Hankel function dT;;(“ cos(¢) +ng) = —zsin(¢) +n = (22)

is presented and its numerical evaluation for the case of large orders and
large arguments is compared with the numerical results obtained using for- . arcsin(n/z), 0< oy <7/2
ward recursion. Itis shown that the second-order results are very accurate e=00=9 arcsin(n/z), w/2<oo< T
as long as the argument is a few percent larger than the order of the func-
tion.

(2b)

wheres is the location of the saddle point on thexis. Selecting the

Index Terms—Cylinder, Hankel function, numerical analysis, orthogonal ~ above relation for in the range fromr /2 to = will locate the saddle
functions, scattering. point within that range. To evaluate the integral in (1), a Taylor Series
expansion of the exponent of the integrand is found

I. INTRODUCTION .
zcos(@) + ng = zcos(og) + noo — (zsin(ag) —n)(¢ — o)
IN his book, Electromagnetic Radiation from Cylindrical Struc- cos(ao) , | )
tures(New York: Pergamon, 1959), Prof. Wait attributed a second- - (p—00) +---

order approximation for the derivative of the Hankel function to Som-

merfeld which he employed to enable solving for the far field pattern The selected expression fos from (2) may be substituted to pro-
of an axial slot on a circular conducting cylinder [1]. A recent studgluce the second-order expression

of the scattering of a Gaussian laser beam from a large perfectly con-

ducting cylinder produced a solution, which, as might be anticipated by 2 cos(¢) + n¢ = —Vz? — n? + nm — narcsin(n/z)

the geometry of the problem, included an integral where the integrand P —

contained the derivative of the Hankel function of the second kind [2]. + ~f(@ —00)”.

An integrable form for the Hankel function derivative was needed to en-

able integration. In addition, the integral was summed over the order ofThis expansion may be substituted into (1) to give the approximation
the Hankel function so that significant contributions were made by the

integral as the order of the Hankel function closely approached the ar- HSLQ)[Z] ~ e—Inm/2 e_j\/mﬂ,”,_jn arcsin(n /=)

gument value of the Hankel function. These two stipulations precluded T

the use of the standard asymptotic approximations for the Hankel func- (37 /2)Fjc0 ’ ,

tion given by Gradshteyn [3] and Watson [4]. Therefore, in accordance . / e’ (( v 22’”2)/2) (¢=70) d¢ (3)
with Prof. Wait, a second-order approximation for the Hankel func- (7/2)=j=o

tion was obtained from Sommerfeld’s integral [5] representation of theh . )
. : : . - where the constant part of the integrand was removed from the integral.
Hankel function, which allowed integration and was surprisingly acc

rate for values where the orders approach the argument Yhe procedure fpr the method of steepest descent requires the contour

’ to be deformed into the path of steepest descent. The steepest descent
path passes through the saddle point along a line making an angle of
Il. ASYMPTOTIC EXPANSION /4 with respect to the real axis. In order to proceed, the following

The asymptotic expansion of the Hankel function of the second kifi@Presentation for the expressian- o) is used
representative of outgoing waves for the choice’sf time variation 4
will be considered, though the Hankel function of the first kind repre- (¢ —00)=pe”. (4)
sentative of incoming waves for the choiceedf' time variation fol-
lows the same procedure. Sommerfeld’s integral representation of thé/Sing (4), the integrand of (3) becomes
Hankel function of the second kind is given by [5] y ((\/m)/'l) 2 ﬁzjg.

2 € )z cos( @ ing [
H, 1= e NI dg (1) From this, it is seen that choosiig= = /4 eliminates the imaginary
part of the exponent, ensures the exponent is negative, and maximizes
where the contour of integration is shown in Fig. 1. The method &6 magnitude. The new contour is displayed in Fig. 2, which shows the
steepest descent may be applied to evaluate the integral in (1. Letontour makes an angle 6= = /4 near the saddle point: A change of
equal the complex variable, + ju. The contour for the integral as variables for# = /4 produces:

shown in Fig. 1 may be deformed into any suitable path providing that

T

/7jn7r/2 /-(37r/2)+jo<:

(7/2)=joo

dé = &’ dp = eI/ dp
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Fig. 1.

INTR]

"o
2

Hankel function of the second kind.

Fig. 2. New contour path of integration.

COMPARISON OF THEAMPLITUDE OF H () (z) USING FORWARD RECURSION
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TABLE |

AND THE APPROXIMATION IN (6)
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z=6000 | z=5250 | z =5025

n = 4990 | Recurs | 0.013823 | 0.019753 ] 0.032663
Approx | 0.013823]0.019752|0.032791

n = 4995 | Recurs | 0.013838 | 0.019845 | 0.033877
Approx | 0.013839(0.019846 | 0.034076

n =5000 | Recurs { 0.013854 | 0.019943 | 0.035332
Approx | 0.013855 | 0.019942 | 0.035660

n = 5005 | Recurs | 0.013870 { 0.020040 | 0.037122
Approx | 0.013870|0.020041|0.037701

n = 5010 [ Recurs | 0.013886 | 0.020142 | 0.039391
Approx | 0.013886 | 0.020142 | 0.040508

TABLE I

COMPARISON OF THEPHASE FORH (2)(z) USING FORWARD RECURSION AND

THE APPROXIMATION IN (6)

z =6000|z=5250|z=5025

n=4990 | Recurs | 2.55710|2.64780 | 4.33741
Approx [ 2.55774 | 2.64755 | 4.3138%

n = 4995 | Recurs | 5.49681 | 4.22030 | 4.91171
Approx | 5.49817 | 4.21594 | 4.88304

n = 5000 | Reours [ 2.14580 | 5.77737 | 5. 44262
Approx | 2.14664 |5.77720 | 5.40636

n = 5005 | Recurs | 5.07044 | 1.03558 | 5.9271°
Approx [ 5.07193|1.03575 | 5.87950
n=5010|Recurs | 1.70434 | 2.56128 | 0.07880
Approx | 1.70477 | 2.56090 | 0.01324

descent path by the straight line extending from minus to plus infinity
along ther /4 line is negligible. The equation in (3) now becomes

— /2
H(Q)["] & gnx/ p—]\/zz—nz-‘,-]n‘lr—jn arcsin(n/z)
n |2 — ¢

~
™

/“ o ((V22n2)/2)0? jmya

—oo

dp. (5)

The integral in (5) may be obtained from standard integration tables
and is given by

/°° o ((VE2n2)/2)0? dp

—oo

2w
(22 = n2)1/4

Integration contour for Sommerfeld's integral representation of the This result may be substituted into (5) and rearranged to give a closed

form asymptotic approximation for the Hankel function of the second
kind

Oy |2
.~ 7V z2 —n?

e '(\/ 22—n2—x/4—nnr/2+4narctan(n/4/ :2,n2)) ]
(6)

Whenz > n, the standard first order asymptotic expression for the
Hankel function of the second kind is attained. The advantage of the
above approximation is made evident when? — n? is very large
and as» approaches. Then the above second-order approximation is
much more accurate than the standard first order asymptotic expansion.
This second-order asymptotic expansion is attributed to Sommerfeld by
Wait [1]. This asymptotic expansion may also be found in [4] where the
book by Watson [5] is listed as the reference source, and in a book by
Wong [6]. The formula given in [4] includes correction factors as well.
Several tables of values fdf,(?)(z) have been compiled using for-
ward recursion starting witHéQ) (2) andHfz) (z),and were compared
to the results obtained by the asymptotic expression given in (6). For
largen, andz greater than 1.04, these values are in excellent agree-
ment. Tables | and Il display the magnitude and phase, respectively, for
several pertinent excerpts from the original tables given in [2] in order
to highlight the accuracy achieved by the approximation for the Hankel
function of the second kind given by (6).

Ill. CONCLUSION

A second-order asymptotic expansion of the Hankel function of the
second kind that is accurate when both the order and argument are large,
but with the argument being at least a few percent larger than the order
was presented. Some numerical results obtained from this second-order
asymptotic expansion were compared with humerical results obtained
using forward recursion and shows that the expansion is surprisingly
accurate, even when the argument is only about 1% larger than the
order.
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