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Impedance Boundary Conditions in Ultrasonics
John D. Shumpert, Student Member, IEEE,and Thomas B. A. Senior, Fellow, IEEE

Abstract—A generalized impedance boundary condition
(GIBC) is developed to approximate the scattering of a plane
acoustic wave from a bone structure such as a rib. In particular,
the rib and surrounding tissue are modeled as a viscoelastic
cylinder of infinite length immersed in an infinite, inviscid fluid
medium. In order to determine the scattered pressure wave,
appropriate boundary conditions are imposed on the relevant dif-
ferential equations at the fluid-solid surface. The exact solution is
then used to develop first- and second-order impedance boundary
conditions applicable at the surface of the cylinder. Numerical
results demonstrate the improved accuracy of the second order
condition.

Index Terms—Acoustic applications, impedance boundary con-
ditions.

I. INTRODUCTION

I MPEDANCE boundary conditions have a rich history
in electromagnetics. The simplest form is the first-order

(or standard) impedance boundary condition (SIBC) and its
application to a lossy material surface is generally attributed
to Leontovich [1]. It first appeared in the Russian literature
during World War II, but the first North American scientist to
recognize its utility was J. R. Wait. In a sequence of papers
starting in the 1950s, Wait used the boundary condition to
simulate the land in studies of ground wave propagation over
the earth, and it was a feature of many of his papers throughout
his life (see, for example, [2]). In recent years more general
versions of these boundary conditions have been developed [3],
but the application of impedance boundary conditions is not
limited to electromagnetics.

A problem of interest in bioengineering is the scattering of
acoustic waves from bone structures such as the rib cage. For
biomedical applications, a particular concern is the effect of
pressure waves propagating from one fluid to another and the
effect of shear wave formation in the more solid regions of the
body, such as bone. Even though bone and other calcified mate-
rials are neither solid nor homogeneous, they are capable of sup-
porting both shear and compressional waves. This is in contrast
to the background tissue surrounding the rib cage. This tissue
is soft and reasonably homogeneous but does not permit a shear
wave to develop. From a consideration of the material properties

Manuscript received September 9, 1999; revised March 1, 2000. The work of
J. D. Shumpert was supported by by the National Science Foundation through
its Graduate Fellowship Program.

J. D. Shumpert was with the Radiation Laboratory, Department of Electrical
Engineering and Computer Science, University of Michigan, Ann Arbor,
Michigan 48109-2122 USA. He is now with the Northrop Grumman Corpo-
ration, Baltimore, MD 21203 USA (e-mail: john_d_shumpert@mail.north-
grum.com).

T. B. A. Senior is with the Radiation Laboratory, Department of Electrical En-
gineering and Computer Science, University of Michigan, Ann Arbor, Michigan
48109-2122 USA (e-mail: senior@eecs.umich.edu).

Publisher Item Identifier S 0018-926X(00)09383-2.

TABLE I
VARIOUS BIOLOGICAL PARAMETERS AT 1 MHZ

of bone and soft tissue at the frequencies of concern, it is clear
that the porous bone structure may be modeled as a viscoelastic
medium and the soft tissue as a fluid.

In order to appropriately model the bone and soft tissue struc-
tures, various parameter estimates for the speed of sound, mate-
rial density, characteristic impedance, and absorption, are listed
in Table I [4]–[7]. For an operating frequency of 1 MHz, the cor-
responding acoustic wavelength inside the rib is 4 mm. Human
soft tissue, (HST) is an ensemble parameter average of the dif-
ferent soft tissues for the body. For most soft tissues, the HST
value is an acceptable approximation. As can be seen, acoustic
absorption in human tissue occurring through natural viscosity,
heat conduction, and/or molecular exchanges can be significant
and must be accounted for.

The reflection and transmission of acoustic waves at a fluid-
fluid interface is analogous to that of electromagnetic waves in-
teracting at a dielectric interface. It is a straightforward proce-
dure to compute the reflection and transmission coefficients for
a variety of simple shapes [8]. However, if we now concern our-
selves with the reflection and transmission of pressure waves
from an elastic solid, two types of elastic waves are propagated,
longitudinal bulk waves traveling in one direction and transverse
shear waves traveling at a lower speed and in a different direc-
tion. Elastic media can be described using the Lamé constants,
and , and the density , or alternatively, using Young’s Mod-
ulus and Poisson’s ratio along with the density. An im-
portant parameter that is used in defining acoustic media is the
specific acoustic impedance, defined as the ratio of acoustic
pressure to the normal particle velocity at the surface. For our
purposes, however, it is more convenient to employ the recip-
rocal of the impedance, i.e., the specific acoustic admittance.
For plane acoustic waves, the impedance of the wave can be
found from the product of the densityand the wave speedin
the medium.

One of the first complete treatments of elastic scattering from
cylinders and spheres was carried out by Faran [9], but no atten-
tion was paid to viscous losses. Vogtet al. [10], [11] were one
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of the first groups to determine the reflection of a plane wave
from an absorbing sphere. Flax and Neubauer [12] derived a so-
lution for a layered cylindrical shell with absorption. Many of
the early solutions [13] assumed the specific acoustic impedance
was constant for all partial wave modes of the body, equivalent
to using a first-order impedance boundary condition. Parametric
studies were carried out to determine an appropriate value for
this impedance, but as was noted by Ayres and Gaunaurd [14],
the assumption of a constant impedance is inadequate. The spe-
cific acoustic impedance is frequency dependent and depends
not only on the material parameters but is also a function of the
partial wave index .

The simplest canonical shape that bears a resemblance to a
rib is a circular cylinder and the problem considered here is
the scattering of a plane acoustic wave incident on a homoge-
neous viscoelastic cylinder of infinite length immersed in an in-
viscid fluid. The exact solution is obtained in the form of an
eigenfunction expansion, and the specific acoustic admittance
of each partial mode is determined. The solution is then used to
develop first and second-order impedance boundary conditions
applicable at the surface of the cylinder. It would appear that
this is the first time that second-order conditions have been con-
sidered in the context of viscoelastic media. An SIBC is devel-
oped in Section III-A and a second-order generalized impedance
boundary condition (GIBC) in Section III-B, and their accu-
racy is determined by comparison with the exact solution. Such
boundary conditions have the advantage of converting a two
media problem into a single medium one, and since an actual
rib is not circular in cross section, they may be helpful in the
numerical solution for a more realistic geometry.

II. FORMULATION OF SOULTION

In the straightforward solution of this problem, one treats the
body as a scatterer and determines the total field as the sum
of the incident field and the scattered field contributed by the
body. Following Faran [9], we consider an infinite elastic cir-
cular cylinder of radius , Young’s modulus , Poisson’s ratio

, and density immersed in an inviscid fluid medium with den-
sity . The cylinder (see Fig. 1) is excited by a time-harmonic
( ) incident acoustic plane wave of the form

(1)

producing an outward going scattered acoustic wave

(2)

where is an unknown coefficient to be determined.
The equation of motion of a solid elastic medium is given by

Love [15]

(3)

Fig. 1. Cross-sectional view of viscoelastic circular cylinder of radiusa

excited by plane acoustic wave

where (3) has been written in terms of, and the particle dis-
placementu . Taking the divergence of both sides of (3) yields
the differential equation that the compressional wave solution
satisfies; taking the curl of both sides of (3) yields the differen-
tial equation that the shear wave solution satisfies. The displace-
ment can be expressed as the sum of the gradient of a scalar po-
tential function and the curl of a vector potential function
[16]

(4)

where represents the compression wave solution andthe
shear wave solution. For two-dimensional (2-D) problems,
where has only a component, the potentials satisfy the
scalar wave equations

(5a)

(5b)

where the longitudinal and transverse wave velocities in the
elastic body are expressed, respectively, as

Solutions in cylindrical coordinates for and
are

(6a)

(6b)

where
for , or ;

Neumann factor;
and unknown coefficients to be determined.

Throughout this work, the subscript “0” refers to the external
fluid, and subscripts “1” and “2” to the longitudinal and trans-
verse components of the viscoelastic medium, respectively.
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A. Elastic Media

Three boundary conditions must be satisfied at the surface of
the cylinder:

• the pressure in the fluid must be equal to the normal com-
ponent of stress on the solid at the surface

(7a)

where

(7b)

with

(7c)

• the normal component of displacement of the fluid must
be equal to the normal component of displacement of the
solid at the surface

(8)

where the radial components of displacement of the inci-
dent and scattered fields are

(9a)

(9b)

and the radial component of displacement inside the
cylinder is

(10)

where and are defined in (6).

• the tangential components of shearing stress must vanish
at the surface

(11a)

where

(11b)

(11c)

Inside the cylinder, the radial component of displacement
is given in (10) and the angular component of displace-
ment is

(12)

By symmetry, everywhere.
Using (1)–(12), one can solve for to obtain

(13)

where the specific acoustic admittance of the th partial
wave is shown in (14) at the bottom of the page and

(15)

with for , or 2. Inserting the expression for
and rearranging terms yields (16) as shown at the bottom of

the page where

(17)

independent of and for . Equa-
tion (16) can be written as , where and rep-
resent the numerator and denominator, respectively.

(14)

(16)
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In the limiting case of an acoustically hard medium,
implying and then

(18)

whereas for a soft medium implying , giving

(19)

III. I MPEDANCE BOUNDARY CONDITIONS

Having found the scattered field, we now examine the
accuracy to which the field can be determined using impedance
boundary conditions of different orders. The simplest (first
order) impedance boundary condition can be written as

(20)

where is a normalized admittance andis in the direction of
the outward normal to the surface. More generally, a boundary
condition of order has the form

(21)

where and are tangential variables [3], [17]. In the particular
case of a two-dimensional body with nodependence, this re-
duces to

(22)

and for a circular cylinder with and

(23)
When applied to an eigenfunction expansion ofin the form

, the corresponding admittance is

(24)

A. First-Order IBC

Let where and are the complex
refractive indexes of the viscoelastic medium. If are so large
that terms can be neglected, can be approximated by
the first two terms of the series given in (A.3), i.e.,

(25)

For a first-order solution, and can be approximated by
polynomials of order

where , , and , the coefficients of the inverse power series,
are determined in [18] to be

(26a)

(26b)

(26c)

Substituting the above expressions for, , and , and ne-
glecting terms of order ) yields

(27)

Thus, for the first-order solution of (24) is

(28)

To this order the admittance is modeindependent.

B. Second-Order IBC

If are somewhat smaller, but still large enough to allow
terms to be neglected, can be approximated by the
first four terms of the series given in (A.3)

For a second-order solution, and in (14) can be approxi-
mated by polynomials of order

where , , and are defined in (26) and, , , and , are
[18]

(29a)

(29b)

(29c)

(29d)
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Thus, for the second-order boundary condition,and
of (24) are

(30)

(31)

Note that the second-order solution has the requisite mode de-
pendence.

IV. V ALIDATION

In the far-field where , may be written in its
asymptotic form

(32)

and from (2) the far field pressure then becomes

(33)

The scattering width ( ), or alternatively, the bistatic acoustic
cross section per unit length defined in [8] as

(34)

is now

(35)

with given by (13).
Fig. 2 shows the normalized monostatic scattering width

as a function of for a lossy cylinder
( , MPa, , ,
and g/cm ) immersed in an inviscid fluid medium
( m/s and g/cm ) for the SIBC, the
second-order GIBC, and the exact normal-mode series solution
computed using 31 modes. The parameter values approximate
a rib embedded in a soft tissue background. The exact solution
requires the evaluation of the specific acoustic admittance, and
consequently, computation of many cylindrical functions for
each th partial wave solution at each frequency. In contrast,
the SIBC and GIBC are calculated using the relatively simple
inverse power series shown in (24) in conjunction with (13).
Not surprisingly, neither boundary condition is accurate for
small values of and do not pick up the effects corresponding
to the first two shear wave resonances across the diameter of
the cylinder. The higher order resonances are invisible because

Fig. 2. Normalized monostatic scattering width as a function ofk a, with
N = 2 � j1:5, N = 2 � j4.

Fig. 3. Normalized monostatic scattering width percent error as a function of
k a for (a)N = 2� j1:5,N = 2� j4, (b)N = 2� j2,N = 2� j8.

of the absorption, and as the absorption increases, the second
and then the first resonances disappear.

The normalized monostatic scattering width percent
error is plotted as a function of in Fig. 3 for (a)

, and (b) ,
. In case (a), for an allowable error of 3%, the

SIBC approximation is valid for and the GIBC
for the somewhat smaller values . For an allowable
error of 1%, the SIBC is valid for and the GIBC for

. If the loss is increased as shown for case (b), the
SIBC can be seen to be accurate to within 3% for
and the GIBC for and to within 1% for
and the GIBC for .

The normalized bistatic scattering width of a
cylinder with , and for the
SIBC, GIBC, and exact solution is shown in Fig. 4. Clearly,
the GIBC more accurately models the angular variation of the
scattered field than the SIBC, and this is particularly noticeable
as the scattering angleincreases. The accuracy of the GIBC
can be attributed to its ability to model some of the partial
mode dependence of the specific acoustic admittance and to the
inclusion of more terms representing the surface curvature. The
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Fig. 4. Normalized bistatic scattering width of a cylinder withk a = 8,N =

2 � j8, andN = 2 � j1.

former is the dominant effect, and the accuracy of the SIBC is
unchanged if the of (30) is used in place of (28).

V. CONCLUSION

In ultrasonic scattering by bone-like structures, it is neces-
sary to include the effect of the shear waves, and these signif-
icantly complicate the solution of a problem as fundamental
as the scattering from an infinite circular cylinder. Since the
structures are lossy, one way to simplify the problem is to in-
voke an impedance boundary condition and this could make
tractable the analytical or numerical determination of the scat-
tering from other geometries. From the exact expression for
the partial mode impedances for a circular cylinder, first and
second-order impedance boundary conditions were derived by
asymptotic expansion for large . With each boundary condi-
tion the accuracy improves as increases, or as the absorption
increases for a fixed and, for many purposes, the accuracy
of the SIBC may be adequate. Under all circumstances, how-
ever, the GIBC is more accurate primarily because of the mode
dependence that it provides.

APPENDIX

The Bessel function of order can be expanded in an
asymptotic series for largeas shown in [3]

(A.1)

provided Im . Accordingly,

(A.2)

and, therefore,

(A.3)
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