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Impedance Boundary Conditions in Ultrasonics
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Abstract—A generalized impedance boundary condition TABLE |
(GIBC) is developed to approximate the scattering of a plane VARIOUS BIOLOGICAL PARAMETERS AT 1 MHz
acoustic wave from a bone structure such as a rib. In particular,
the rib and surrounding tissue are modeled as a viscoelastic Tise | Spoed (o) | Demsity () | Tpedance (2] | Absorption (@)
cylinder of infinite length immersed in an infinite, inviscid fluid ms™?] | [gem™] | [MPasm~'] |[dB cm~! MHz")]
i i Blood 1570 1.06 1.61-1.62 0.18
medium. In order to determine the scattered pressure wave, D000 | sssmeo | Labas | srstec -
appropriate boundary conditions are imposed on the relevant dif- Brain 1541 1.03 L55-1.66 0.85
ferential equations at the fluid-solid surface. The exact solution is Kf;t 1450-1476 ggi 1~3f;12-38 0.63
. h o _ ) . _
then _u_sed to de\_/elop first- and second-order |mp_edance boun_dary ey | 15700585 | 106 1.64-1.68 _
conditions applicable at the surface of the cylinder. Numerical e I v e b
results demonstrate the improved accuracy of the second order Sploon N 106 165-1.67 L
condition. Water 1480 1.00 1.48-1.52 0.0022
i X . X Air 343 - 0.000415 12
Index Terms—Acoustic applications, impedance boundary con- HST (mean) | 1540 - 163 0.81
ditions.

of bone and soft tissue at the frequencies of concern, it is clear
- ) ) that the porous bone structure may be modeled as a viscoelastic

MPEDANCE boundary conditions have a rich history,adium and the soft tissue as a fluid.

in electromagnetics. The simplest form is the first-order , o qer 1o appropriately model the bone and soft tissue struc-
(or standard) impedance boundary condition (SIBC) and s various parameter estimates for the speed of sound, mate-
application to a lossy material surface is generally attributel; jensity characteristic impedance, and absorption, are listed
to Leontovich [1]. It first appeared in the Russian literaturg, Table | [4][7]. For an operating frequency of 1 MHz, the cor-
during World War 11, but the first North American scientist t0,q0ning acoustic wavelength inside the rib is 4 mm. Human
recognize its utility was J. R. Wait. In a sequence of papef§g tissye, (HST) is an ensemble parameter average of the dif-
starting in the 1950s, Wait used the boundary condition @, oot tissues for the body. For most soft tissues, the HST
simulate the land in studies of ground wave propagation OVl e is an acceptable approximation. As can be seen, acoustic
the earth, and it was a feature of many of his papers through%’\ﬂtsorption in human tissue occurring through natural viscosity,

his I_|fe (see, for example, [2]). I_n_ recent years more genergh; conduction, and/or molecular exchanges can be significant
versions of these boundary conditions have been developed [3] .\, st be accounted for

FUt.tthdetapTl'C?t'on of |rtr_1pedance boundary conditions is nOtThe reflection and transmission of acoustic waves at a fluid-
imited 1o electromagnetics. %tid interface is analogous to that of electromagnetic waves in-

. INTRODUCTION

A p;pblem of |fntere§t n bltoentglneer|ngh|s tht?] scg;tenng racting at a dielectric interface. It is a straightforward proce-
acoustic waves irom bone structures such as the rib cage. gofe 4 compute the reflection and transmission coefficients for

biomedical applications, t‘r_" pa;rtlcular C(f)lm_:de:n IS tr:re] effez[ variety of simple shapes [8]. However, if we now concern our-
pressure waves propagating from one Tiuid to another an ves with the reflection and transmission of pressure waves

effect of shear wave formation in the mare solid regions of tr}‘raom an elastic solid, two types of elastic waves are propagated,

QOdy’ such.as bong. Even though bone and other calcified m%%’gitudinal bulk waves traveling in one direction and transverse
rials are neither solid nor homogeneous, they are capable of s

) . AR ear waves traveling at a lower speed and in a different direc-
porting both shear and compressional waves. This is in contrﬁgh_ Elastic media can be described using the Lamé constants
to the background tissue surrounding the rib cage. This tiss '

. ) éﬁdu, and the density, or alternatively, using Young’s Mod-
is soft and reasonably homogeneous but does not permltasqﬁaéE and Poisson’s ratie- along with the density. An im-

wave to develop. From a consideration of the material propern&grtam parameter that is used in defining acoustic media is the

specific acoustic impedancg, defined as the ratio of acoustic
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of the first groups to determine the reflection of a plane wave
from an absorbing sphere. Flax and Neubauer [12] derived a so-
lution for a layered cylindrical shell with absorption. Many of
the early solutions [13] assumed the specific acousticimpedance
was constant for all partial wave modes of the body, equivalent
to using a first-order impedance boundary condition. Parametric
studies were carried out to determine an appropriate value for
this impedance, but as was noted by Ayres and Gaunaurd [14],
the assumption of a constant impedance is inadequate. The spe-
cific acoustic impedance is frequency dependent and depends
not only on the material parameters but is also a function of tﬁ%é& b
partial wave index..

The simplest canonical shape that bears a resemblance to a

rib is a circular cylinder and the problem considered here ere (3) has be_en wrltte_n in termsf - and t_he particle d_|s-
the scattering of a plane acoustic wave incident on a homo acement. Taking the divergence of both sides of (3) yields

neous viscoelastic cylinder of infinite length immersed in an i he_ d!ﬁe.rentl_al equation that the_compresspnal wave ;oluhon
viscid fluid. The exact solution is obtained in the form of ar?at'Sf'eS’ taking the curl of both sides of (3) yields the differen-

eigenfunction expansion, and the specific acoustic admittant@ etquat|cl;n thatthe sr:jear \;\;]ave SOIU??;‘ sat|s&‘|'es.tT?e d|spllace—
of each partial mode is determined. The solution is then useonf'&? IC?n te_: exlp;resgtih as Ie ?um N ‘ € grta I'?nl fo af;g arpo-
develop first and second-order impedance boundary conditic{j‘ lal functiont/-and the curl of a vector potential tunctl

applicable at the surface of the cylinder. It would appear th ]
this is the first time that second-order conditions have been con-
sidered in the context of viscoelastic media. An SIBC is devel-

oped in Section |ll-Aand a second-order generalized impedangRere 7 represents the compression wave solution Artthe

racy is determined by comparison with the exact solution. Su@lhere 4 has only a» component, the potentials satisfy the
boundary conditions have the advantage of converting a t4@a|ar wave equations

media problem into a single medium one, and since an actual

Cross-sectional view of viscoelastic circular cylinder of radius
y plane acoustic wave

u=-VU+VxA (4)

rib is not circular in cross section, they may be helpful in the , 107
. i - - == U=0 (5a)
numerical solution for a more realistic geometry. et 9%t
5, 1 92
[I. FORMULATION OF SOULTION Vi— 5= 14,=0 (5b)
c3 9%t

In the straightforward solution of this problem, one treats the
body as a scatterer and determines the total field as the swhere the longitudinal and transverse wave velocities in the
of the incident field and the scattered field contributed by thelastic body are expressed, respectively, as
body. Following Faran [9], we consider an infinite elastic cir-
cular cylinder of radius, Young’s modulusE, Poisson’s ratio o :\/ E(1-o0) \/)\ + 2u

o, and density immersed in an inviscid fluid medium with den- p(1+0)(1—20) p
sity po. The cylinder (see Fig. 1) is excited by a time-harmonic

(¢’**) incident acoustic plane wave of the form E 7
Co = —_— = —.
i —jkoz ? 2p(1+0) p

D IPQ@ ko

— Py Ikor cos ¢ Solutions in cylindrical coordinate:, ¢, z) for U and A,
- are
= eng” " In(kor) cos neg (1) i
§=:o U=PF, Z end "y (k1r) cos ng (6a)
producing an outward going scattered acoustic wave =0
i A, =F eng b Jn(kar)sin n 6b
p* =P, Z 5nj_"an,(L2)(ko7’) cos ne (2) Orlz::() / (kar) ¢ (6b)

n=0

. . . where
wherec,, is an unknown coefficient to be determined.

The equation of motion of a solid elastic medium is given by E” Neumann factor:
n )

Love [15] a, andb,, unknown coefficients to be determined.
E(1-o0) E d%u  Throughout this work, the subscript “0” refers to the external
mV(V u) - mv x (Vxu)= P 52¢  fluid, and subscripts “1” and “2” to the longitudinal and trans-
(3) verse components of the viscoelastic medium, respectively.

w/e, forp =10, 1, or2;
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A. Elastic Media « the tangential components of shearing stress must vanish
Three boundary conditions must be satisfied at the surface of &t the surface = a
the cylinder: . . Crg =€ =0 (11a)
* the pressure in the fluid must be equal to the normal com-
ponent of stress,.,. on the solid at the surface= «a where
pi —|—p5 = —¢p (73.) _ £ 18u7 3 Ugp 11b
Cre 20 +0) [r 3¢ "or ( T ) (11b)
where
E E @ B {a“” + a“ﬂ (11c)
g Uq Cpy = _ —= .
—_—— v = 7b 2(1+ az | or
= atron-209" “Tirea (P (L+o) [0z = O
with Inside the cylinder, the radial component of displacement
is given in (10) and the angular component of displace-
\Y% Poki f: " anJn (Ryr) ¢ (70 mentis
u = end anJ.(ki7)cosn
o : 10U 04,
YT T 86 o
* the normal component of displacement of the fluid must !
be equal to the normal component of displacement of the > S 7 d )
solid at the surface = a =P ens [TJ"(W) = o g nlker) | sin ng.
n=0
U+ ut =, (8) (12)
where the radial components of displacement of the inci- By symmetry,e,.. = 0 everywhere. _
dent and scattered fields are Using (1)—(12), one can solve fey, to obtain
; 1 dp; Py = d Julz0) + jYnJ! (z
uf = 3 p = —02 Enjin—.]n(koT) COSs 71(/) (9a) Cp = — (2)( 0) J /((2)0) (13)
pow? Or  pow oy dr Hy” (x0) + Yo Hn™' (o)
. 1 9p, Py Cnd where the specific acoustic admittankg of the nth partial
Ur = D0 O pow? Enl EHn (kor) cos n¢ wave is shown in (14) at the bottom of the page and
n=0
2 ! — 2nJ,
@) L= G ey
n* — x5)Jn(x2) — 2x2J]) (T
and the radial component of displacement inside the 2 2 2 2
cylinder is with z,, = kya for p = 0, 1, or 2. Inserting the expression for
o  1OA. I',, and rearranging terms yields (16) as shown at the bottom of
Up = — — + =2 the page where
ar r J¢
oo 2zox1 po  2kok1 po
by, d C= == — 17
=P z::OEnj_" [HT - T (kar) — an%Jn(kﬂ’) cos ng 3 p k3 p (17)
(10) independent of andA; = .J/ (z;)/.J.(x;) fori = 1, 2. Equa-
tion (16) can be written a¥,, = CN/D, whereN andD rep-
wherell and A, are defined in (6). resent the numerator and denominator, respectively.
g TLQ 2 ! !
+1— = Jaidn(zr) o1 d),(w1) — nlpdp(x2) +nlpz2J), (22)
v 2prg \1— 20 r] (14)
e pox3 nlndn(z2) — 21}, (21)
_ 2 2 2
sl (o) ()
Y, = jC o 21 1 T2 5 T1T2 1 L2 (16)
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In the limiting case of an acoustically hard mediym;~ ~» For a first-order solutionN-and D can be approximated by

implying Y¥;, — oo and then polynomials of orded /x
J! K P
cnz—# (18) N~eZ+—, D~14—
whereas for a soft mediupa — 0 implying Y,, — 0, giving whereZ, K, andP, the coefficients of the inverse power series,
are determined in [18] to be
J(z
- _H@giO)' 49 7=2"7 (262)
n(@o) T1-20
1 l—-0 2
[ll. | MPEDANCE BOUNDARY CONDITIONS K=- Nij 1-20Noj (26D)
Having found the scattered field, we now examine the 1 2
accuracy to which the field can be determined using impedance pP= 2N, + Noj (26c¢)

boundary conditions of different orders. The simplest (first o _
order) impedance boundary condition can be written as Substituting the above expressions for K, and P, and ne-
glecting terms of orde®(z~2) yields

dp

— 4+ 7koYp=0 20

5, TikoYP (20) Y:C{l_a J{_1<1 a)” 27)
whereY is a normalized admittance ands in the direction of 1-20 2\1-20

the outward normal to the surface. More generally, a bounda1|c}4us for the first-order solutiofiy of (24) is
condition of orderd > 1 has the form ’

l-0¢ 1 1

M/2 Bo = C’{ <1 + - ) - . } . (28)

g_p — _jk'O {/30+Z(_1)m 1—20 2N1j.’170 Nljxo
n
m=1 To this order the admittance is moitelependent
arn m arn m arn
: [asm </3§1 )8sm +315 )8tm> B. Second-Order IBC
If |z;| are somewhat smaller, but still large enough to allow
am 5(m) am 5(m) am (21) termsO(z; *) to be neglected4, can be approximated by the
+atm 2L ggm +022 otm p first four terms of the series given in (A.3)
2 _ 2 _

wheres andt are tangential variables [3], [17]. In the particular A~ g <1 - 1' _dn 5 21 + an o i)
case of a two-dimensional body with malependence, this re- 2Nijzo  8Njag — 8NPjxg
duces to

For a second-order solutio®y and D in (14) can be approxi-

ap M/2 §2m mated by polynomials of ordel/=?
. m n(m)
o -1
o =ik fot+ d_(-0"ATSon e (22 X I u
m=1 N~ Z+—+—2+—3
x x x

and for a circular cylinder witm = » ands = r¢

P @Q R
De~(14=—+ 24+ 2
ap_ . (1)1 82 (2)1 84 < +J}+J}2+J}3>
gn = TR0 P apg t A aga b
(23) whereZ, K, andP are defined in (26) and, M, ), andR, are

When applied to an eigenfunction expansiorpah the form (18]

>, a(n) cos ne, the corresponding admittance is M2+l 2m2—2 22411-0o

L=- + - (29a)

2 4 2 2 —

V=g (2) 480 (2) + @ 2N{ NN, N3 1-20
T T 2 9
4n -1 4 -11-0 1
M= — + . - (n? — 1)

8NN3 4N3j 1—-20 N2N,;

A. First-Order IBC 1J1 2J ALY,
Letz; = N,z (¢ = 1, 2) whereN; and.N, are the complex ~NNT (n? —1) (29b)

2

refractive indexes of the viscoelastic mediumiff are so large
that termsO(x; %) can be neglectedi; can be approximated by 4n? — 3 1 3

the first two terms of the series given in (A.3), i.e., Q= SN2 NN, N2 (29¢)
1 1 4n? -3  4n? -3 4n?+15

Ai~751- . 25 R=— — 29d

J < 2N7;ja:0> (25) 8NZj T INZIN,j T 2NiNZj | 4NEj (29d)
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Thus, for the second-order boundary conditiﬁa,andﬁﬁ)

of (24) are %
l1—0o 1 3 1 20 -
g =C<—=— |1 — —
Po {1 — 2 < t ONjzo  8NZ12 8N13ja:g> g
1 } < 15
- 30 &
o < 10
po_ O [l-o (1 4 2 8 g
U722 \1-20 \N2 N} ' N2ZNokoj N3koj 5 |
2 n 4 2 4 .
N2 ' NiN,  N3jzo N2ZNajx 0 -
i 14V2 1J%o0 14¥2)%o 0 1 2 3 4 5 6
6
—_—— . 31 koa
" N1N22j370} Y
Note that the second-order solution has the requisite mode §§- 2 No.rlm:”ifd monostatic scattering width as a functiorkf, with
pendence. LA e =S TR
IV. VALIDATION 5
& t
In the far-field where: 3> a, H{? (kor) may be written in its T | \ " ! " é'lg‘é <(:1))
asymptotic form 41 - e - SIBC (b)
X;‘, \ L v GIBC (b)
24 . ~ 34 Nl —
HP (or) ~ | eIt @ £ L
7T/€07’ = \ | i
and from (2) the far field pressure then becomes 2Ny
o NSl
o [27 & 14 ..
s _ —jkor .. —
p® = —FPye 77 s z_:osncn COS N, (33) ( < R ~
n= 0 ‘ ‘ s sl it
The scattering width{W), or alternatively, the bistatic acoustic 0 5 10 15 20 25 30
cross section per unit length defined in [8] as k,a
s 12
SW(¢) = lim |2#n7r p_ (34) Fig. 3. Normalized monostatic scattering width percent error as a function of
r—oo p koafor (@ Ny =2 —j1.53,No =2 — j4,(b) Ny =2 — j2, N, =2 — j8.

is now
) of the absorption, and as the absorption increases, the second
2) | = and then the first resonances disappear.
SW(¢) = o Z Enln COS NP (3%)  The normalized monostatic scattering width percent
n=0

error egy is plotted as a function ofya in Fig. 3 for (a)
with ¢, given by (13). Ny = 2—j15, N, = 2—gjd4and (b)N, = 2 — 52,

Fig. 2 shows the normalized monostatic scattering widtN, = 2 — j8. In case (a), for an allowable error of 3%, the
SW(¢ = 0°)/X as a function ofkga for a lossy cylinder SIBC approximation is valid fokga > 13.7 and the GIBC
(¢ = 1/3, E = 20 MPa,N; = 2 — jl.5, N = 2 — j4, for the somewhat smaller valuésa > 10.2. For an allowable
andp = 1.81 g/cn?) immersed in an inviscid fluid medium error of 1%, the SIBC is valid fokga > 29.6 and the GIBC for
(co = 1540 m/s andpy, = 1.06 g/cn?) for the SIBC, the koa > 21.8. If the loss is increased as shown for case (b), the
second-order GIBC, and the exact normal-mode series solut®iBC can be seen to be accurate to within 3%kigr > 4.85
computed using 31 modes. The parameter values approximete the GIBC forkga > 4.28 and to within 1% forkga > 9.59
a rib embedded in a soft tissue background. The exact solutemd the GIBC forkga > 7.34.
requires the evaluation of the specific acoustic admittance, andfhe normalized bistatic scattering widthiV (¢)/A of a
consequently, computation of many cylindrical functions farylinder withkqga = 8, Ny = 2 — j8 and N, = 2 — 41 for the
eachnth partial wave solution at each frequency. In contras§IBC, GIBC, and exact solution is shown in Fig. 4. Clearly,
the SIBC and GIBC are calculated using the relatively simptee GIBC more accurately models the angular variation of the
inverse power series shown in (24) in conjunction with (13%cattered field than the SIBC, and this is particularly noticeable
Not surprisingly, neither boundary condition is accurate fas the scattering anglgincreases. The accuracy of the GIBC
small values ofya and do not pick up the effects correspondingan be attributed to its ability to model some of the partial
to the first two shear wave resonances across the diametemafde dependence of the specific acoustic admittance and to the
the cylinder. The higher order resonances are invisible becairsgusion of more terms representing the surface curvature. The
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provided Im{z} < 0. Accordingly,

T () = jedta—nm/2) [ 2
wr

g . 1_4n2+3_ (4n? — 1)(4n? + 15)
< 8jx 12822
=
= 4n? — 1)(4n?* — 9)(4n? + 35
5 )
— Exact 128 - 245z
-20 | .+ - siBC (A.2)
e GIBC
-30 : ; ‘ and, therefore,
0 45 90 135 180
Observation angle ¢ (degrees) J) () _ili_ 1 4n? -1 4n? -1 + O
Jn () 25z 8x? 8jx3
Fig.4. Normalized bistatic scattering width of a cylinder witlu = 8, N; = (A-3)
2 — j8,andN, = 2 — j1.
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V. CONCLUSION

In ultrasonic scattering by bone-like structures, it is neces-
sary to include the effect of the shear waves, and these signif
icantly complicate the solution of a problem as fundamental
as the scattering from an infinite circular cylinder. Since the
structures are lossy, one way to simplify the problem is to in-
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