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Scattering of Electromagnetic Waves by a
Perfectly Conducting Cylinder with a
Thin Lossy Magnetic Coating

Hans C. StriforsMember, IEEEand Guillermo C. Gaunauyérellow, IEEE

Abstract—We study the scattering interaction of electromag- by the above described coated cylinder. We also determine and
netic (EM) waves with an infinite cylinder coated with a lossy display (in color plots) the bistatic plots of the SW at all angles
dielectric material with frequency-dependent material properties. throughout the above wide band.

These properties are hypothetical, yet representative of a wide . .
class of available materials. The monostatic and bistatic scattered A previous work has shown calculations [4] for the BSW for

widths (SW) are evaluated for the TM or TE polarization cases. SOme discrete values of the frequency, and for some (constant)
These calculations require the use of algorithms to evaluate values ofe,. = 1 /e, andp,. = 1. A later example [5] exhibits
Bessel-Hankel functions of complex arguments. These algorithms BSW calculations in the nondimensional frequency band

are based on a continued fraction approach, which ensures 3., < 50 for complex butonstanvalues of,. (viz, &, = 2.56
stability of the recursion relations. The bistatic plots of the TM - . - :

and TE scattering widths for the coated body are displayed in a ore; = 2.56 + L0'102f1) and f?”"‘ = 1, which we have usgd
convenient color-graded scale. Theeductionsin the scattering 0 verify our formulation. Cylinders of several cross-sectional
widths produced by this type of coating are determined in selected shapes coated with a thin film witl. = 0.01 — j0.03 have also
frequency bands and angular sectors, in both polarization cases. received some attention [6]. Additional studies of dielectrically
It is quantitatively shown how curvature and polarization shift  qoated cylinders [7]-[9] have emphasized the high-frequency
the effectiveness band of the coating. The determined regions in . . . . ;
which the SW are minimally affected are the most suitable for regime, the creeping Wavgs, and haye cor\5|dered co_atlngs with
target identification purposes. frequency-constant material properties, with no attention placed
on the quantitatively determination of the reductions in BSW

| T —E| ic (EM i -
ndex Terms—Electromagnetic (EM) scattering, radar scat produced by such layers.

tering widths.

Il. OUTLINE OF THE SCATTERING SOLUTION FOR CYLINDERS
I. INTRODUCTION WITH LOSSY DIELECTRICS

CATTERING of plane electromagnetic (EM) waves by An infinitely long perfectly conducting cylinder of radius
pherical or cylindrical objects is a well-studied area [1]s covered with a magnetic lossy coating of thicknésa plane

[2]. The analytical treatment of these problems has considefggye Ei* of time-dependencexp(—iwt) is normally incident
materials that produce little amount of absorption of thgn the cylinder. The incidenk-field components parallel to
incident signal power, if any at all. For targets covered witind normal to the cylinder axisare Ein . and i, The outer
coatings of radar absorbing material (RAM), complex-valuegledium is free- space, and = kc. For the two mentioned

arguments enter the Bessel-Hankel functions present in ftarizations, the normalized radar scattering widths; and
partial-wave solution for the radar cross section (RCS). Cops.p, take the forms

ventional evaluation algorithms [3] then break down, because

the needed recurrence relations become unstable. L {UTM(‘f)v ) }
We will study an infinite perfectly conducting cylinder with a ma | orr($, )
thin lossymagnetic layer, which has frequency-dependent ma- 4 2

terial properties. The dielectric permittivity and magnetic per- = (1)
meability of the coating are hypothetical, yet representative of
a wide class of available materials. The coating thickness\igiere¢p = 0 denotes the backscattering direction or monos-
chosen to approximately center its effectiveness band withiitic case. We introduce the definitions= kEla+d), z, =
the interval of0 < f < 20 GHz. We quantitatively deter- ki(a +d) = myz, andzy = kia = myza/(a + d). The
mine the reduction in RCS [or backscattering width (BSW)hdex of refractionn; is: m; = ki/k = \/eftr. This last form
resulting when plane waves of two polarizations are scattergtexpressed in terms of the (possibly) complex relative dielec-
tric permittivity €1 /e and magnetic permeability, /1. of the
Manuscript received August 12, 1999 revised February 15, 2000. coating. Then, the scattering coefficients assume the forms
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Fig. 1. Normalized backscattering width when a plane EM wave is incidentFig. 2. Normalized scattering width in four bistatic directions ,(@5°,
TM or TE polarization mode on a coated or bare perfectly conducting cylinde®°, 135°) when a plane wave is incident in TM mode or@atedperfectly
of diameter 4 cm and on a flat plate coated with the same material. conducting cylinder of diameter 4 cm.
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This is the cylindrical counterpart of the spherical formulatio Frequency [GHz]
we gave in [10]. Although some arguments and factors look
slightly different from that in [1], the overall formulation isFig. 3. Same as in Fig. 2, but for the TE mode.
completely equivalent to that in [1]. If there is no coating (i.e.,
d — 0), this further reduces to the results in [11]. A distin-”l_
guishing property of the dielectric coatings used for RCS reduc-
tion is that the index of refractiom; is complex-valued func-
tion of the angular frequenay due to a complex permeability ~ Scattering coefficients containing Bessel functions of com-
or permittivity or both. In the present case, we will examine plex arguments, often with a large imaginary part, severely re-
coating material with complex-values pf ande,. of the form  strict their successful numerical evaluation using traditional al-
gorithms. In such cases, the ordinary recurrence relations for the

B ESSEL ANDHANKEL FUNCTIONS OFCOMPLEX-VALUED
ARGUMENTS

085 . 025 Bessel functions become unstable. We use an algorithm for the
Hr = (f/fo)04 + L(f/f0)0.7 Bessel functions of the first kind developed by Lentz [12], [13]
7.0 . 0.80 @ that rests on an intrinsically stable continued fraction of the ra-
Ep = —|— ? H
(/1) (F/10)*? tios
where the frequency, = 10 GHz. This is a hypothetical ma- Jn1(2) 1
terial with complex and frequency-dependent valueg,of:,., ’}’1 2 =ay(z,n)+ T (5)
that has a thickness df= 0.325 cm, placed over a cylinder of n(2) as(z,n) + ——

outer diamete2a = 4.0 cm.
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Bistatic Scattering Width (TM): Coated Cylinder
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Fig. 4. Bistatic scattering width; for a coatedperfectly conducting cylinder of diameter 4 cm.

where the coefficients,,, are given by first order. These evaluations of Bessel and Hankel functions of
complex arguments can be conveniently performed in a PC and
am(z, n) = (=)™ 2(n +m — 1)z (6) are carried out here in this fashion.

Using the Lentz algorithm, a vector of consecutive ratios IV. NORMAL INCIDENCE ON A COATED FLAT PLATE
Jo(z)/J1(z), Ji(z)/J2(2z)--- is computed and the Bessel

A continuous wave (CW) normally incident on a perfectl
functions of each desired order by (CW) y P y

conducting plate (of infinite extent) coated by a dielectric layer
of thicknessd has reflection coefficienk given by [2], [10]

1/ Jn(z) =1/ Jo(2) 7 —— Q)

pol- V- (14 Y)e o
once the initial function/o(z) is known. WhenJy(z) is un- 1Y = (1= Yy)ehad
known, as is the case, in general, any nonzero value can be
first assigned to it, then the whole set of Bessel functiés{s), whereY; = /e, /u. is the relative admittance of the layer.
Ji(z), -+, Jn(z) can be computed and properly scaled usimghe “power reflection coefficient” iR|>. Computations based
the infinite series in [14]. The number of terms in the series thah (9) will illustrate, by contrast, the differences resulting when
is needed for convergence is a few tens larger thand it can  the object being coated is flat or curved. Coating performance is
be estimated using asymptotic expansions for Bessel functigifi often (erroneously) evaluated by placing them on flat plates,

©)

of large orders. thus ignoring the curvature of the object they coat.
The Hankel functions of first kind are then calculated using
the Wronskian determinant [15]: V. NUMERICAL RESULTS

Fig. 1 shows plots of the (normalized) BSW andorr
for the bare cylinderd — 0) of diameter 4.0 cm and for the
coated cylinder with a layer of material properties given by (4)
and the initial functionHél)(z), which can be computed usingin the frequency banfl < f < 20 GHz. Expressions similar
[16] and the already computed values of the Bessel functionstofthose in (4) have been used before to model experimentally

HP(2) = [n()H,(2) = 2i/(n2)| [ Jua(z) (@)
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Bistatic Scattering Width (TE): Coated Cylinder
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Fig. 5. Same as in Fig. 4, but for the TE polarization mode.

determined properties of real materials [17]. Also shown in thé the larger bistatic angles, are the best suited for target recog-
figure is the power reflection coefficient for the flat plate alsamition purposes [18], [19].
covered with the same material and thickness.(d = 0.325
cm), as found from (9). It is clear that the minimum value of
the BSW occurs at different frequenciesz(, 8.8 GHz, TM,
and 9.2 GHz, TE) for the coated cylinder and for the coated flatWe have quantitatively evaluated theductionin SW when
plate (9.0 GHz) and that the minima have different values. Thusgident TM and TE plane EM waves are scattered by a dielec-
target curvature and incidence polarization alter the resultstesally coated cylinder. The material parameters in this analysis
was stated earlier [10]. are complex and frequency-dependent. Algorithms to evaluate
Figs. 2 and 3 show plots ofry and o for the coated Bessel-Hankel functions of complex arguments were used. The
cylinder in several bistatic directionsig, # = 0°, 45°, 90°, results are displayed as BSWs (i.e.,= 0°) for both polar-
135°). These figures show that the minimum scattering widthgations and bistatically versusfor a wide frequency range,
occur at nearly the same frequency foxK 90°. For@ > 90° using a color scheme. Results are also shown for flat plates
the minimum value of the SW increases substantially in the Thbvered with the same lossy coating to show the differences
case while various additional minima appear at various anglg®sent when the target curvature is accounted for. The color
for the TE case. plots permit a quantitative visualization of the angular (sectors)
Bistatic plots ofory, org are displayed for coated cylindersand frequency (annular) regions in which cross-sectional fea-
in Figs. 4 and 5 for all angles and for< f < 20 GHz (or tures ofinterestappear. Although reduced in some regions, often
0 < ka < 8.4). The SWs are represented by an arbitrary colas much as 20 dB, these features are enhanced in others. This
scale (pseudocolors) graded from blue (0) to brgwn1.2), is useful for the identification of objects coated with lossy mag-
going through magenta, green, yellow, and red. The incidenuetic layers.
direction is from the left, i.e.¢ = 0°. The forward scattered
field is 180 out-of-phase with the incident and, when the two
are added, the shadow region behind the cylinder is formed [2].
Away from # = 180° the SWs show different features. There The authors would like to thank the Independent Research
are dark blue regions caused by the absorption in this coatiBpards of their respective institutions for their support.
which often reduce the SW by 20 dB. For angidselow 90,
the frequency extent of the regions of low SW seem to be inde-
pendent of bistatic angle. Above 90t appears that the minima
in the SW increase with. These results are in agreement with [t G. T. Ruck, D. E. Barrick, W. D. Stuart, and C. K. KrichbauRadar
. . . . . . Cross Section Handbook New York: Plenum, 1970, vol. 1, figs. 4-22.
those in Figs. 2 and 3. The regions outside the efficiency banﬁzl E. F. Knott, J. F. Shaeffer, and M. T. Tulégadar Cross Sectior2nd
of the coating, particularly the ones at the lower frequenciesand  ed. Norwood, MA: Artech House, 1993.
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