
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 48, NO. 10, OCTOBER 2000 1501

Radiation of a Hertzian Dipole Immersed in a
Dissipative Medium
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Abstract—The general radiation formula for a Hertzian dipole
immersed in an isotropic dissipative medium of infinite extent has
been derived. As a boundary condition of the source, it is assumed
that the dipole moment is a given quantity. When the conductivity
of the medium is finite, the total radiating power is found to be in-
finite. Thus, in order to define a finite physically meaningful quan-
tity, the dipole must be “insulated.” The total radiating power is
then a function of the thickness of the insulator and the constants of
the media. When the radius of the spherical insulator is large com-
pared to a wavelength, the reflection coefficient of the wave trav-
eling from the dielectric to the dissipative medium with the dipole
as a source reduces to that of a plane wave as derived from Fresnel’s
equations. The similarity between this and the problem by Weyl is
discussed in this paper.

Index Terms—Absorbing media, dipole antenna, electromag-
netic (EM) radiation.

I. PREFACE

T WO years ago, the first author of this paper received a
letter from Dr. J. R. Wait, our beloved friend whom we

are honoring in this special issue. In the letter, he mentioned a
discussion they had had in 1953 about the physics of electro-
magnetic (EM) radiation in a lossy medium. It happened that
in 1947, Tai wrote a technical report issued by Cruft Labora-
tory, Harvard University, Cambridge, MA, addressing the same
subject. At that time, they had a very delightful discussion on
this work and became very close professional friends. Over the
years, he sent Tai most of the reprints of his papers. He was
certainly one of the most productive scientist in EMs and geo-
physics.

The abovementioned report was never published nor pre-
sented in a meeting, so it seemed that a paper based on this
report would be an appropriate remembrance to Dr. Wait. The
reviewing board found some errors in the paper based on the
original work (which had been submitted to the Antennas
and Propagation Society Transactions Editor). Because of the
historical interest in the work the reviewing board asked the
second author to revise the paper and make the necessary
corrections. This paper is thus a joint work and becomes a fine
remembrance to our mutual friend Dr. J. R. Wait.
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II. I NTRODUCTION

In investigating the radiation characteristic of an antenna
placed in a semi-infinite dissipative medium, the simplest
problem is to consider a Hertzian dipole. The problem is then
similar to Weyl’s problem [1] except that the role played by the
two media is interchanged. Mathematically, the formulation
seems to have been well established. What one has to do is
to interchange and , the propagation constants of the
two media, in Weyl’s solution. Before this is done, however,
we should like to know whether this simple mathematical
manipulation has a real physical significance. To give a
thorough understanding of the problem, this paper will first
investigate the power relationship of an oscillating dipole
placed in a dissipative medium of infinite extent. After it has
been established that an infinite amount of power is required
to sustain the oscillation of a dipole in a dissipative medium,
the problem of an “insulated” dipole will next be considered.
Finally, the restriction upon Sommerfeld’s reciprocal theorem
as a result of this investigation is discussed.

III. H ERTZIAN DIPOLE PLACED IN AN ARBITRARY MEDIUM OF

INFINITE EXTENT

If we use as the harmonic time factor for all the quantities
defined in Maxwell’s equations, then the complex amplitude of

and satisfy the following equations in a simple medium:

(1)

where is the impressed current;, , are the constitutive
constants of the medium. It is well known that the EM field
generated by a Hertzian dipole immersed in a simple medium
of infinite extent can be derived from a simple vector function

, known as Hertzian potential function given by

(2)

where is the dipole moment; and are two complex con-
stants defined in the following:

(3)

(4)
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The relations between, and are

(5)

(6)

By substituting (2) in (5)–(6), we can easily derive the explicit
solutions for and . Expressed in spherical coordinates, ,
and , they can be written as

(7)

(8)

The complex Poynting’s vector is then given by

(9)

Conjugate quantities are denoted by an asterisk in (9). The
power radiated outward measured from a sphere of radiusis
then equal to

(10)

It can be shown that is also equal to the volume integral of
taken over the entire region outside the sphere with radius

equal to .
If the medium is a perfect dielectric, is equal to zero.

Equation (10) then reduces to the well-known expression
of the power radiated by a Hertzian dipole immersed in a
nonconducting medium, namely

(11)

where is the velocity of propagation in that medium, being
equal to . The value of defined by (11) is then a
constant, independent of the surface upon which the integral of

is taken.
To find the total power radiated by a Hertzian dipole placed in

a dissipative medium, one must letapproach zero in (10). The
quantity then becomes infinite. Since in a physical world we can
have only finite quantities, it is concluded that a Hertzian dipole
cannot sustain its oscillation in a dissipative medium to main-
tain a finite field at a distance. Consequently, it is impossible to
speak of the total radiatingpowerof a Hertzian dipole when the
latter is in direct contact with a dissipative medium. This fact
seems to have been overlooked by Sommerfeld in formulating
his reciprocal theorem [2].

Fig. 1. Two Hertzian dipoles immersed in two arbitrary media.

To give a better understanding of the problem, we may re-
iterate Sommerfeld’s result. Referring to Fig. 1, we have two
Hertzian dipoles, with dipole moments and , respectively,
immersed in two simple media. The constitutive constants in the
neighborhood of the dipoles are assumed to be quite arbitrary.
Then, according to Sommerfeld, if an equal amount ofpoweris
supplied to the dipoles, the following reciprocal relation can be
derived:

[2, eq. (18a)].
Sommerfeld uses system in his work. Hiscorresponds

to our . is the component of the electrical field in the
direction of measured at , the site of the dipole , due
to the distant radiation of and is that measured at ,
the site of dipole , in the direction of , due to the radiation
of ; and are the velocity of propagation in these two
media. If one follows closely the derivation of [2, eq. (18a)] it
will be seen that this equation is derived under the condition that
(11) is used to define the power supplied to a dipole regardless
of the kind of medium in which the dipole is placed. This is,
of course, not true according to what we have shown. For this
reason, Sommerfeld’s formula seems to have no real physical
significance unless the media under consideration are perfect
dielectrics. With this restriction, his reciprocal theorem should
read

(12)

Returning now to our main subject, we have thus seen that
whenever the medium has finite conductivity, we cannot even
define a radiating power for a Hertzian dipole. This difficulty,
however, can be overcome with the dipole “insulated.” Physi-
cally, this implies that the tremendous ohmic loss as a result of
the large induction field in the neighborhood of the otherwise
uninsulated dipole can be avoided.

IV. I NSULATED HERTZIAN DIPOLE

The configuration of an insulated Hertzian dipole placed in a
dissipative medium is shown in Fig. 2. For mathematical sim-
plicity, the insulator is assumed to be of spherical shape with
radius equal to . The propagation constants of the media are
given by

(13)
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It is understood that is real, while is complex. As a
boundary condition for the source, we shall treat the dipole
moment as a given quantity. It should be pointed out here
that the setup of this problem is very similar to Weyl’s [1],
which is an extension of Sommerfeld’s famous work [3], on
the effect of a finitely conducting plane upon the radiation of
an oscillating dipole. The similarity between our problem and
the previous ones is shown in Fig. 3. Instead of having the
dipole placed above a finitely conducting plane, we have now
a dipole surrounded by a finitely conducting spherical body.
By Kirchhoff’s method of integration, the Hertzian potential
inside the dielectric can be written as

(14)

where , are, respectively, the distances measured from the
point of observation to the dipole and to the surface of contact
of the two media, is the normal to . The first term on the
right side of (14) is designated by Sommerfeld as the “primary
excitation” term, while the term represented by the surface in-
tegral simply as a reflected wave from the spherical boundary.
Thus, we shall assume to satisfy the following equations for
the two different regions under consideration

(15)

(16)

where is identically equal to in order to satisfy the
singularity condition at the source andis the dipole moment.
It can be shown that when has only one component in the
direction, (5)–(6) can be written as

(17)

(18)

(19)

where denotes the derivative of with respect to and
the second derivative.

The boundary condition at requires that the tangential
components of and be continuous for all values ofor

(20)

at

Fig. 2. An insulated dipole.

(21)

where we have assumed that . Substituting the
values of and given by (15) and (16) into (20) and (21),
we can solve for the coefficients and in terms of , where,
for convenience, we have set . They are shown in
(22) and (23) at the bottom of the page. It will now be conve-
nient to introduce the reflection and transmission coefficients
and for the Hertzian potentials by means of the following re-
lations:

(24a)

(24b)

where and are the factors that multiply in (22) and (23).
In terms of these parameters we find that

(25a)

(25b)

V. TOTAL POWERRADIATED BY AN INSULATED DIPOLE

The total power radiated by an insulated dipole can be
computed using the same formulas given by (7)–(10), except
that the amplitude for the outward propagating
spherical wave is now replaced by the new amplitude

. In addition, , , and are replaced by ,
, and . We can express , the factor multiplying in (22)

(22)

(23)
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Fig. 3. Three boundary value problems.

in the form . After a laborious algebraic ma-
nipulation, we find, as shown in (26) at the bottom of the page,
where

(27)

Note that the effect of the standing wave in the insulating
cavity is to cause the radiated power to vary in a cyclical manner
with changing radius of the spherical cavity. The period of the
cyclical variations is , where is the wavelength in the
insulating medium. This phenomena is similar to that occurring
on transmission lines when the source and load impedances are
not matched to the characteristic impedance of the line. There
is also a cyclical variation in radiated power from a dipole lo-
cated above the earth, but for this case, the variations diminish as
the dipole is moved farther away from the interface because the
reflected wave is dispersed and, hence, becomes weaker at the
location of the dipole. For a dipole located within a spherical
cavity the reflected wave from the interface always converges
toward the origin where the dipole is located.

The denominator of the first factor in (26) can be expressed
in the form

where . When becomes very large it is easy
to show that

(28a)

(28b)

The maximum and minimum values of the first factor in (26)
are

and

As a typical case, let for which the maximum and
minimum values are found to be 3661 and 0.25. Thus, the radi-
ated power shows a very large variation with changing radius of
the insulating sphere when the contrast between the two media is
large. The insulating sphere is functioning like a spherical cavity
and results in a large field within the cavity and a large amount
of radiated power at the resonant frequencies of the spherical
cavity. The lowest resonance occurs when the diameter of the
insulating sphere is approximately one wavelength in medium
one.

By comparison with (11), that is, the power radiated by the
same dipole when immersed in the dielectric medium of infinite
extent, we find that the ratio of to is shown in (29) at
the bottom of the next page, where the coefficient’s are the
same as defined in (27). Equation (29) also defines the ratio of
the radiation resistance of an insulated dipole immersed in a
dissipative medium to that of the same dipole when placed in
the insulated dielectric of infinite extent.

It can be further demonstrated that if we identify the two
terms defined in (15) as a forward and a backward propagating
spherical wave, then the power reflection coefficient measured
at the interface of the two media is

(30)

(26)
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Fig. 4. Power transmission coefficient of the waves generated by an insulated dipole.

where is the same sixth degree polynomial ofdefined in
the denominator of (26), and is similar to except that
is replaced by in all the coefficients, , , etc. For large
values of , reduces to

(31)

which is the value of the reflection coefficient at normal inci-
dence of plane waves traveling from the dielectric medium to
the dissipative medium [4]. The power transmission coefficient
at the interface is given by

(32)

which is also equal to the second factor that appears in (29). In
(32) is the incident power on the interface for the insulated
dipole case. It can be verified that, in general, we have

(33)

Thus, is also equal to the refraction coefficient of the spher-
ical waves generated by the Hertzian dipole. For a highly dissi-
pative medium

(34)

Values of for and 180 are plotted in Fig. 4. From
the figure, it can be seen that the power transmission coeffi-
cient at the interface increases rapidly until becomes

somewhat greater than unity. It then decreases to an asymptotic
value as becomes large. The power transmission coeffi-
cient does not manifest any cyclical variation. The cyclical vari-
ation in radiated power is caused by the cyclical variation in
the amplitude of the forward propagating spherical wave in the
insulating cavity, which is a result of the varying phase angle
of the reflected wave at the dipole location as the size of the
cavity changes. The changing amplitude and phase of the re-
flected wave has a pronounced effect on the radiation impedance
seen by the dipole.

VI. RECIPROCALTHEOREM FORTWO INSULATED DIPOLES

Extension of Sommerfeld’s reciprocal relation to two in-
sulated dipoles can now be formulated based upon the result
we have obtained concerning the EM radiation of an insulated
dipole. We shall not give here the details of what Sommerfeld
has used in his original work. Instead of using (2), we shall use
(15) as the Hertzian potential defined in the neighborhood of
a dipole. It is assumed, as in the original work, that reflected
waves other than that produced at the interface between the
insulator and the dissipative medium has a negligible effect
upon the radiation of either dipole.

In order to obtain an expression that is not too complicated,
we make the following assumptions: is large enough so that
the Fresnel reflection coefficients may be used and only the part
of the electric field that varies as the inverse first power of
needs to be retained. For the first situation, we consider a dipole

(29)
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located within an insulating sphere of radius and with per-
mittivity and that radiates into a mediumwith parameters

, . Dipole 2 is located in medium a distance from the
origin. The equations given earlier in the paper apply if we re-
place the subscript 2 by a new subscript. is the electric
field radiated by dipole 1 at the location of dipole 2. It is also
assumed that the dipoles are located and oriented for maximum
interaction. For the second situation, we consider that dipole 2
is enclosed in an insulating sphere with the same radius but with
a permittivity and radiates a field into medium with pa-
rameters . The last assumption is the same as that which
Sommerfeld made, namely, that both dipoles radiate the same
amount of power. Corrersponding to [2, eq. (18a)], we find a
new reciprocal relationship which is

(35)

and are the reflection coefficients defined by (30) and
and are the phase angles of without the factor

defined in (22). Equation (35) is derived under the
condition that . If we consider the special case
where and and make the additional assumption
that the losses in mediaand are so small that the reflection
coefficients can be set equal to zero then (35) gives

(36)

This expression is the same as Sommerfeld’s with the exception
of the propagation factors provided the losses are very small [see
(12)], but is quite different from the expression given by Som-
merfeld by [2, eq. (18a)]. Our conclusion is that Sommerfeld’s
reciprocal relationship is very limited and that the new one given
by (35) is considerably more general.

VII. CONCLUSION

In this work, it was demostrated that a Hertzian dipole radi-
ating in a lossy medium must be supplied with infinite power
to overcome the loss in the surrounding medium. This limita-
tion in the simple theory of a radiating dipole is removed by
considering a dipole within an insulating sphere. Sommerfeld’s
reciprocity theorem in dissipative media is reformulated using
the models of two insulated Hertzian dipoles. The treatment re-
moves the deficiency found in Sommerfeld’s formulation.
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