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Transient Excitation of a Layered Dielectric Medium
by a Pulsed Electric Dipole

Anton G. Tijhuis Member, IEEEand Amelia Rubio Bretonesenior Member, IEEE

Abstract—in this paper, we consider the transient excitationbya ready been used extensively for modeling the interaction be-
pulsed vertical or horizontal dipole of a continuously layered lossy tween pulsed wire segments and loop antennas and stratified
dielectric slab embedded in between two dielectric half-spaces. The media [3]-[5]. The invitation to contribute to this special issue

focus of the paper is on finding a highly efficient numerical imple- d like th fect ion t it fund tal
mentation. To this end, we choose all spatial approximations inde- SEEMEedIke e PErect 0CCasIon 10 WIIle a More iundamenta

pendent of frequency. In the first place, this concerns the inverse Paper about the basic formalism.

spatial Fourier transformation in the Sommerfeld representation Obviously, when dealing with layered media, one uses spec-
of the fields. A suitable quadrature rule is obtained by introducing tral techniques. These techniques have been around for a long
a normalized wave number, and identifying the result in terms of time; an excellent review of early work can, for example, be

dual analytic signals. In the second place, this concerns the spec-f din 6l E . for th tral fields i . .
tral fields for which a new integral equation is derived with a de- ound in [6]. Expressions for the spectral fields in a piecewise

generate kernel. This integral equation is solved by a fully recursive homogeneous three-layer region were given in [7]. Only a few
procedure. Representative results are presented and discussed thatauthors have devoted attention to the efficient evaluation of the

can be underdstood from physical intuition. spectral integrals. Possibly, this can be explained from the suc-

Index Terms—Dipole antennas, electromagnetic transient anal- cess of the fast Fourier transformation. Straightforward and ad-

ysis, nonhomogeneous media, transient propagation. vanced computations for half-spaces can, e.g., be found in [8]
and [9].

Our approach is the spectral counterpart of the contin-

uous-time discretized-space (CTDS) approach as explained for

FTER almost 20 years, the first author still fondly rememintegral equations in [10] and [11]. The basic idea is that, under

bers his first two encounters with Prof. James R. Waitealistic restrictions on the transient behavior of the impressed
In the spring of 1981, Prof. Wait visited the Electromagnetiasurrent or incident field, all spatial approximations may be
Laboratory, Delft University of Technology, The Netherlandsshosen independently of the frequency. The relative error in the
During that visit, he was kind enough to spend an afternodiequency-domain spectral components will obviously increase
with a young colleague who had just submitted his first twaith increasing frequency, but this does not affect the accuracy
conference papers. Later that year, when these papers hadfthe obtained time-domain results. At a first glance, this result
be presented at the URSI/AP-S meeting in Québec, Canasléems counter-intuitive. However, even a well known technique
he encountered the same young scientist in the shower rofiika the FDTD essentially uses a fixed spatial approximation,
of the dormitories. Noticing the nervousness of the prospectifsiowed by a time discretization. The only difference is that,
speaker, Prof. Wait took the time to reassure him. Since thém,the CTDS approach, the time sampling is replaced by a
there have been numerous encounters, which were always sfiguency sampling, thus avoiding the error accumulation that
ulating on a personal as well as on a scientific level. is inherent in direct time-domain computations.

Since both papers mentioned above dealt with transient fieldsThe key result in our approach is the normalization of the
in layered dielectric media, this will also be the topic of thgpatial wavenumber with respect to frequency. This idea is used
present contribution. In particular, we deal with the efficient nun a slightly different manner in the Cagniard-De Hoop method.
merical computation of the transient field generated by a dipafiassical applications of that method to piecewise homogeneous
source above a continuously layered slab in between two hpedia can be found in [12], [13] and [14]. Approximate results
mogeneous half-spaces. From the many publications by Prof: inhomogeneous media can be found in [15] and [16]. Our
Wait on this subject (see, e.g., [1] and [2]), we hope that thisapproach is different in the sense that we keep the frequency
a subject that he would have appreciated. The ideas presented, and allow the time variable to become complex. In this re-
in this paper have been available for several years and havesplect, our work also resembles the spectral theory of transients

proposed in [17]-[20]. In addition to the spectral approach, we
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present and discuss a few representative numerical results.
nally, some conclusions are formulated in Section VI.

Source
Region

Il. FORMULATION OF THE PROBLEM

We consider a configuration that consists of an isotropi Incident
linearly and instantaneously reacting, horizontally stratifiec B
lossy dielectric medium embedded between two homogenec
dielectric half-space®; andD; in z < 0 andz > d, respec- N
tively (Fig. 1). For convenience, the half-spaces are assumec
be lossless. However, the analysis presented in this paper
directly be generalized to the case of lossy half-spaces. The s
is located in the domaif,, with 0 < > < d. The configuration
is driven by a pulsed electric dipole whose current density

given by

Backing Layer

Ji(r,t) = 3,8()8(r — zou. )uy Q)

with 2o < 0 In (1), _th_e supers_,cripzt stands f_or “impres_sed”. Fig. 1. Pulsed electric current above an inhomogeneous slab embedded
S(t) is a signal of finite duration and the time coordinate igetween two homogeneous lossless half-spaces.

chosen such that this pulse startg at 0. The time derivative
has been included to ensure that the electric current does v@ﬂbrekT — kyu, + kyu, andry = zu, + yu, are vec-
— Nzt Yoy - x Y

leave behind a static charge distributiontas cc. ugisaunit ¢ in the transverse plane. This transformation reduces the gra-
vector. Because of the symmetry of the conﬂgu_ratlon_, We M@ent operator in (2) toky + u.d. and the time differentiation
restrict ourselves to the cases whege= u. (vertical dipole) 4 5 scalar multiplication by-iw. We decompose the electro-

oruy = u, (horizontal dipole). _ _ magnetic fields into their transverse and longitudinal parts, ac-
The aim of the computation is to determine the transmebrding to

electromagnetic field caused by the electric current distribution

specified in (1). In particular, we are interested in the field in E(kT zw) = ET(kT z,w) + EA,/(kT z,w)u, @)

the upper half-space < 0 since that is the field that can be . -

detected by an antenna. Once this field is known, we can apgyd we break up Maxwell's equations in the same manner. Next,
the superposition principle to determine the effect of a mofge transverse field components are expressed in components

general current distribution. parallel and orthogonal to the directién- /%, according to
A. Transmission-Line Equations . k k
quation Er = —i—V°+i <uz X —T> v (5a)
Before we solve the specific problem formulated above, kr ko
we first summarize the general transmission-line equations o . kr\ ,. .kr .,
’ . . Hr =—i|u, x — ) I°—i—1I". (5b)
that govern the propagation of electromagnetic waves in a kr kr

dielectric medium with permittivity=(~), conductivity o(z),

and permeability.(z). We follow the general formulation In (5), the amplituded " (kr, z,w) andI®"(kr, z,w) have,
presented in [22], but we adapt the time dependence and #part from a normalizing constant, the proper dimension of a
notation to the problem at hand. In the layered configuratidrequency-domain current and voltage along a transmission line.
specified above, the electromagnetic fields satisfy the followirfgubstituting (5) in the longitudinal part of Maxwell’s equations

version of Maxwell's equations: leads to the identification
V x H(r,t) = [e(2)0; + o(2)|E(r,t) + Ti(r,t) (2a) ¢E. = (—kTﬁ + j;) / iw (6a)
V x &(r,t) = —p(2)0H(r, t). (2b) Nﬁz _ —kTVh/iw (6b)

To exploit the fact that the constitutive parameters in (2) depefighere we have introduced the usual frequency-domain permit-
only on thez-coordinate, we solve these equations in the spegyity

tral domain. To this end, we introduce the following temporal

and spatial Fourier transformations: &z w) = e(2) — 0(2) fiw. (7)
E(r,w) = / E(r,t) expliwt) dt (3a) Equation (6) relateg* andV'" to the longitudinal components
0 of the electric and magnetic flux densities.
E(kT,Z,w) _ / E(r,w) exp(—iky - v7) da dy The expressions in (5) and _(6) are subst?tuted in the trans-
—oo J—co verse parts of Maxwell’s equations and, again, the components

(3b) parallel and orthogonal tky /% are separated. This leads to
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the desired transmission-line equations. FoandV¢, we ar- For ahorizontal dipole transforming the current density speci-

rive at fied in (1) results in
D.1° = iweVe — <L:—T -3§p> (8a) I (kr, 2,w) = —iwS(W)8(z — 20) 1. (13)
T
—iy? ikr - Substituting this result in (8) and (9) now gives
v = gy By (8b) 9 () and (9) now g
we we
E-modes: a=¢, U=1I°
wherey = /(kr)? — w?&(2)u(z), with Re(y) > 0, and why
Im(~) < 0 whenRe(y) = 0. This will be our choice of branch F=- kr S(w)
cut in all the square roots appearing in the rest of the paper. For ) & (20)
I'" and V", the transmission-line equations read X |6'(z — z0) — Z(r0) 6(z—2)| (14a)
2 ik .. H-modes: ao=pu, U=V"
. = "Lyt y <11z X L—T> J7 (9a) —iw?pk,
Wit kr F=—""25(w)é(» — 2) (14b)
V" = jwpl™. (9b) kr

. whered’(-) is the derivative of the delta function. Since we have
From (8) and (9), we observe that the Fourier-transformed ver- < Othe factor of’(z) in (14a) vanishes and the contribution

sion of Maxwell's equations indeed has two independent soli’ ' _ . .
tions. The first one is determined by and V*. From (6) it bjoroportlonal toS(z — =) may be discarded. For the horizontal

. ) L dipole, the differential equation (10) must be solved twice for
follows that for this type of solution, only the electric field has ach combination dé andw. Once the fundamental unknowns

a longitudinal component. Therefore, these solutions are in&; H o : ,
. i g 13 € I 3
cated ast' or TM modes [22]. The second solution is deterf- andV' are known, itis straightforward to obtain” and

mined by " and V*. For these solutions, only the magnetic:rom (82) and (9b).
field has a longitudinal component. Therefore, they are indi-
cated as? or TE modes. Finally, (8) and (9) illustrate that the
longitudinal component of? only generate& modes. Theterm  The first step toward solving the problem formulated in Sec-
“modes” refers to the interpretation of a plane-stratified mediution Il is solving the differential equation (10) for the forcing
as an inhomogeneous waveguide with an infinite cross sectiumctions given in (12) and (14) for a set of parameté¢s, w}

In this interpretation, propagation and attenuation take placetirat allows the evaluation of the integrals in the inverse trans-
the z-direction, while the transverse eigenfunction is propofermations of the ones given in (3a) and (3b). In this section, we
tional toexp(iky - rr). address several aspects of this solution.

I1l. L ONGITUDINAL BEHAVIOR

B. Second-Order Differential Equation A. The Half-Spaces

For a general type of continuous stratification, the systems ofln D; the dielectric medium is homogeneous and lossless.
(8) and (9) must be solved numerically. In the literature, severehe coefficients in (10) assume the constant valiles =
techniques are described for solving such equations. We mep-:.(z) = 11, and the attenuation coefficientigz) = v =
tion for example direct numerical integration ([23, sec. 2.4.2})/(kr)? — w?e 1. For the forcing functions specified above,
and wave splitting [24]. For reasons of efficiency, we preferae can therefore find a closed-form solution of this differential
generalization of the approach proposed in [10]. The first steguation. For the vertical dipole, we have
is to reduce both (8) and (9) to a single second-order differential

equation of the form Uz) = _;:kT S(w){exp(—=71|7 — #0])
1
(2)0- <$a) U(z) - 2(2)U(z) = F(z)  (10) + R explyi(z + z0)]} (15)

o ~whereR¢ is an unknown reflection coefficient. This reflection
where only the dependence erhas been indicated explicitly. coefficient is defined as the amplitude of the reflected wave that
In (10), a() is a constitutive parameteli(z) is the unknown would be caused by the unit-amplitude incident wéii¢z) =

function, andF'(z) is the forcing function. In both cases, Weoxp(—~,2), whena(z) = &,(z) in the domainD,. For the
choose the quantity that corresponds to a longitudinal flux deforizontal dipole, we have

sity as the fundamental unknown.
When the impressed current density igeatical dipole ap-
plying the Fourier transformations (3a) and (3b) results in

— oS ) gl — 20)
x exp(—mlz — zo)

R expln (= + 20)]) (160)
iw2u1ky
2krm1
a=¢, U=I1° F =iwkrS(w)b(z— 20). (12) + R" exp[v1(z + 20)]} (16b)

E-modes: U(z) =

Ji(ky, z,w) = —iwS(w)6(z — 2). (11)

From (8), we then have H-modes: U(z) =

S(w){exp(—1|7z — 20)
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where R" is the amplitude of the reflected wave generated biyith these conditions and (19), the right-hand side of (20) is re-

Ui(z) whena(z) = pa(z) in Ds. duced to the sum of a known excitation term and two terms pro-
Since the differential equation (10) is linear, this means thaortional tol/(0) and{/(d). By equating the results obtained for

we may restrict ourselves, in the evaluation of the longitudinhbth sides of (20) we then arrive at the desired integral equation

behavior, to determining the response to a unit-amplitude plane, a2(0)yy - 1 rd - )
wave for one or both of the possible choiceswt). The mul- U(z) = Ty exp(—vz) — 2% / exp(—7|z — 2|)
tiplicative factors occurring in (5) and (6) and in (15) and (16) iy 20 d
can then be included in the evaluation of the spectral integrals. X O‘?(zl)az,f](z’) dz' + w_7/ exp(—7|z — #|)
Therefore, we consider the normalized solutid(x) of (10) (%) ?’Y 0
which, in the homogeneous half-spaces, behaves as X [E2(2, w)pa () — eplU(Z") d7
y y a1y — a2(0)7 _
U(z) = exp(—m2) + [U(0) — 1] exp(m 2) t o, CO)exn(=72)
forzp < 2 <0, (173 5y — 9
I o <z<0 (179 + DB g -2 @)
U(z) =U(d)exp[—v3(z —d)] ford< z< oo (17b) 20035

5 wherez andz’ have been interchanged, whet&:') denotes
wherevys = \/k3. — w2eaus, and wherel/(0) — 1 = R%". the derivative ofa(7’), and where it has been assumed that
Obviously, the direct field for: < z, must also be adapted.0 < » < d. Equation (22) expresses the unknown field as a
However, for the homogeneous upper half-space considerediiperposition of plane waves traveling in the homogeneous ref-
this paper, this field is available in closed form and should netence configuration. The first term on the right-hand side is

be computed by spectral techniques. a direct wave that corresponds to the incident plane wave in
_ _ (17a). The next two terms are integrals that represent the in-
B. Numerical Solution fluence of the induced sources inside the slab. The last two

To obtainU(z) for 0 < z < d, we need to solve (10). To impedance-like terms account for the reflections at the inter-

this aim we derive an equivalent contrast-source integral eqd@ces with the exterior half-spaces. In principle, the choice of
tion. For numerical convenience, we restrict ourselves to tHee reference medium is arbitrary. From a computational point
case where,(z), o2 (z) anduz () are continuous functions of  Of view, it seems sensible to choasandy: such that a (locally)

in0 < z < d. Again, the analysis can directly be generalized ropagating wave in the actual configuration is always repre-
profiles with a finite number of discontinuities [5]. To arrive agented in terms of propagating waves in the reference medium.
the desired integral equation, we first define a spectral Green’sl0 solve (22) numerically, we introduce a uniform spatial grid

function for an infinite, homogeneous, lossless reference caw = mAz, Withm = 0,1,..., M andAz = d/M. The value
figuration with permittivityz and permeabilityz. This function ©f M is chosen independently of the values of the spectral pa-
satisfies the differential equation rametersty andw. We enforce (22) at the grid points, and ap-

proximate the integrals ovef by a repeated trapezoidal rule.
[02 + w?en — k3] G(2, 71 kr,w) = —6(z —2')  (18) Forthe evaluation of the space derivative in the fabtdi’ ('),
we use central differences for the interior points and the condi-
and the radiation conditions #§ — oo and is known in closed tions (21) at the slab’s boundaries. We then end up with a dis-

form cretized equation of the form
/ 1 ~ / g —m = —|m—m/| 7 o
Gz, hr,w) = o= exp(=7]z = #/)) (19)  Un=AZ""+ 3 Z By U1 = U 1]
v m/=1
— p— . . M
wherey = /k2. — w?éfi. Next, we apply the one-dimensional I Z Z-lm=lc T (23)

version of Green’s second identity f6f(z) andG(z, 2') over
the interval0 < z < d. This results in

m/=0
whereZ = exp(5Az) and where the subscripts refer to the
d L L corresponding points in discretized space.
/ [G@QU - UagG} dz = GO.U —UO.G|Z=8.  (20) The system of (23) can be inverted by a fully recursive solu-
0 tion procedure, which is a generalization of the one proposed in
In (20), we substitute (10) and (18) to eliminate the secofd0]. The procedure consists of three principal steps. First, the

derivatives in the integrand on the left-hand side. In the evali@ws withm = 1,..., M are reduced to a convenient three-di-
ation of the end-point contributions in the right-hand side, wagonal form by carrying out three simple row operations. In the
use the known behavior @f(z) in D; andDs as specified in second step, the rows with = 1,..., M are used to succes-
(17). From the continuity of/(z) anda—1(2)8.U(z) (implied ~ sively remove the leftmost element of the row with = 0,
by (10)) we then derive the boundary conditions which remains unchanged in the first step. Moving the reduced
first row to positionA then results in a matrix equation with
lim 8Z(7(z) — a2(0) [fJ(O) — 9], a_system matrix whose only nonyanishing eIemenFs are on the
z]0 o diagonal and the first two superdiagonals. In the third step, this
an(d system is solved by back substitution. Details will be published

lzigilaZU(z)I—’Y?) s U(d). (21)  elsewhere.
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The solution procedure described above combines the advatiereZ, is the free-space impedance. In (26) the superstgript
tages that the accuracy of the solution obtained €@/ —2) indicates the direction of propagation, and the wave originates
and the computation time is @?(M) als M — oo. Further, from the pointz = z;. With this result, we can formally write

the boundary conditions at = 0 andz = d as given in (21) exp(—vy17) + R exp(y12) in Dy
are incorporated in closed form, which leads to an improved ac-  /(z) = ¢ PUF(2;0) + Q°U, (z;d) in Dy, 27)
curary compared with a discretization of (8) or (9) and these T¢ exp[—v3(z — d)] in D3

conditions with the aid of finite differences. A possible problemyhere only the coefficient&e, P¢, Q¢ and T¢ are still un-

is that, for large values dfr, U(z) shows a strong exponentialinown. These coefficients are found by enforcing the continuity
decay for increasing. Now the reduction ofow(0) in step 2 ¢ U(z) andé=1(2)0.U(z) atz = 0 andz = d. The derivatives
outlined above results in the reciprocal of the transmission C8% U£(z; ) are found in first approximation by utilizing the
efficient of the slab. Therefore, the numerical implementatiggct that differentiation of a WKB approximation of a given ac-

of this step may suffer from overflow problems. These prokqracy yields the derivative of the solution to the same accuracy
lems can be avoided by monitoring the magnitude of the fact&r5]_

exp(7120), Which appears in all the amplitudes derived from For the reflection coefficienke, for example, we then obtain
(12) and (14). the following first-order approximation:

a1+ 7. e.arT— /1. €,a
C. Asymptotic Behavior R = R T2 Ud (4 0) Ry 5Ua (05 )Ty

a 1,2 _ pearrti . €,arT—1/n.
For large values of one or both of the paramete@nd k7, 1_ RQ:lU_“ (d; 0)Fz3Ua _(0’_d) -
an asymptotic solution of the differential equation (10) can guhere the asymptotic reflection and transmission coefficients at

derived. By scaling the spatial wave veclor accordingto ~ the slab’s interfaces are given by
EQ(O)U,1 — 61“2(0)

(28)

E1U2 (0) — EQ(O)U,1

_ i R&% — 7 6,0 _

kT - o vr (24) 1.2 62(0)11,1 + 61U,2(0) 21 51“2(0) + 52(0)11,1
wherec, is the speed of light in free-space, we can handle bothzs.2 — eaua(d) — EQ(d)“?” oS = 2e2(0)us
cases simultaneously. When= ¢, i.e., for E modes, we have ~ o egua(d) + e2(d)us 7 e2(0)ug + e1ux(0)
the complication that this coefficient is frequencydependent.Te,a _ 2e1u2(0) (29)

Therefore, we derive the solution for that case. The solution for %* — e1u2(0) + e2(0)uy

As argued above, we only determine the response toa@ found forPe, Q¢ and7*.
unit-amplitude plane wave. With the definition (7) and the Finally, we must repeat the analysis for tHemodes. How-
scaling specified above, the differential equation (10), can thgper, only the logarithmic derivative in (25) changes for this type

be written as of modes. In deriving (26), we have only used the first-order ap-
52 _ e'(z)+io’'(2)/w proximation of this term. The same approximation was used in
2 e(x)tio(z)w the application of the boundary conditions. Therefore, we can

2 immediately find the asymptotic solution for tiémodes by

W . -
- ?UQ(Z) +iwp(z)o(z)| U(z) =0 (25) replacinge by p in the term with the square root in (26) and in
_ 0 _ o . the asymptotic reflection and transmission coefficients defined
where the prime denotes differentiation, whet&z) = in (29). The factor,(2') in the exponent in (26) need not be

I°(kr, 2), and whereu(z) = \/(v1)? —e(2)1(2). u(z) replaced, since the term with(z) in (25) remains as is.
is almost the scaled scaled counterparty¢f), but the term

with o(z) in (25) is treated separately. Equation (25) is ndD. Singularities in the Complexr-Plane
yet in a suitable form for deriving a WKB approximation of a¢ 4 function of complexr
its solution. However, such a form is obtained immediately br\épresentinglﬁ( )

expanding the logarithmic deriv?tive efz) +io(z)/wina pes of singularities. In the first place, there are two branch
geometrical series in powers of . cuts in the upper half of the complex--plane with branch

The analysis is based on ideas presented in [23, secs. Z'BOOMts atvr = ny = \Jenpny andvy = ns = \/E5 i,

2.5.3]. From [25], we know that, in any region where the coeffirpage pranch cuts are associated with the choice of the “phys-
cients of (25) are continuous with derivatives that are disconti» root in the attenuation coefficients, = wui/co and

uous at no more than a finite number of points, there exist two _ wus/co in the boundary conditions (21). In the transform

. . . v:l: o
linearly independent solutionis™(z) whose first-order WKB  yomain, the problem is completely defined by these boundary
approximations are given by conditions and the second-order differential equation (10) in

the spectral constituedf(>)
wvr/co, z,w) of V*(wrr/cy, z,w) has two

[“];t(z; 21) the intervald < z < d. This differential equation only contains
aterm+? = w?u3(z)/c2; therefore no extra branch cuts are
— M introduced for the interior oDs.
V er(z1)u(2) In the second place, we need to consider the occurrence of
o exp{:F/Z [iu(z’) 4 Zou,,(z’)a(z’)} dz’} so-called guided-wave poles. As shoyvn in Appendix A, for
. Leo 2iu(z') o2(z) = 0 such poles only occur in the interval

(26) max{ni,na} < vr < max{na(z)|0 < z < d} (30)
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WherenQ_(z) = 52?,(;:)/12,,(2) is_ the local refractive index in —W? (u. x kr)k, RM(kp,w)
D5, provided that this interval exists. Each pole correspondsto a Y

homogeneous solution of Maxwell’s equations that propagates x exp[y1(z + 20)]-

in the transverse direction. The location of the poles, and their

number, depends an. Foro,(z) > 0, the poles occur in the In (31) and (32)R*" are the reflection coefficients introduced
first quadrant of the complex;-plane, and approach the samén (15) and (16).

interval ass — oo. Now, the integration contour may be consid- The obvious approach to determine, from (31) and (32), the
ered as running just below the reat-axis. Therefore, numer- corresponding space-time fields is to evaluate each of the in-
ical problems will occur in the solution of the integral equationersion integrals corresponding to (3a) and (3b) directly with
(22) for ¢ in that interval since this equation does not havethe aid of fast Fourier transformations. An example for acoustic
unique solution for values af that correspond to guided-wavewaves is described in [26]. However, this requires consider-
poles. able computational effort, even in the case of a piecewise-ho-
mogeneous or two-media configuration. To speed up the calcu-
lations, we cast the Fourier inversion into a special form that
iEas also used in the half-space configurations considered in

(32d)

IV. TRANSFORMATION TO THESPACE-TIME DOMAIN

Once %" and V*" have been computed, the longitudin
components of the fields can be calculated from (6) and s
sequently the t_ransverse compo_nents from (5). The final Steﬂw'@nts in (31) and (32), vizEZ(kT,z,w) for the vertical dipole
the procedure is to carry out the inverse Fourier transformatio A £ (kr, 7, ) for the horizontal one
corresponding to (3a) and (3b). As mentioned at the end of Sub- ~ ** 7 |
section IIlLA, we need to multiply the unit-amplitude solutiorl3 :

: i . S . Weyl Representations
discussed in Sections I1I-B and C by the multiplicative factors yiRep e ) ) )
occurring in (15) and (16). To keep the paper legible, we restrictL€t us startwiths? (kr, z,w) for the vertical dipole. First, we
the discussion to the reflected field Ty since this is the field restrict the temporal Fourier inversion to nonnegative frequen-
that would be measured in applications in inverse scattering &8S by expressing the time-domain signal as
antenna design. However, the ideas presented in this chapter are N —_
also directly applicable to the total fields ™, andDs. For the EX(r,t) = Re {€17(r,1)}
incident field in?,, difficulties are encountered near the source. h
pointr = zgu.. As mentioned above, this field is available in
closed form and need not be computed by spectral techniques.

] and [4]. To illustrate the procedure, without excessively ex-
nding the paper, we consider two representative field compo-

(33)

1 oo

Et(r,t) = —/ dw exp(—iwt) FZ(r,w). (34)
m

A. Spectral Field Components 0

Here, £.%(r,t) represents the dual analytic signal corre-
sponding to€7(r, ). This signal is an analytic function in the
lower half of the complex-planeIm(¢) < 0, and its real part

For the vertical dipole, only thé&-modes are excited. The
transform-domain reflected-field components are given by

- Kk . approaches” (r, ¢) whenIm(t) 1 0.
Eilkr, z,0) = 2v1€1 SR (b, w) expl (= + #0)] The restric’fion)tow >0 (al)lows us to use the normalized
(31a) spatial transform vectowr introduced in (24). Further, since
o —w(u, X kr) . EZ(kT,z,w) only depends orky, we also change over to
Hy(kr,2,w) = TS(”)R (bz,w) the normalized cylindrical coordinates/r, ¢, }. The spatial
x exp[yi(z + 20)] (31b) Fourier inversion corresponding to (3b) then assumes the form
. tk 0o x
By ke, z,w) = T;S(w)RE(kT7W) exppn(z + 20 El(r,w)= w22 2 / vr dVT/ d¢uE2(VT7 Duy 2, W)
(31¢) Amten Jo =

WU ) _
For the horizontal dipole, adding the contributions of Bxeand X eXp <LC_O7T cos(ey ‘p)> (35)

H-modes results in
—iky

£1

where{rr, ¢, 2} are cylindrical coordinates in actual space.
Combining (31a), (34), and (35) and reversing the order
of the temporal and spatial Fourier inversions then leads to

Er(kp, 2z,w) = S(W)R(kr,w) exp[y1(z + 20)]

X Chw (323) the so-called frequency-domain Weyl representation for the
HI(kr,z,w) = Z—iS(w)Rh(kT’ w) exp[v1(z + 20)] reflected field
(32b) . —iZy [T i V3

. W . 8Z+(r’ t) - 8m2c2 d<pﬁ, dvr U1(L/;)61,
Hy (ky,7,w) = 25 S(@)[(w X ke)ka R (kr, ) A :

S x 4= / dw(—iw)3S(w) R (v, w)

+ kayR (kT7 w)] eXp[’yl(Z + ZO)]? (320) T Jo

. S krk,
B (cr, ) = 20 | K20 ey ) xeplivlt -l )l) @0

T
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where the complex time delay is given by 2) Inthe second place, there ayeided-wave poless dis-
) cussed in Section llI-C, forz(z) = 0 these poles are
R - ’;_TTT cos(i,) — tuy (vr) (z+2) @37) located on the interval specified in (30), provided that

0 Co this interval exists. The integration ovelin (39) reduces

the influence of the poles. According to the generaliza-
tion of the Mittag—L effler theorem for a function with iso-
lated poles to the case where the function has one or more
branch cutsR®"** (vr, t) only has an extra jump discon-
tinuity along this interval. Fors(z) > 0, each point in

the subinterval is a condensation point for guided-wave
poles at different values af. Therefore, the behavior
along the real/r-axis will be similar to that in the loss-

Ert(r,t) d vr dy less case.
i e The definition ofu; = , :1/,_% — n3 was chosen such that the

and where the definition fou; (1) was given after (29). Be-
cause the cosine in (35) is periodical, the variable in the angular
integration has been changed¢# = ¢, — ¢, and EZ(r, w)
does not depend op.

Repeating the same procedure for the dual analytic signal cor-
responding t€? (r, t) for the case of the horizontal dipole, we
obtain

3 integration contour may be regarded as running along the real
X {;/0 dw(—iw)”S(w) vr axis in the fourth quadrant of the complex-plane. There-
i (vr) fore, the situation in the complex--plane may be envisaged as
X [cos2(<pﬁ, + ) o R (vr,w) indicated in Fig. 2, where it is assumed that > n; since in

practical configurations the upper medium is usually free-space.

. Hir
+sin®(¢), + <P)FL:T)R "(vr, w)}

% expliew(t — (7. g z>>1} . @9

To ensure that the spectral integral equation (22) has a so-
lution, we deform the contour into the lower half of the com-
plex vr-plane as indicated in Fig. 3. In doing so, we need to
choose/; large enough to avoid a possible ill-posedness of the
Apart from constant amplitudes and a factor (efiw)?, the discretized integral equation (23), and possible difficulties in the
terms in braces in (36) and (38) are of the same form as thgmerical integration along the interval between— i¢; and
right-hand side in (34) and the complex time argumert . _ ;¢, + /,. To investigate to what extent this is allowed, we

7(vr, ¢, %) cannot have a positive imaginary part. Thereforgyrite the frequency-domain Weyl representation (36) in terms
these terms can be identified as time derivatives of dual analy@ﬁthe dual ana|yt|c S|gna| introduced in (39) This leads to the

Signals. This observation is used to derive a suitable Combi%_ca”ed time-domain Wey| representation for;thmmponent
tion of Gaussian quadrature rules for the evaluation of the intgrthe electric field in the case of the vertical dipole

gral overvy. Compared with an evaluation by fast Fourier trans-

form (FFT) operations, this has the advantage that the number £ (r, 1) = LZo du

of values ofvr for which the numerical computation outlined Ll or)er, 1(vr)er,

in Section 11I-B must be performed is reduced considerably. 837?€+ (vp,t — T(VT7 o, 7). (40)

C. Contour Deformation and Quadrature For thez-component of the electric field generated by a hori-

To obtain the quadrature rule, we must first analyze the situgntal dipole we find
tion in the complexr-plane. The analysis is carried out in two

. . L Z

steps. We first consider the dual analytic signals Ert(r,t) % / dy!, / v dvg

1 [ %

R¥Y (v, t) = p / dw S(w) R (v, w) exp(—iwt) X |:COSQ(<P£, + <p) w(vr)
0 11,
p=ch (39) X BRT (v, t —7(vr, ¢, 2))
Hir

for a fixed ¢ with Tm(#) < 0. Subsequently, we will then con- +sin’(yy, + @) w )
sider the consequences of taking;adependent time delay as
given in (37). x BR" (vr,t —7(vp, @, z))} . (41

For a fixedt, the singularities in the integrand in (39) origi-
nate from the reflection coefficient®*" (v, w). Foragivens,  Since all singularities in the integrand in the right half of the
these singularities were analyzed in Section I1I-D. As remark%@mp|ex,,T-p|ane are located on or above the reataxis, no
there, we have two types. extra contributions are encountered in this deformation.

1) Inthe first place, there are tviawanch cutsn the complex ~ However, the definition (39) gk (v, ) may only be ap-
wavenumber plane. After the normalization lof car- plied forIm(¢) < 0. In principle,R-** (7, t) can be continued
ried out above, these singularities show up as the brarehalytically into the half planém(¢) > 0, but we need (39) in
cuts in the normalized attenuation coefficientsandus. the numerical computations. With the aid of the asymptotic ex-
These branch cuts are present for all frequencies aménsions in Section I1I-C and a suitable definitiorSgt) in (1),
hence, will also be observed R*"*(vr, t). it follows that the imaginary part of the time arguments in (40)
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Im(vr)A value ofr_T for Whic_h we want to computé; _(r,t). Atypical
example is shown in Fig. 3.
An advantage of (40) and (41) is that these representa-

tions allow us to devise a composite Gaussian quadrature
rule which is valid for allt and for all r with »r smaller
than a given maximum offset. We restrict ourselves to the
case where the contour deformation is necessary, i.e., where
ny ng max{ng} max{ns} > max{ny,ns}. The simpler case when the contour
Re(vr) may be chosen along the real axis is handled in an analogous
o manner. Up ta/r = ng + £, the contour is broken up into

/ path of straight segments ending s = 0, ny, (n1 + n3)/2, n3,

integration ng — iy, ng — 41 + €3 andng + £2. In all intervals, a single

Gauss—Legendre rule is used and stretching is employed to

accumulated convert the integrand to a suitable form.

guided-wave poles The semi-infinite subintervats + 4, < v < oo requires
special attention. To choose the proper quadrature rule, we use
the property that the asymptotic approximation of Section I11-C
is also valid for a fixed/ andw — oc. With the definition (39),
we then have

Fig. 2. Path of integration in the complex plane. 0o
RyHr 1) = T35 ByS T3 { (B3 R55)"
]m(ur)A n:?i
g ! !
X exp —nZO/ Md}:’
o )
d ’
xS+ <t —(2n+2) / tu(z) d;/)} (44)
o Co
ny ng  max{ny} and a similar result foR* (v, ). The expression in (44) can
Re(vr) be simplified further by realizing that(z) = vy + O(v;*) as
S
A 1 Ay On the final part of the interval, we now use the substitution
‘\\ PR *] vy = nicosh(£) to account for the facton; = ny sinh(£)
N in the denominator. From the large-argument behavior of
. analytic signals described in Appendix B, it then follows that
/ ‘\\ the integrands of (40) and (41) decayeap(—2¢), indepen-
limiting “\\ dently of the values of and¢. This allows the application of
contour - a Gauss-Laguerre quadrature rule. Depending on the value
“*\‘ of 2y, which controls the attenuation of the integrand for

t — (vr/co)rr cos(ypl,) = 0, this behavior sets in for larger
values of vy. To handle the initial part of the interval, a
repeated low-order Gauss—Legendre rule is used that is capable
of handling the local oscillations that occur when the time
and (41) must be nonpositive for allandy’,. This implies that argument in (40) or (41) is close to zero.

the limiting contour is given by Once the quadrature rule is derived, we proceed exactly as
described in [3] and [4]. First, the integral over in (36) is
replaced by the discretized form derived for (40). Next, the in-
is evaluated in closed form with the aid of [21,

Fig. 3. Contour deformation in the complex plane.

—vrrr + w1z = nik (42)

where ¢ is a real-valued length parameter. Solution of thits,egral overy,,
equation leads to one of the well-known representations of {fg- 9-1.21]

Cagniard contour for a point on the interfacezat= 0 with a i
respect to the source pointat zou. /0 COS(WPL)eXP( T COS(%)) dy,,

rrl & |ZO|2V r?— £ ) (43) =], <wcl;T 7’T> , n=0,1,2,...,00. (45)
”

vy =ny

This contour intersects the rea}-axis atvy = nyrr/r, and Finally, the integral ovew is truncated, discretized with the aid
the angle of the asymptote with that axis is giventhy « = of a repeated trapezoidal rule, and cast into the form of an FFT
|z0|/7z. The limiting contour is given by, and the maximum operation.
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10 T T . T 6 : i . i i i i
— Dielectric — d=2m
8r - -+ Magnetic | 1

- Both

i
\S)
T

X

E_(0,0,0,9) in V/m
(=]
E,(1,0,-0.5.t) in V/m

~10 . ' s : _ . . . . . . .
0 10 20_ 30 40 50 % 5 10 15 20 25 30 35 40
Time in ns Time in ns

Fig. 4. x-component of the reflected electric field at the paint0, 0) versus g g, _component of the reflected electric field at the observation point

tir_ne. Coynfigur{ation parameteré:= 1 m ar_}dzfJ =-5 m. Solid I_ine: dielectric (1,0,—0.5) m versus time. Dielectric slab with,, () = 1 + 2sin2(72).
with ez, () = 242, piz, () = 1. Brokenline:magneticslabwith(z) =1, _ "— _( 5'm. Solid line: slab widthi = 2 m. Broken line: slab widthl = 1
pi2-(z) = 2 + z. Dotted lineigs,.(2) = pan(z) = 2 + 2. m.
e oof ' — Diolectric | - First, we analyze the behavior of the configuration described
E 1ol - -+ Magnetic | |  abovewhentheinhomogeneous slab, with witith 1 m, is one
- of the following: 1) a dielectric material withy,.(2) = 2 + 2,
“CI,? 0 por(z) = 1; 2) a magnetic material with,.(2) = 2 + z,
S-10f e2-(2) = 1; and 3) both, i.e.¢2,(z) = p2.(2) = 24 2. The
5_20 (@ | dipole is located at a distance above the slab of ejthgr= 5
0 s m 15 20 pr 20 pm 20 MOr|z| = 9.5 m._F|g. 4 show_§;(_a:,y,z,t) versus_tlme at
Time in ns the observation point0, 0, 0), which is located at the interface
15 , , , . , : between medium 1 and 2 just below the dipole, whgh= 5
§ 10k [— Both | | m. From Fig. 4 it can be observed that the response for the di-
£ 4l | electric contrast is approximately the same, but with opposite
3 sign, as that for magnetic contrast and that when both contrasts
g 9 J\/; are present, the reflected field is approximately zero. This is the
g -5r 1 behavior that should be expected when the dipole is relatively
w10t , , . ) ) ) . _® 4 far from the slab and a plane wave at normal incidence can be
0 5 10 15 20 25 30 35 40 assumed to be impinging on it. Fig. 5 shows the solution ob-

Time in ns tained for the same configuration whesg| = 0.5 m, the ob-

. o _ _servation point ig1,0,—0.5) m and all other parameters re-
Fig. 5. xz-component of the reflected electric field versus time at the point__. . .
(1,0, —0.5) m. Configuration parameters: = 1 m and=, = —0.5 m. () Main unchanged. Now the responses for the dielectric and mag-
Solid line: dielectric withes,.(2) = 2 4 2, p2.-(2) = 1. Broken line: magnetic netic contrasts no longer have the same amplitude. Furthermore,
;I:f withes () = 1, por(2) = 2 + 2. (b) Solid line:e».(2) = p2-(2) = when both profiles are present, the reflected field in the upper
- medium is not negligible. Observe also how in the latter case
the propagation inside the slab is slower than in the dielectric
or magnetic cases and the response plotted in Fig. 5(b) progres-
Numerical results were obtained for a variety of configurasively delays with respect to that shown in Fig. 5(a).
tions. We restrict ourselves here to present a few examples thads a last example we consider two inhomogeneous slabs with
briefly illustrate the performance of the method. All of thenthe same relative permittivity profiley,.(z) = 1 + 2sin?(nz)
correspond to the case of a horizontal dipole located abovelarn with different widths; the first one witd = 1 m and the
inhomogenous slab in free-space. The driving current dens#igcond one withi = 2 m. In both cases the relative perme-
of the dipole is given by (1) witl§(t) = exp[—(gt — 4)?] and ability is p12,.(z) = 1. The horizontal dipole is located at a dis-
g = 109s71. As an observation variable we have chosen thance|z,| = 0.5 m above either of the slabs and the observation
time signature of the-component of the reflected electric fieldpoint is (1,0, —0.5) m. Thez-component of the time-domain
Er(x,y, #,t) at some specific points in the upper medium. Theeflected fields is shown in Fig. 6. It is observed that the two
examples were chosen such that the time-domain results witjnals are identical until the arrival of the fields reflected at

also appeal to the reader’s physical intuition. z=1m.

V. RESULTS
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VI. CONCLUSION Now, we multiply all terms in (A.1) by/* (=), where the asterisk

In thi h ; lated for d denotes complex conjugation, and we integrate ever < » <
n this paper, we have formu ated a new S”ategy or eteo.%.This is allowed, becaudé(z) is an exponentially decreasing
mining transient fields generated by a pulsed, vertical, or ho

flinction ag oo. Using integration by parts, we then obtain
zontal electric dipole over a plane-stratified, lossy dielectric sl A identit?/ = g g y parts,
between two homogenenous half-spaces. The general idea was

to consider all spatial approximations in the time domain. This , [ 1 )

has led to a fixed discretization which, in the actual computa- l’T/ ) |U(2)|" d=

tions, is used in the frequency domain. The underlying mathe- T e &

matics is rather complicated, but the numerical implementation = / MW(;;)F dz

as such is quite simple. Once the quadrature rule has been se- —o0 ()

lected, the only difference with a more conventional implemen- _ ﬁ = 1 10.U(2)[2 dz (A.2)
tation is that the number of spectral field components that must w2 Jooan(z) T '

be computed is reduced considerably. In addition, we can accept
arelative error in these components that increases for larger ff&e bounds for the possible values:af now follow by taking
quencies and nevertheless remain in control of the accuracyhg real and imaginary parts.
the time domain. The results obtained satisfy our physical intu-
ition. A. H Modes

The scheme presented in this paper is able to efficiently com-
pute time-domain Green'’s functions in piecewise continuous\% observe from (14b) that, (z) = ju.(%). Sinces,(), 7(2)
layered media, provided that certain restrictions on the pulse(z) andw are all real-valued and 7nonnegativé (A7.2) ce{n be
shape of the impressed current or incident field may be imposgé'composed into '
Further, dispersion effects can be handled without significantly
increasing the computational effort. This makes our approach S|

Let us first consider the case &f polarization, for which

extremely suitable for computing background effects in antennd&e (v e U(2)]* dz
design or inverse scattering, e.g., for applications in ground pen- JTee i 5 oo
etrating radar. Applications of modeling straight and circular — e ()|U(2))? dz + c_g/ 10.U(2)|* dz
wire antennas over homogeneous and layered half-spaces have 7/ —oc w? J_oo b (7)
already been completed successfully. (A.3)
< 1 eo 2
Im (12 / I = / % U(2) dz.
—oo Hr(Z —oo WEO
APPENDIX | (A.4)

LOCATION OF GUIDED WAVE POLES IN THE vp-PLANE

As remarked in Section 111-D, the reflection coefficiedts” From these relations, we immediately derive the inequalities

may have poles in the compléx-plane due to the occurrence

of guided-wave modes. Such modes correspond to homoge- 0 <Re (V:QP) < max{er(2)ur(2)}

neous solutions of the second-order differential equation (10), (A.5)

with |U(z)| — 0 as|z| — co. With the choice ofy(z) as speci- ) 9 1

fied in (8), this decay can be achieved by choogipgway from ¢, min{o () ()} < Im (v7) < weo max{o(z)pn(2)}

the branch cuts, and by selecting the proper closed-form solu- (A.6)

tions inD; andDs. Matching these solutions via the boundary

conditions to the solution of the differential equation (10Pin  where the minima and maxima are taken over the interval

then results in a characteristic equation for the propagation co~¢ <« z < oco.

efficient k7. For a general inhomogeneous configuration both A detailed analysis of the consequences of (A.5) and (A.6)

(10) and the characteristic equation must be solved numericallsin be found in [27]. In the present context, the following ob-
In this appendix, we derive bounds on the value&pffor servations are sufficient. Forlasslessslab, guided wave poles

which such guided-wave modes may occur. To this end, wge only observed in a finite interval on the reataxis. This in-

follow an idea that was originally proposed in [27] and later deerval is constrained still further by the requirement thamay

scribed in more detail in [28]. Starting point of the analysis is theot be chosen on the branch cuts. Taking this condition into ac-
differential equation (10) in which we substitute the definitiogount leads to

of v(z) given in (8) and the scalingr = wrr/cq introduced
in (24). Further, we factor out the relative permeability and per- max{n,ns} < vr < max{ny(z)]0 < z < d} (A7)
mittivity. We thus obtain

where we have introduced the index of refraction
8Z< 1 8Z> () na(z) = y/e2(2)p2,(2). For alossyslab withoz(z) > 0,
o (2) the guided wave poles are located in the first quadrant of the
w? complex vr-plane, which is in agreement with the physical

1
2 s _
A3 [z =&z 0 (2)] o (2) Uz) =0- (A1) condition that the guided-wave modes must attenuate in the
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direction of propagation. As — oc, these poles approach the APPENDIX |
interval on the realr-axis specified in (A.7). PROPERTIES OFDUAL ANALYTIC SIGNALS

B. I Modes The analysis in this paper relies strongly on the theory of dual
' analytic signals. The concept of analytic signal originates from
For the case oF polarizationw,.(z) = €,.(z,w) = £,.(2) + Gabor [29], and has found extensive application in communi-
io(z)/(weo). Foro(z) = 0, the analysis is completely analo-cation theory. Rather complete bibliographies and a summary
gous to the one given above for tie modes. Therefore, we of their properties can be found in [30] and [31]. In this ap-
may consider the case wher¢z) > 0 for some values of. pendix, we restrict ourselves to those properties that are needed
Taking the real and imaginary parts of (A.2) now results in - to handle the spectral representation for the configuration at

hand.
[e9) 2
Re (V%)/ en(2) ~U(z) dx Forgtir_ne signab(¢) with spectrunms (w), we define the dual
oo &(2,w) analytic signal as
o0 2 o0 2
B 5 e 8. U(z) oo
- /_ @U@ de = 25 /_ R Eamii SH(t) = % / S(w) exp(—iwt) dw. (B.13)
0
2y (7o) U [ . o tnction of |
—Im (v7) weo | (2 w) dz (A.8) S*(#) is an analytic function oft in the lower half-plane
LT 0 L Im(¢) < 0 and its derivatives are the dual analytic signals
fm (12) / () N’U(Z) & corresponding to the derivatives &{¢). It is readily verified
oo &r(z,w) that
= Re (v7) /°° 7| Uy, stiy=L [ S0y B.14
oo weg | En(2,w) ® = ottt (B.14)
2 oo AU |
+ c—o o) () dz. (A.9)  Whent approaches the reslaxis from below, we have
oo WED |Er(z,w)
We restrict the analysis of these identities to the dase?) > STt - LO) LSH
0, which covers the two quarter planes located nearest to the real = _73/ (B.15)
vr-axis. Then, from (A.9) we deduce that
) o . [ o(2) whereP denotes the principal value, and whefg(t) is the
Im (v7) > Re (v7) mln{ ws(z)} (A-10)  Hilbert transform ofS(#).

For our analysis, we also need the asymptotic behavior as
[t| — oo. When the time signab(¢') vanishes fol#'| > T,
o(z) } Re (12) the factor ofl/(¢t — ') can be expanded in a power series in
v

and

Im (1/72«) < max{

we(z) t'/t. This leads to
2 1 & o
2 f_ 2) g 54(:% dz St(t) = — Z tﬂ-l-l’ with 4, / " S(t) dt’
+ 3 — . (A1 n=0 —co -
IZ en(2) |[2255| dz (B.16)

being the moments of the sign&{¢). When this signal has in-
finite duration, not all the momentg4,, } may exist. However,
we can still use a partial sum of the geometrical series to derive

Equation (A.10) implies thdtn (%) > 0, which together with
(A.8) leads us to

pn(2) [ o()\? a similar result
Re (uT) < max{s,( V() + =% <—> } (A.12) In both cases, it is clear that the first nonvanishing moment
en(2) \ weo of S(¢) determines the rate of decay 8t (¢) as|¢t| — oc. For
where the definition of,.(#,w) has been substituted. example, for the third derivative that occurs in (40) and (41), the

Equations (A.10)—(A.12), are the counterparts of (A.5) anc(i:].xal analytic signal behaves as
6iAg

(A.6). Although they are more complicated, they lead to similar

conclusions for the location of the guided wave polesin the com- it
plex vr-plane. In particular, from the asymptotic expressions
derived in Section IlI.C it can be seen that the quotient of the
two integrals in (A.11) is of order?/c2 asw — oo and, there-
fore, these poles still approach the reatinterval specified in ~ Many of the ideas described in this paper originate from a
(A.7). Finally, it should be remarked that the results found icollaboration of the first author with Prof. E. F. Kuester, Uni-
this appendix are simpler than the ones found in [28]. This is &ersity of Colorado at Boulder. Further, both authors would like
advantage of considering the problem in thedomain rather to thank Profs. H. Blok and A. T. de Hoop, Delft University of
than in thekr-domain. Technology, The Netherlands, and Dr. E. S. A. M. Lepelaars,

A2ST(t) ~ aslt| — ooinlm(t) < 0.  (B.17)
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