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Transient Excitation of a Layered Dielectric Medium
by a Pulsed Electric Dipole

Anton G. Tijhuis, Member, IEEE,and Amelia Rubio Bretones, Senior Member, IEEE

Abstract—In this paper, we consider the transient excitation by a
pulsed vertical or horizontal dipole of a continuously layered lossy
dielectric slab embedded in between two dielectric half-spaces. The
focus of the paper is on finding a highly efficient numerical imple-
mentation. To this end, we choose all spatial approximations inde-
pendent of frequency. In the first place, this concerns the inverse
spatial Fourier transformation in the Sommerfeld representation
of the fields. A suitable quadrature rule is obtained by introducing
a normalized wave number, and identifying the result in terms of
dual analytic signals. In the second place, this concerns the spec-
tral fields for which a new integral equation is derived with a de-
generate kernel. This integral equation is solved by a fully recursive
procedure. Representative results are presented and discussed that
can be underdstood from physical intuition.

Index Terms—Dipole antennas, electromagnetic transient anal-
ysis, nonhomogeneous media, transient propagation.

I. INTRODUCTION

A FTER almost 20 years, the first author still fondly remem-
bers his first two encounters with Prof. James R. Wait.

In the spring of 1981, Prof. Wait visited the Electromagnetics
Laboratory, Delft University of Technology, The Netherlands.
During that visit, he was kind enough to spend an afternoon
with a young colleague who had just submitted his first two
conference papers. Later that year, when these papers had to
be presented at the URSI/AP-S meeting in Québec, Canada,
he encountered the same young scientist in the shower room
of the dormitories. Noticing the nervousness of the prospective
speaker, Prof. Wait took the time to reassure him. Since then,
there have been numerous encounters, which were always stim-
ulating on a personal as well as on a scientific level.

Since both papers mentioned above dealt with transient fields
in layered dielectric media, this will also be the topic of the
present contribution. In particular, we deal with the efficient nu-
merical computation of the transient field generated by a dipole
source above a continuously layered slab in between two ho-
mogeneous half-spaces. From the many publications by Prof.
Wait on this subject (see, e.g., [1] and [2]), we hope that this is
a subject that he would have appreciated. The ideas presented
in this paper have been available for several years and have al-

Manuscript received September 15, 1999. A. Rubio Bretones was supported
by CICYT, Spain, under Project TIC98-1037-C03-01 and by the Philips Gift
and the University Fund of the Eindhoven University of Technology.

A. G. Tijhuis is with the Telecommunication Technology and Electromag-
netics Division, Faculty of Electrical Engineering, Eindhoven University of
Technology, 5600 MB Eindhoven, The Netherlands (e-mail: a.g.tijhuis@tue.nl).

A. Rubio Bretones is with the Departamento de Electromagnetismo,
Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain (e-mail:
arubio@goliat.ugr.es).

Publisher Item Identifier S 0018-926X(00)09366-2.

ready been used extensively for modeling the interaction be-
tween pulsed wire segments and loop antennas and stratified
media [3]–[5]. The invitation to contribute to this special issue
seemed like the perfect occasion to write a more fundamental
paper about the basic formalism.

Obviously, when dealing with layered media, one uses spec-
tral techniques. These techniques have been around for a long
time; an excellent review of early work can, for example, be
found in [6]. Expressions for the spectral fields in a piecewise
homogeneous three-layer region were given in [7]. Only a few
authors have devoted attention to the efficient evaluation of the
spectral integrals. Possibly, this can be explained from the suc-
cess of the fast Fourier transformation. Straightforward and ad-
vanced computations for half-spaces can, e.g., be found in [8]
and [9].

Our approach is the spectral counterpart of the contin-
uous-time discretized-space (CTDS) approach as explained for
integral equations in [10] and [11]. The basic idea is that, under
realistic restrictions on the transient behavior of the impressed
current or incident field, all spatial approximations may be
chosen independently of the frequency. The relative error in the
frequency-domain spectral components will obviously increase
with increasing frequency, but this does not affect the accuracy
of the obtained time-domain results. At a first glance, this result
seems counter-intuitive. However, even a well known technique
like the FDTD essentially uses a fixed spatial approximation,
followed by a time discretization. The only difference is that,
in the CTDS approach, the time sampling is replaced by a
frequency sampling, thus avoiding the error accumulation that
is inherent in direct time-domain computations.

The key result in our approach is the normalization of the
spatial wavenumber with respect to frequency. This idea is used
in a slightly different manner in the Cagniard-De Hoop method.
Classical applications of that method to piecewise homogeneous
media can be found in [12], [13] and [14]. Approximate results
for inhomogeneous media can be found in [15] and [16]. Our
approach is different in the sense that we keep the frequency
real, and allow the time variable to become complex. In this re-
spect, our work also resembles the spectral theory of transients
proposed in [17]–[20]. In addition to the spectral approach, we
derive a new integral equation for the spectral fields, which, after
a discretization that does not depend on the spectral parameters,
can be solved recursively in operations for un-
known field values.

The organization of the paper is quite straightforward. In Sec-
tion II we formulate the problem, in Section III we consider the
behavior of the spectral components, in Section IV the evalua-
tion of the spectral integrals is addressed, and in Section V we
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present and discuss a few representative numerical results. Fi-
nally, some conclusions are formulated in Section VI.

II. FORMULATION OF THE PROBLEM

We consider a configuration that consists of an isotropic,
linearly and instantaneously reacting, horizontally stratified,
lossy dielectric medium embedded between two homogeneous
dielectric half-spaces and in and , respec-
tively (Fig. 1). For convenience, the half-spaces are assumed to
be lossless. However, the analysis presented in this paper can
directly be generalized to the case of lossy half-spaces. The slab
is located in the domain , with . The configuration
is driven by a pulsed electric dipole whose current density is
given by

(1)

with . In (1), the superscript stands for “impressed”.
is a signal of finite duration and the time coordinate is

chosen such that this pulse starts at . The time derivative
has been included to ensure that the electric current does not
leave behind a static charge distribution as . is a unit
vector. Because of the symmetry of the configuration, we may
restrict ourselves to the cases where (vertical dipole)
or (horizontal dipole).

The aim of the computation is to determine the transient
electromagnetic field caused by the electric current distribution
specified in (1). In particular, we are interested in the field in
the upper half-space since that is the field that can be
detected by an antenna. Once this field is known, we can apply
the superposition principle to determine the effect of a more
general current distribution.

A. Transmission-Line Equations

Before we solve the specific problem formulated above,
we first summarize the general transmission-line equations
that govern the propagation of electromagnetic waves in a
dielectric medium with permittivity , conductivity ,
and permeability . We follow the general formulation
presented in [22], but we adapt the time dependence and the
notation to the problem at hand. In the layered configuration
specified above, the electromagnetic fields satisfy the following
version of Maxwell’s equations:

(2a)

(2b)

To exploit the fact that the constitutive parameters in (2) depend
only on the -coordinate, we solve these equations in the spec-
tral domain. To this end, we introduce the following temporal
and spatial Fourier transformations:

(3a)

(3b)

Fig. 1. Pulsed electric current above an inhomogeneous slab embedded
between two homogeneous lossless half-spaces.

where and are vec-
tors in the transverse plane. This transformation reduces the gra-
dient operator in (2) to and the time differentiation
to a scalar multiplication by . We decompose the electro-
magnetic fields into their transverse and longitudinal parts, ac-
cording to

(4)

and we break up Maxwell’s equations in the same manner. Next,
the transverse field components are expressed in components
parallel and orthogonal to the direction , according to

(5a)

(5b)

In (5), the amplitudes and have,
apart from a normalizing constant, the proper dimension of a
frequency-domain current and voltage along a transmission line.
Substituting (5) in the longitudinal part of Maxwell’s equations
leads to the identification

(6a)

(6b)

where we have introduced the usual frequency-domain permit-
tivity

(7)

Equation (6) relates and to the longitudinal components
of the electric and magnetic flux densities.

The expressions in (5) and (6) are substituted in the trans-
verse parts of Maxwell’s equations and, again, the components
parallel and orthogonal to are separated. This leads to
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the desired transmission-line equations. Forand , we ar-
rive at

(8a)

(8b)

where , with , and
when . This will be our choice of branch

cut in all the square roots appearing in the rest of the paper. For
and , the transmission-line equations read

(9a)

(9b)

From (8) and (9), we observe that the Fourier-transformed ver-
sion of Maxwell’s equations indeed has two independent solu-
tions. The first one is determined by and . From (6) it
follows that for this type of solution, only the electric field has
a longitudinal component. Therefore, these solutions are indi-
cated as or TM modes [22]. The second solution is deter-
mined by and . For these solutions, only the magnetic
field has a longitudinal component. Therefore, they are indi-
cated as or TE modes. Finally, (8) and (9) illustrate that the
longitudinal component of only generates modes. The term
“modes” refers to the interpretation of a plane-stratified medium
as an inhomogeneous waveguide with an infinite cross section.
In this interpretation, propagation and attenuation take place in
the -direction, while the transverse eigenfunction is propor-
tional to .

B. Second-Order Differential Equation

For a general type of continuous stratification, the systems of
(8) and (9) must be solved numerically. In the literature, several
techniques are described for solving such equations. We men-
tion for example direct numerical integration ([23, sec. 2.4.2])
and wave splitting [24]. For reasons of efficiency, we prefer a
generalization of the approach proposed in [10]. The first step
is to reduce both (8) and (9) to a single second-order differential
equation of the form

(10)

where only the dependence onhas been indicated explicitly.
In (10), is a constitutive parameter, is the unknown
function, and is the forcing function. In both cases, we
choose the quantity that corresponds to a longitudinal flux den-
sity as the fundamental unknown.

When the impressed current density is avertical dipole, ap-
plying the Fourier transformations (3a) and (3b) results in

(11)

From (8), we then have

(12)

For ahorizontal dipole, transforming the current density speci-
fied in (1) results in

(13)

Substituting this result in (8) and (9) now gives

-modes:

(14a)

-modes:

(14b)

where is the derivative of the delta function. Since we have
the factor of in (14a) vanishes and the contribution

proportional to may be discarded. For the horizontal
dipole, the differential equation (10) must be solved twice for
each combination of and . Once the fundamental unknowns

and are known, it is straightforward to obtain and
from (8a) and (9b).

III. L ONGITUDINAL BEHAVIOR

The first step toward solving the problem formulated in Sec-
tion II is solving the differential equation (10) for the forcing
functions given in (12) and (14) for a set of parameters
that allows the evaluation of the integrals in the inverse trans-
formations of the ones given in (3a) and (3b). In this section, we
address several aspects of this solution.

A. The Half-Spaces

In the dielectric medium is homogeneous and lossless.
The coefficients in (10) assume the constant values

, and the attenuation coefficient is
. For the forcing functions specified above,

we can therefore find a closed-form solution of this differential
equation. For the vertical dipole, we have

(15)

where is an unknown reflection coefficient. This reflection
coefficient is defined as the amplitude of the reflected wave that
would be caused by the unit-amplitude incident wave

, when in the domain . For the
horizontal dipole, we have

-modes:

(16a)

-modes:

(16b)
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where is the amplitude of the reflected wave generated by
when in .

Since the differential equation (10) is linear, this means that
we may restrict ourselves, in the evaluation of the longitudinal
behavior, to determining the response to a unit-amplitude plane
wave for one or both of the possible choices of . The mul-
tiplicative factors occurring in (5) and (6) and in (15) and (16)
can then be included in the evaluation of the spectral integrals.
Therefore, we consider the normalized solution of (10)
which, in the homogeneous half-spaces, behaves as

for (17a)

for (17b)

where , and where .
Obviously, the direct field for must also be adapted.
However, for the homogeneous upper half-space considered in
this paper, this field is available in closed form and should not
be computed by spectral techniques.

B. Numerical Solution

To obtain for , we need to solve (10). To
this aim we derive an equivalent contrast-source integral equa-
tion. For numerical convenience, we restrict ourselves to the
case where and are continuous functions of
in . Again, the analysis can directly be generalized to
profiles with a finite number of discontinuities [5]. To arrive at
the desired integral equation, we first define a spectral Green’s
function for an infinite, homogeneous, lossless reference con-
figuration with permittivity and permeability . This function
satisfies the differential equation

(18)

and the radiation conditions as and is known in closed
form

(19)

where . Next, we apply the one-dimensional
version of Green’s second identity for and over
the interval . This results in

(20)

In (20), we substitute (10) and (18) to eliminate the second
derivatives in the integrand on the left-hand side. In the evalu-
ation of the end-point contributions in the right-hand side, we
use the known behavior of in and as specified in
(17). From the continuity of and (implied
by (10)) we then derive the boundary conditions

(21)

With these conditions and (19), the right-hand side of (20) is re-
duced to the sum of a known excitation term and two terms pro-
portional to and . By equating the results obtained for
both sides of (20) we then arrive at the desired integral equation

(22)

where and have been interchanged, where denotes
the derivative of , and where it has been assumed that

. Equation (22) expresses the unknown field as a
superposition of plane waves traveling in the homogeneous ref-
erence configuration. The first term on the right-hand side is
a direct wave that corresponds to the incident plane wave in
(17a). The next two terms are integrals that represent the in-
fluence of the induced sources inside the slab. The last two
impedance-like terms account for the reflections at the inter-
faces with the exterior half-spaces. In principle, the choice of
the reference medium is arbitrary. From a computational point
of view, it seems sensible to chooseand such that a (locally)
propagating wave in the actual configuration is always repre-
sented in terms of propagating waves in the reference medium.

To solve (22) numerically, we introduce a uniform spatial grid
, with and . The value

of is chosen independently of the values of the spectral pa-
rameters and . We enforce (22) at the grid points, and ap-
proximate the integrals over by a repeated trapezoidal rule.
For the evaluation of the space derivative in the factor ,
we use central differences for the interior points and the condi-
tions (21) at the slab’s boundaries. We then end up with a dis-
cretized equation of the form

(23)

where and where the subscripts refer to the
corresponding points in discretized space.

The system of (23) can be inverted by a fully recursive solu-
tion procedure, which is a generalization of the one proposed in
[10]. The procedure consists of three principal steps. First, the
rows with are reduced to a convenient three-di-
agonal form by carrying out three simple row operations. In the
second step, the rows with are used to succes-
sively remove the leftmost element of the row with ,
which remains unchanged in the first step. Moving the reduced
first row to position then results in a matrix equation with
a system matrix whose only nonvanishing elements are on the
diagonal and the first two superdiagonals. In the third step, this
system is solved by back substitution. Details will be published
elsewhere.
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The solution procedure described above combines the advan-
tages that the accuracy of the solution obtained is of
and the computation time is of als . Further,
the boundary conditions at and as given in (21)
are incorporated in closed form, which leads to an improved ac-
curary compared with a discretization of (8) or (9) and these
conditions with the aid of finite differences. A possible problem
is that, for large values of shows a strong exponential
decay for increasing. Now the reduction of in step 2
outlined above results in the reciprocal of the transmission co-
efficient of the slab. Therefore, the numerical implementation
of this step may suffer from overflow problems. These prob-
lems can be avoided by monitoring the magnitude of the factor

, which appears in all the amplitudes derived from
(12) and (14).

C. Asymptotic Behavior

For large values of one or both of the parametersand ,
an asymptotic solution of the differential equation (10) can be
derived. By scaling the spatial wave vector according to

(24)

where is the speed of light in free-space, we can handle both
cases simultaneously. When , i.e., for modes, we have
the complication that this coefficient is frequencydependent.
Therefore, we derive the solution for that case. The solution for

, i.e., for -modes, is then obtained from analogy.
As argued above, we only determine the response to a

unit-amplitude plane wave. With the definition (7) and the
scaling specified above, the differential equation (10), can then
be written as

(25)

where the prime denotes differentiation, where
, and where .

is almost the scaled scaled counterpart of , but the term
with in (25) is treated separately. Equation (25) is not
yet in a suitable form for deriving a WKB approximation of
its solution. However, such a form is obtained immediately by
expanding the logarithmic derivative of in a
geometrical series in powers of .

The analysis is based on ideas presented in [23, secs. 2.3.3,
2.5.3]. From [25], we know that, in any region where the coeffi-
cients of (25) are continuous with derivatives that are discontin-
uous at no more than a finite number of points, there exist two
linearly independent solutions whose first-order WKB
approximations are given by

(26)

where is the free-space impedance. In (26) the superscript
indicates the direction of propagation, and the wave originates
from the point . With this result, we can formally write

in
in
in

(27)

where only the coefficients and are still un-
known. These coefficients are found by enforcing the continuity
of and at and . The derivatives
of are found in first approximation by utilizing the
fact that differentiation of a WKB approximation of a given ac-
curacy yields the derivative of the solution to the same accuracy
[25].

For the reflection coefficient , for example, we then obtain
the following first-order approximation:

(28)

where the asymptotic reflection and transmission coefficients at
the slab’s interfaces are given by

(29)

where for . Similar expressions
are found for and .

Finally, we must repeat the analysis for themodes. How-
ever, only the logarithmic derivative in (25) changes for this type
of modes. In deriving (26), we have only used the first-order ap-
proximation of this term. The same approximation was used in
the application of the boundary conditions. Therefore, we can
immediately find the asymptotic solution for themodes by
replacing by in the term with the square root in (26) and in
the asymptotic reflection and transmission coefficients defined
in (29). The factor in the exponent in (26) need not be
replaced, since the term with in (25) remains as is.

D. Singularities in the Complex -Plane

As a function of complex , the spectral constituent
representing or has two
types of singularities. In the first place, there are two branch
cuts in the upper half of the complex -plane with branch
points at and .
These branch cuts are associated with the choice of the “phys-
ical” root in the attenuation coefficients and

in the boundary conditions (21). In the transform
domain, the problem is completely defined by these boundary
conditions and the second-order differential equation (10) in
the interval . This differential equation only contains
a term ; therefore no extra branch cuts are
introduced for the interior of .

In the second place, we need to consider the occurrence of
so-called guided-wave poles. As shown in Appendix A, for

such poles only occur in the interval

(30)
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where is the local refractive index in
, provided that this interval exists. Each pole corresponds to a

homogeneous solution of Maxwell’s equations that propagates
in the transverse direction. The location of the poles, and their
number, depends on. For , the poles occur in the
first quadrant of the complex -plane, and approach the same
interval as . Now, the integration contour may be consid-
ered as running just below the real-axis. Therefore, numer-
ical problems will occur in the solution of the integral equation
(22) for in that interval since this equation does not have a
unique solution for values of that correspond to guided-wave
poles.

IV. TRANSFORMATION TO THESPACE–TIME DOMAIN

Once and have been computed, the longitudinal
components of the fields can be calculated from (6) and sub-
sequently the transverse components from (5). The final step in
the procedure is to carry out the inverse Fourier transformations
corresponding to (3a) and (3b). As mentioned at the end of Sub-
section III.A, we need to multiply the unit-amplitude solution
discussed in Sections III-B and C by the multiplicative factors
occurring in (15) and (16). To keep the paper legible, we restrict
the discussion to the reflected field in since this is the field
that would be measured in applications in inverse scattering and
antenna design. However, the ideas presented in this chapter are
also directly applicable to the total fields in and . For the
incident field in , difficulties are encountered near the source
point . As mentioned above, this field is available in
closed form and need not be computed by spectral techniques.

A. Spectral Field Components

For the vertical dipole, only the -modes are excited. The
transform-domain reflected-field components are given by

(31a)

(31b)

(31c)

For the horizontal dipole, adding the contributions of the- and
-modes results in

(32a)

(32b)

(32c)

(32d)

In (31) and (32) are the reflection coefficients introduced
in (15) and (16).

The obvious approach to determine, from (31) and (32), the
corresponding space-time fields is to evaluate each of the in-
version integrals corresponding to (3a) and (3b) directly with
the aid of fast Fourier transformations. An example for acoustic
waves is described in [26]. However, this requires consider-
able computational effort, even in the case of a piecewise-ho-
mogeneous or two-media configuration. To speed up the calcu-
lations, we cast the Fourier inversion into a special form that
was also used in the half-space configurations considered in
[3] and [4]. To illustrate the procedure, without excessively ex-
tending the paper, we consider two representative field compo-
nents in (31) and (32), viz. for the vertical dipole
and for the horizontal one.

B. Weyl Representations

Let us start with for the vertical dipole. First, we
restrict the temporal Fourier inversion to nonnegative frequen-
cies by expressing the time-domain signal as

(33)

with

(34)

Here, represents the dual analytic signal corre-
sponding to . This signal is an analytic function in the
lower half of the complex-plane , and its real part
approaches when .

The restriction to allows us to use the normalized
spatial transform vector introduced in (24). Further, since

only depends on , we also change over to
the normalized cylindrical coordinates . The spatial
Fourier inversion corresponding to (3b) then assumes the form

(35)

where are cylindrical coordinates in actual space.
Combining (31a), (34), and (35) and reversing the order

of the temporal and spatial Fourier inversions then leads to
the so-called frequency-domain Weyl representation for the
reflected field

(36)
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where the complex time delay is given by

(37)

and where the definition for was given after (29). Be-
cause the cosine in (35) is periodical, the variable in the angular
integration has been changed to , and
does not depend on.

Repeating the same procedure for the dual analytic signal cor-
responding to for the case of the horizontal dipole, we
obtain

(38)

Apart from constant amplitudes and a factor of , the
terms in braces in (36) and (38) are of the same form as the
right-hand side in (34) and the complex time argument

cannot have a positive imaginary part. Therefore,
these terms can be identified as time derivatives of dual analytic
signals. This observation is used to derive a suitable combina-
tion of Gaussian quadrature rules for the evaluation of the inte-
gral over . Compared with an evaluation by fast Fourier trans-
form (FFT) operations, this has the advantage that the number
of values of for which the numerical computation outlined
in Section III-B must be performed is reduced considerably.

C. Contour Deformation and Quadrature

To obtain the quadrature rule, we must first analyze the situa-
tion in the complex -plane. The analysis is carried out in two
steps. We first consider the dual analytic signals

(39)

for a fixed with . Subsequently, we will then con-
sider the consequences of taking a-dependent time delay as
given in (37).

For a fixed , the singularities in the integrand in (39) origi-
nate from the reflection coefficients . For a given ,
these singularities were analyzed in Section III-D. As remarked
there, we have two types.

1) In the first place, there are twobranch cutsin the complex
wavenumber plane. After the normalization of car-
ried out above, these singularities show up as the branch
cuts in the normalized attenuation coefficientsand .
These branch cuts are present for all frequencies and,
hence, will also be observed in .

2) In the second place, there areguided-wave poles. As dis-
cussed in Section III-C, for these poles are
located on the interval specified in (30), provided that
this interval exists. The integration overin (39) reduces
the influence of the poles. According to the generaliza-
tion of the Mittag–Leffler theorem for a function with iso-
lated poles to the case where the function has one or more
branch cuts, only has an extra jump discon-
tinuity along this interval. For , each point in
the subinterval is a condensation point for guided-wave
poles at different values of . Therefore, the behavior
along the real -axis will be similar to that in the loss-
less case.

The definition of was chosen such that the
integration contour may be regarded as running along the real

axis in the fourth quadrant of the complex-plane. There-
fore, the situation in the complex -plane may be envisaged as
indicated in Fig. 2, where it is assumed that since in
practical configurations the upper medium is usually free-space.

To ensure that the spectral integral equation (22) has a so-
lution, we deform the contour into the lower half of the com-
plex -plane as indicated in Fig. 3. In doing so, we need to
choose large enough to avoid a possible ill-posedness of the
discretized integral equation (23), and possible difficulties in the
numerical integration along the interval between and

. To investigate to what extent this is allowed, we
write the frequency-domain Weyl representation (36) in terms
of the dual analytic signal introduced in (39). This leads to the
so-called time-domain Weyl representation for the-component
of the electric field in the case of the vertical dipole

(40)

For the -component of the electric field generated by a hori-
zontal dipole we find

(41)

Since all singularities in the integrand in the right half of the
complex -plane are located on or above the real-axis, no
extra contributions are encountered in this deformation.

However, the definition (39) of may only be ap-
plied for . In principle, can be continued
analytically into the half plane , but we need (39) in
the numerical computations. With the aid of the asymptotic ex-
pansions in Section III-C and a suitable definition of in (1),
it follows that the imaginary part of the time arguments in (40)
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Fig. 2. Path of integration in the complex� plane.

Fig. 3. Contour deformation in the complex� plane.

and (41) must be nonpositive for alland . This implies that
the limiting contour is given by

(42)

where is a real-valued length parameter. Solution of this
equation leads to one of the well-known representations of the
Cagniard contour for a point on the interface at with
respect to the source point at

(43)

This contour intersects the real -axis at , and
the angle of the asymptote with that axis is given by

. The limiting contour is given by and the maximum

value of for which we want to compute . A typical
example is shown in Fig. 3.

An advantage of (40) and (41) is that these representa-
tions allow us to devise a composite Gaussian quadrature
rule which is valid for all and for all with smaller
than a given maximum offset. We restrict ourselves to the
case where the contour deformation is necessary, i.e., where

. The simpler case when the contour
may be chosen along the real axis is handled in an analogous
manner. Up to , the contour is broken up into
straight segments ending at

and . In all intervals, a single
Gauss–Legendre rule is used and stretching is employed to
convert the integrand to a suitable form.

The semi-infinite subinterval requires
special attention. To choose the proper quadrature rule, we use
the property that the asymptotic approximation of Section III-C
is also valid for a fixed and . With the definition (39),
we then have

(44)

and a similar result for . The expression in (44) can
be simplified further by realizing that as

.
On the final part of the interval, we now use the substitution

to account for the factor
in the denominator. From the large-argument behavior of
analytic signals described in Appendix B, it then follows that
the integrands of (40) and (41) decay as , indepen-
dently of the values of and . This allows the application of
a Gauss–Laguerre quadrature rule. Depending on the value
of , which controls the attenuation of the integrand for

, this behavior sets in for larger
values of . To handle the initial part of the interval, a
repeated low-order Gauss–Legendre rule is used that is capable
of handling the local oscillations that occur when the time
argument in (40) or (41) is close to zero.

Once the quadrature rule is derived, we proceed exactly as
described in [3] and [4]. First, the integral over in (36) is
replaced by the discretized form derived for (40). Next, the in-
tegral over is evaluated in closed form with the aid of [21,
eq. 9.1.21]

(45)

Finally, the integral over is truncated, discretized with the aid
of a repeated trapezoidal rule, and cast into the form of an FFT
operation.
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Fig. 4. x-component of the reflected electric field at the point(0; 0; 0) versus
time. Configuration parameters:d = 1 m andz = �5 m. Solid line: dielectric
with " (z) = 2+z; � (z) = 1. Broken line: magnetic slab with" (z) = 1;
� (z) = 2 + z. Dotted line:" (z) = � (z) = 2 + z.

Fig. 5. x-component of the reflected electric field versus time at the point
(1;0;�0:5) m. Configuration parameters:d = 1 m andz = �0:5 m. (a)
Solid line: dielectric with" (z) = 2+ z; � (z) = 1. Broken line: magnetic
slab with" (z) = 1; � (z) = 2 + z. (b) Solid line:" (z) = � (z) =
2 + z.

V. RESULTS

Numerical results were obtained for a variety of configura-
tions. We restrict ourselves here to present a few examples that
briefly illustrate the performance of the method. All of them
correspond to the case of a horizontal dipole located above an
inhomogenous slab in free-space. The driving current density
of the dipole is given by (1) with and

. As an observation variable we have chosen the
time signature of the-component of the reflected electric field

at some specific points in the upper medium. The
examples were chosen such that the time-domain results will
also appeal to the reader’s physical intuition.

Fig. 6. x-component of the reflected electric field at the observation point
(1;0;�0:5) m versus time. Dielectric slab with" (z) = 1 + 2sin (�z).
z = �0:5 m. Solid line: slab widthd = 2 m. Broken line: slab widthd = 1
m.

First, we analyze the behavior of the configuration described
above when the inhomogeneous slab, with width m, is one
of the following: 1) a dielectric material with

; 2) a magnetic material with
; and 3) both, i.e., . The

dipole is located at a distance above the slab of either
m or m. Fig. 4 shows versus time at
the observation point , which is located at the interface
between medium 1 and 2 just below the dipole, when
m. From Fig. 4 it can be observed that the response for the di-
electric contrast is approximately the same, but with opposite
sign, as that for magnetic contrast and that when both contrasts
are present, the reflected field is approximately zero. This is the
behavior that should be expected when the dipole is relatively
far from the slab and a plane wave at normal incidence can be
assumed to be impinging on it. Fig. 5 shows the solution ob-
tained for the same configuration when m, the ob-
servation point is m and all other parameters re-
main unchanged. Now the responses for the dielectric and mag-
netic contrasts no longer have the same amplitude. Furthermore,
when both profiles are present, the reflected field in the upper
medium is not negligible. Observe also how in the latter case
the propagation inside the slab is slower than in the dielectric
or magnetic cases and the response plotted in Fig. 5(b) progres-
sively delays with respect to that shown in Fig. 5(a).

As a last example we consider two inhomogeneous slabs with
the same relative permittivity profile
but with different widths; the first one with m and the
second one with m. In both cases the relative perme-
ability is . The horizontal dipole is located at a dis-
tance m above either of the slabs and the observation
point is m. The -component of the time-domain
reflected fields is shown in Fig. 6. It is observed that the two
signals are identical until the arrival of the fields reflected at

m.
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VI. CONCLUSION

In this paper, we have formulated a new strategy for deter-
mining transient fields generated by a pulsed, vertical, or hori-
zontal electric dipole over a plane-stratified, lossy dielectric slab
between two homogenenous half-spaces. The general idea was
to consider all spatial approximations in the time domain. This
has led to a fixed discretization which, in the actual computa-
tions, is used in the frequency domain. The underlying mathe-
matics is rather complicated, but the numerical implementation
as such is quite simple. Once the quadrature rule has been se-
lected, the only difference with a more conventional implemen-
tation is that the number of spectral field components that must
be computed is reduced considerably. In addition, we can accept
a relative error in these components that increases for larger fre-
quencies and nevertheless remain in control of the accuracy in
the time domain. The results obtained satisfy our physical intu-
ition.

The scheme presented in this paper is able to efficiently com-
pute time-domain Green’s functions in piecewise continuously
layered media, provided that certain restrictions on the pulse
shape of the impressed current or incident field may be imposed.
Further, dispersion effects can be handled without significantly
increasing the computational effort. This makes our approach
extremely suitable for computing background effects in antenna
design or inverse scattering, e.g., for applications in ground pen-
etrating radar. Applications of modeling straight and circular
wire antennas over homogeneous and layered half-spaces have
already been completed successfully.

APPENDIX I
LOCATION OFGUIDED WAVE POLES IN THE -PLANE

As remarked in Section III-D, the reflection coefficients
may have poles in the complex -plane due to the occurrence
of guided-wave modes. Such modes correspond to homoge-
neous solutions of the second-order differential equation (10),
with as . With the choice of as speci-
fied in (8), this decay can be achieved by choosingaway from
the branch cuts, and by selecting the proper closed-form solu-
tions in and . Matching these solutions via the boundary
conditions to the solution of the differential equation (10) in
then results in a characteristic equation for the propagation co-
efficient . For a general inhomogeneous configuration both
(10) and the characteristic equation must be solved numerically.

In this appendix, we derive bounds on the values offor
which such guided-wave modes may occur. To this end, we
follow an idea that was originally proposed in [27] and later de-
scribed in more detail in [28]. Starting point of the analysis is the
differential equation (10) in which we substitute the definition
of given in (8) and the scaling introduced
in (24). Further, we factor out the relative permeability and per-
mittivity. We thus obtain

(A.1)

Now, we multiply all terms in (A.1) by , where the asterisk
denotes complex conjugation, and we integrate over

. This is allowed, because is an exponentially decreasing
function as . Using integration by parts, we then obtain
the identity

(A.2)

The bounds for the possible values of now follow by taking
the real and imaginary parts.

A. Modes

Let us first consider the case of polarization, for which
we observe from (14b) that . Since

and are all real-valued and nonnegative, (A.2) can be
decomposed into

(A.3)

(A.4)

From these relations, we immediately derive the inequalities

(A.5)

(A.6)

where the minima and maxima are taken over the interval
.

A detailed analysis of the consequences of (A.5) and (A.6)
can be found in [27]. In the present context, the following ob-
servations are sufficient. For alosslessslab, guided wave poles
are only observed in a finite interval on the real-axis. This in-
terval is constrained still further by the requirement thatmay
not be chosen on the branch cuts. Taking this condition into ac-
count leads to

(A.7)

where we have introduced the index of refraction
. For a lossyslab with ,

the guided wave poles are located in the first quadrant of the
complex -plane, which is in agreement with the physical
condition that the guided-wave modes must attenuate in the
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direction of propagation. As , these poles approach the
interval on the real -axis specified in (A.7).

B. Modes

For the case of polarization
. For , the analysis is completely analo-

gous to the one given above for the modes. Therefore, we
may consider the case where for some values of .
Taking the real and imaginary parts of (A.2) now results in

(A.8)

(A.9)

We restrict the analysis of these identities to the case
, which covers the two quarter planes located nearest to the real

-axis. Then, from (A.9) we deduce that

(A.10)

and

(A.11)

Equation (A.10) implies that , which together with
(A.8) leads us to

(A.12)

where the definition of has been substituted.
Equations (A.10)–(A.12), are the counterparts of (A.5) and

(A.6). Although they are more complicated, they lead to similar
conclusions for the location of the guided wave poles in the com-
plex -plane. In particular, from the asymptotic expressions
derived in Section III.C it can be seen that the quotient of the
two integrals in (A.11) is of order as and, there-
fore, these poles still approach the real-interval specified in
(A.7). Finally, it should be remarked that the results found in
this appendix are simpler than the ones found in [28]. This is an
advantage of considering the problem in the-domain rather
than in the -domain.

APPENDIX II
PROPERTIES OFDUAL ANALYTIC SIGNALS

The analysis in this paper relies strongly on the theory of dual
analytic signals. The concept of analytic signal originates from
Gabor [29], and has found extensive application in communi-
cation theory. Rather complete bibliographies and a summary
of their properties can be found in [30] and [31]. In this ap-
pendix, we restrict ourselves to those properties that are needed
to handle the spectral representation for the configuration at
hand.

For a time signal with spectrum , we define the dual
analytic signal as

(B.13)

is an analytic function of in the lower half-plane
and its derivatives are the dual analytic signals

corresponding to the derivatives of . It is readily verified
that

(B.14)

When approaches the real-axis from below, we have

(B.15)

where denotes the principal value, and where is the
Hilbert transform of .

For our analysis, we also need the asymptotic behavior as
. When the time signal vanishes for ,

the factor of can be expanded in a power series in
. This leads to

with

(B.16)

being the moments of the signal . When this signal has in-
finite duration, not all the moments may exist. However,
we can still use a partial sum of the geometrical series to derive
a similar result.

In both cases, it is clear that the first nonvanishing moment
of determines the rate of decay of as . For
example, for the third derivative that occurs in (40) and (41), the
dual analytic signal behaves as

as in (B.17)
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