
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 48, NO. 10, OCTOBER 2000 1533

Surface Electric Fields and Impedance
Matrix Elements of Stratified Media
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Abstract—For the various geometrical configurations of waves
in stratified media, we consider the important case when both
source and field points are located on the same interface separating
two different dielectric media. We shall denote this configuration
as surface electric field case. In this paper, the electric fields are
calculated numerically without using potentials. For the surface
electric field case the integrand of the electric field grows with
3 2 for large making the Sommerfeld integral singular. To cal-

culate the surface electric fields in the spatial domain, we recently
applied a technique of higher order asymptotic extraction. In the
higher order asymptotic extraction, the higher order asymptotic
parts were calculated analytically. The remainder, which has an
integrand decays as 3 2, was calculated numerically along the
Sommerfeld contour path of integration. In this paper, we use a
different extraction technique, the half-space extraction. After the
half-space extraction, the integrand of the Sommerfeld integral of
stratified media decays exponentially and the integral is calculated
along the Sommerfeld integration path. The half-space extraction
part is calculated by numerical integration along the vertical
branch cuts. The surface electric fields for stratified media using
half-space extraction and higher order asymptotic extraction are
in good agreement. To validate the accuracy of the solution, we
also compute the impedance matrix elements using surface electric
fields, testing, and basis functions all in spatial domain. The results
are then compared with the results of the spectral domain method.
The comparisons of the complex impedance matrix elements are
tabulated and show that the difference is less than 2%.

Index Terms—Integral equation methods, method of moments
(MoM), nonhomogeneous media.

I. INTRODUCTION

WE present this paper in memory of Prof. James R. Wait
for his pioneering work in the research of stratified

media. Radiation of waves in stratified media were studied
extensively, beginning during the time of Prof. Wait, for
application in geophysical probing [1]–[4]. He evaluated
the Sommerfeld integrals by contour integration, asymptotic
methods, and the use of vertical branch cuts [3]. He also
calculated near-field static and quasi-static solutions [1]–[4].
For the half-space case, the vertical branch cuts were also
selected with a result that the Zenneck surface wave pole lies
on the lower Riemann sheet [3], [5]. Subsequently, numerical
methods are used to evaluate the Sommerfeld integrals [3],
[6]–[8]. Recently, the problem of waves in stratified media has
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Fig. 1. A stratified media. The unit dyadic point source is at the origin on the
surface.

also important applications in microstrip structures [9]. The
evaluation of the impedance matrix elements for the electric
field integral equation is an important step in such problems.

For the various geometrical configurations of waves in strat-
ified media, the important case is when both source and field
points are located on the same interface separating two dif-
ferent dielectric media as shown in Fig. 1. We shall denote this
configuration as the surface electric field case and shall exclu-
sively address this case. For geophysical probing, this configu-
ration will have the maximum effect of subsurface properties.
For microstrip structures, this configuration is common. How-
ever, for this configuration, the integrand of Sommerfeld inte-
gral does not have exponential decay for large. The inte-
grand of the electric field actually grows with for large
making the Sommerfeld integral singular. To circumvent the dif-
ficulty, potentials such as Hertz potentials and mixed potentials
[1]–[4], [8], [9] are used because the integrands are less sin-
gular. Techniques such as complex image method are also used
[10]–[13]. This leads to the mixed potential integral equation
(MPIE)[9] in the spatial domain for calculating current distri-
bution on stratified media. Impedance matrix elements are cal-
culated using mixed potentials. An alternative is to use spectral
domain method [14]. In this case, the Fourier transforms of the
testing and basis function are incorporated into Sommerfeld in-
tegrals. This makes the integrand decay for large.

For practical applications, it is useful to calculate the surface
electric fields in the spatial domain. First, the electric fields are
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measurable in experiments. Second, the electric fields have a
simple cosine/sine dependence on thecoordinate. Once calcu-
lated, the dependence can be tabulated. The electric fields for
various and can be easily retrieved by the lookup table. For
the case of impedance matrix elements, they can be calculated
readily by using the tabulated values and simple quadrature over
the spatial extent of the subsectional basis and testing functions.

To calculate the surface electric fields in the spatial
domain and to deal with the growth in the integrand of
the Sommerfeld integral, we recently applied a technique of
higher order asymptotic extraction [15], [16]. In the higher
order asymptotic extraction, the asymptotic parts were calcu-
lated analytically. The remainder which decays as was
calculated numerically along the Sommerfeld contour path
of integration. The integration path in Fig. 2 is referred to
as “Sommerfeld integration path” because the original path
of integration was identified by Sommerfeld in his book
[17]. Miller actually did the numerical integration along
the contour [18]. The results were illustrated for stratified
media [15], [16]. In this paper, we use a different extraction
technique—the half-space extraction. After the half-space
extraction, the integrand of Sommerfeld integral of stratified
media decays exponentially and the integral is calculated
along the Sommerfeld integration paths. The half-space
extraction part is calculated by numerical integration along
the vertical branch cuts [1], [5], [7]. The surface electric
fields are calculated for stratified media. In a related work
using the extraction technique, Tsalamengas studied the
problem of TE-scattering by conducting strips right on the
dielectric interface [19]. In this paper, the approach is on
the use of the spatial domain electric field Green’s function
without using the potentials. Also, an efficient approach for
the evaluation of the Sommerfeld integral associated with
half-space was describe by Michalski [20]. We note that in
the presented method, the computation time is dominated by
the nonhalf-space solution part. The half-space solution itself
only accounts for a small portion of the total computation
time. The results of half-space extraction and higher order
asymptotic extraction are in good agreement. In these two
procedures of calculating surface electric fields for stratified
media, the location of poles are not required. The use of
potentials is not required, either. To validate the accuracy
of the solution, we also compute the impedance matrix
elements using electric field, testing, and basis functions all
in spatial domain. The results are then compared with the
results of the spectral domain method [14]. The comparisons
are tabulated and show that the difference is less than 2%.

In Section II, we give the formulation of the electric field spa-
tial Green’s functions for stratified media. In Section III, we de-
scribe the solution of surface electric field using the half-space
extraction technique. In Section IV, we briefly summarize the
results of the higher order asymptotic extraction technique. In
Section V, numerical results are shown for the computed surface
electric fields up to 1.5 free-space wavelengths. It is shown that
the results computed with half-space extraction and higher order
asymptotic extraction are in good agreement. In Section VI, the
results of impedance elements are presented up to a separation
distance of 1.5 free-space wavelengths. Comparisons are made

Fig. 2. Sommerfeld contour integration path used in numerical integration,
C = C + C .

between the present method (surface electric field in the spatial
domain) and the spectral domain method showing that the dif-
ference is less than 2%.

II. EVALUATION OF THE ELECTRIC FIELDS OF THESPATIAL

GREEN’S FUNCTIONS ON THESURFACE

Consider a stratified media as shown in Fig. 1. The electric
field spatial domain Green’s function with source and observa-
tion point on the surface of the dielectric substrate can be ex-
pressed by

(1)

where

and (2)

(3)

(4)

The is included in (3) and (4) for the definition of the in-
tegration. It will be suppressed from now on. Because the source
and field points are at the same interface, the integrand does
not have exponential decay. The integrand grows with .
The Green’s function represents thecomponent of
electric field due to an infinitesimal-directed current source.
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Note that and only depend on . Thus they can be cal-
culated as a function of and tabulated. Then for a given
and , can be readily calculated by using (1). In
(3) and (4), is the Sommerfeld Integration path as shown in
Fig. 2. The reflection coefficients of the stratified media are rep-
resented by and , respectively, for TM and TE waves.
For the case of the source point on the surface of the stratified
media [17]–[19], reflection coefficients are calculated using the
recurrence relationship

(5)

where

(6)
and , , , is the
layer thickness of theth layer.

Because of singularities on the realaxis, the integration is
carried out on the Sommerfeld integration path, which passes
the origin and lies in the first quadrant asymptotically parallel
to the real axis. The complex variable has real and imagi-
nary parts denoted by and , respectively. In the numerical
integration that is performed in this paper, we have chosen the
line contour integrals of and , as shown in Fig. 2, so that

. On , with . On
, , with . However, because of

the growth of the integrand, numerical integration can only
be done after extraction as illustrated in the following sections.

After extraction, the choices of numerical parameters in this
paper are and the step size

along and , respectively.
Along we integrate up to .

III. EVALUATION OF SURFACE ELECTRIC FIELD SPATIAL

GREEN’SFUNCTION USING HALF-SPACEEXTRACTION

In the method of half-space extraction, we have

(7)

and represents half-space solution, and
represents remainder after half-space extraction.

Thus

(8)

where denotes numerical and denotes half-space. The
half-space is evaluated by using the two vertical branch cuts as
shown in Fig. 3.

(9)

Fig. 3. Integration contour of the branch cuts for the half-space solution as a
result of half-space extraction.

where represents vertical branch cut associated with
and represents the vertical branch cut associated with.
Thus

(10)

(11)

where

(12)

The integrand decay exponentially for largeafter half-space
extraction. The half-space solution can be calculated by inte-
gration along the two branch cuts and . Although the
integrand of the half-space solution grows with, the results of
the integration actually exists (Appendix I). For the half-space
problem, there is no pole of in the upper Riemann sheet if
vertical branch cuts are used [3], [5].

For , which is the branch cut of

(13)

where .
In (13), where runs from to . In (13),

is the value of on the right side of the branch cut. If
we use to denote the value of on the left side of the
branch cut, then . On ,
and . Also on in (13), and
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. Note also that Hankel function of the second
kind is in the integrand of branch cut integration. On ,
which is the branch cut for

(14)

On , where runs from to .
In (14), , where and denote the right side
and left side of , respectively. We have and

. Also on in (2), . Integrals in
(13) and (14) can be solved numerically for nonzero. Simi-
larly, for we have

(15)

(16)

(17)

The criterion of deciding the sign of the square root of
and is the same as in the evaluation of . Also

note that the half-space solution is only a function ofand
. They can be computed and tabulated. We integrate
numerically along the Sommerfeld integration path as

in Fig. 2. For , the integration is given as (13) and (14)
starting from . We use and

.

IV. EVALUATION OF ELECTRIC FIELD SPATIAL GREEN’S

FUNCTION USING HIGHER ORDERASYMPTOTICEXTRACTION

In the following the results of higher order asymptotic ex-
traction are summarized [15], [16]. The important convergence

comes from subtracting out the leading two orders ofdepen-
dence. Thus, of (3) is decomposed as follows:

(18)

where

(19)

(20)

In (18), stands for “primary wave,” stands for “re-
sponse analytical,” and stands for “response numerical.”
The primary wave is the analytic result of the spatial Green’s
function in free-space, the “response analytical” is the part of
the response of the asymptotic extraction and has an analytical
result. The “response numerical” is the part of the response that
is to be evaluated numerically

(21)

(22)

The integrand with higher order asymptotic extraction decays
as when is large. We integrate numerically
along the Sommerfeld integration path. The Green’s function

can be calculated in a similar manner

(23)

where

(24)

(25)
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Fig. 4. Absolute values of the integrand A with half-space extraction, the integrandB with the higher order extraction and the integrandC without the extraction
as a function ofk in m . A log–log scale is used showing the exponential decay in A and power-law dependence inB and inverse power-law dependence inC
for largek . The parameters are: frequency= 8 GHz," = 2" , " = 4" , " = 7" , " = 11" andh = h = h = 0:0013 m. The integrands are onC
of the Sommerfeld integration path withk = 76:923 m . Also � = 1:5�.

and the analytic results of and are as follows:

(26)

is the primary field

(27)

is the analytical response due to asymptotic extraction.

V. RESULTS OFSURFACE ELECTRIC FIELDS BASED ON

HALF-SPACE EXTRACTION AND ON HIGHER ORDER

ASYMPTOTIC EXTRACTION

In Fig. 4, we plot the integrand of with half-space
extraction, higher order asymptotic extraction and without any
extraction. We plot the magnitudes of the integrands along
of the Sommerfeld path as a function of on a log–log scale.
The integrands are

(28)

(29)

(30)

is the integrand of with the half-space extraction.
is the integrand of with the higher order asymptotic ex-
traction, and is the integrand without any extraction. For large

, the figure shows that the integrandwith the half-space ex-
traction decays exponentially, the integrandwith higher order
asymptotic extraction decays as . On the other hand, the
integrand without extraction grows with . Note that along

, is equal to so that the denominator of is
never equal to zero. The peak of the integrand occurs when the
path is close to the surface wave pole. Also, for large, the
function and of Fig. 4 on the log–log scale asymptotically
approach straight lines showing the power-law dependence of
the growth of and the inverse power-law dependence of.
The case we illustrate is four layers with , ,

, and . Next, we plot the numerical results of
and using half-space extraction and higher order asymp-

totic extraction respectively. Because of the large magnitude dif-
ferences in the distance range between to where
is the free-space wavelengths, we plot the results separately for
the real and the imaginary parts and for two distances ranges to
show more clearly the results which exhibit wave-like behavior
as a function of distance. We plot the numerical results of the
electric field spatial Green’s functions and as a function
of from to . In this distance range, the magnitude
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Fig. 5. The real part and imaginary part of surface electric fields of spatial Green’s functions as a function of distance� in wavelengths (0:02� � 0:2�). The
parameters are: frequency= 8 GHz; " = 2" ; " = 4" ; " = 7" ; " = 11" ; h = h = h = 0:0013 m.

Fig. 6. The real part and imaginary part of surface electric fields of spatial Green’s functions as a function of distance� in wavelengths (0:02�� 0:2�). The
parameters are: frequency= 8 GHz; " = 2" ; " = 4" ; " = 7" ; " = 11" ; h = h = h = 0:0013 m.

of the imaginary parts are much larger than the magnitude of the
real parts. The results are shown in Figs. 5 and 6. In Figs. 7 and
8, we show and as a function of from to .
In this distance range, the spatial Green’s functions and

show interference wave patterns. Note that the results of
half-space extraction and higher order asymptotic extraction are
in good agreement, as shown in Figs. 5–8.

VI. COMPARISON OFRESULTS OFIMPEDANCE MATRIX

ELEMENTS BETWEEN SURFACE ELECTRIC FIELD GREEN’S

FUNCTION METHOD AND SPECTRALDOMAIN METHOD

To validate the solution of the computed surface electric
field, we compare the results of impedance matrix element
between the present method of the surface electric field spatial
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Fig. 7. The real part and imaginary part of surface electric fields of spatial Green’s functions as a function of distance� in wavelengths (0:2� � 1:5�). The
parameters are: frequency= 8 GHz; " = 2" ; " = 4" ; " = 7" ; " = 11" ; h = h = h = 0:0013 m.

Fig. 8. The real part and imaginary part of surface electric fields of spatial Green’s functions as a function of distance� in wavelengths (0:2� � 1:5�). The
parameters are: frequency= 8 GHz; " = 2" ; " = 4" ; " = 7" ; " = 11" ; h = h = h = 0:0013 m.

(SEFS) Green’s function method and the spectral domain
method [14]. The impedance elements are important steps to
solve integral equations for antenna radiation on the surface of
stratified media.

In the method of moments solution, the impedance matrix
element relates the “interaction” of theth patch (field) and the

th patch (source). The impedance matrix element in the spatial
domain is
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Fig. 9. The real part and imaginary part of impedance matrix elementsZ =(�x) (�y) along thex-axis, as determined by source current direction using
spatial domain method and spectral domain method. The other parameters are: frequency= 8 GHz; " = 10:65" ; h = 0:0013 m; �x; �y = 0:00024 m;
� = 0:0375 m; x = y = y = 0.

(31)

where the basis functions and the testing functions are
nonzero only on theth patch and theth patch, respectively.
The center of theth patch is at and the center of the
th patch is at . We use Galerkin’s method and rooftop

for both testing and basis functions. Equation (31) becomes

(32)

where

for

elsewhere
(33)

for

elsewhere.
(34)

Based on the computed and tabulated and ,
can be calculated easily. These are then

used to calculate the impedance matrix elements as given in
equation (32) with rooftop testing and basis functions. The

integrals in (32) are done by using three-point quadratures for
each integral , , and . The results are denoted as
SEFS method (present method). For self patch and overlap
patch, the calculation of the impedance matrix elements are
given in Appendix II. A common method of calculating the
impedance matrix elements for many years is the spectral
domain method [14]. We next compare (32) based on the
present method with the impedance matrix elements using this
common spectral domain method with the same rooftop testing
functions and basis functions as before. For the spectral domain
method, the impedance matrix element is

(35)

where

(41)

(42)
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TABLE I
THE REAL PART AND THE IMAGINARY PART OF IMPEDANCEMATRIX ELEMENTSZ =(�x) (�y) ALONG THEx-AXIS AS DETERMINED BY SOURCECURRENT

DIRECTION. FOR PERCENTAGEDIFFERENCE IN THELAST COLUMN, WE USE THEFORMULA j(Z � Z )=Z j WHEREZ REPRESENTS THEVALUES USING THE

SEFS METHOD AND Z REPRESENTS THEVALUES USING THE SPECTRAL DOMAIN METHOD. THE OTHER PARAMETERS ARE: FREQUENCY= 8 GHZ;
" = 10:65" ; h = 0:0013 M; �x; �y = 0:00024 M; � = 0:0375 M; x = y = y = 0

(43)

Note that and decay for large . In the calculation,
we let , and

. For the integration, we use
. The evaluation of integral is carried along the

Sommerfeld integral path, as in Fig. 2, using the following nu-
merical parameters: , , and

.
In the following, we compare and tabulate the results of

the impedance matrix elements using the present method and
spectral domain method for a two-layer case ,

is a perfect electric conductor, frequency GHz and
. In Fig. 9, we show the normalized

impedance matrix elements with the th patch
centered at and the th patch centered at .

We illustrate results for the cases of
and variable . The assume discrete values based on
the cell sizes and where
up to 233. Each cell has the dimensions of by where

. The Fig. 9 shows that
there is a good agreement between this method and spectral
domain method. In Table I, the results of the normalized
impedance matrix using spatial domain method and spectral
domain method are tabulated and the percentage difference be-
tween two methods is shown in the last column. The percentage
difference is where is the value using SEFS
(this) method and is the value of spectral domain method. It
shows that the difference between two methods is less than 2%
for the whole range from to . Note that the first row and
second row of the tables are the self patch and overlap patch,
respectively. The calculation of these two rows are given in
Appendix I.

VII. CONCLUSION

In this paper, we calculated the surface electric field Green’s
function for stratified media in the spatial domain with field and
source points on the same interface surface dividing stratified
media. Numerical calculations are performed by numerically



1542 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 48, NO. 10, OCTOBER 2000

carrying out the integration along the Sommerfeld integration
path and using half-space extraction. The half-space extraction
part is calculated by numerical integration along the vertical
branch cuts. Surface electric fields for the stratified media are
computed directly without the use of the potentials and without
the need for location of poles. The computed values are com-
puted as a function of distance range from 0.02 free-space wave-
lengths to 1.5 free-space wavelengths. To validate the accuracy
of the solution, we also compute the impedance matrix elements
using surface electric field, testing, and basis functions all in
spatial domain. The results are then compared with the results
of the spectral domain method. The comparisons are tabulated
and show that the difference is less than 2%. Solutions for dis-
tance larger that 1.5 free-space wavelengths and derivatives may
be calculated by asymptotic method [1]–[4], [21]–[23].

APPENDIX I

The integral identities are obtained by using Sommerfeld in-
tegral. Derivative of these integrals are then taken with respect
to and/or and then the limit is taken.

The Sommerfeld integral identify is

where (A.1)

If we differentiate (A.1) twice with respect toand then take
, we have

(A.2)

APPENDIX II

In the calculation of self-patch and overlap-patch impedance
matrix, we use electrostatic approximation for the electric field
Green’s function in the near field.

Thus, we have

where

(A.3)
The calculation of the impedance matrix for the case of self-

patch and overlap-patch case are given as follows:

1) self-patch :

where

(A.4)

2) overlap-patch

where

(A.5)
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