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Surface Electric Fields and Impedance
Matrix Elements of Stratified Media

Leung TsangFellow, IEEE Chung-Chi Huang, and Chi Hou Chan

Abstract—For the various geometrical configurations of waves z
in stratified media, we consider the important case when both
source and field points are located on the same interface separating
two different dielectric media. We shall denote this configuration Source point Field point
as surface electric field case. In this paper, the electric fields are Region 0 c
calculated numerically without using potentials. For the surface 0
electric field case the integrand of the electric field grows with
k2/2 for large k, making the Sommerfeld integral singular. To cal-
culate the surface electric fields in the spatial domain, we recently
applied a technique of higher order asymptotic extraction. In the A z=-h
higher order asymptotic extraction, the higher order asymptotic
parts were calculated analytically. The remainder, which has an  Region 2 &,
integrand decays ask;s/?, was calculated numerically along the z=-h,
Sommerfeld contour path of integration. In this paper, we use a A
different extraction technique, the half-space extraction. After the Region 3 e h,
half-space extraction, the integrand of the Sommerfeld integral of 3
stratified media decays exponentially and the integral is calculated z=-h,
along the Sommerfeld integration path. The half-space extraction .
part is calculated by numerical integration along the vertical Region 4 L &
branch cuts. The surface electric fields for stratified media using ~
half-space extraction and higher order asymptotic extraction are
in good agreement. To validate the accuracy of the solution, we Fig. 1. A stratified media. The unit dyadic point source is at the origin on the
also compute the impedance matrix elements using surface electric surface.
fields, testing, and basis functions all in spatial domain. The results
are then compared with the results of the spectral domain method. . o . . .

The comparisons of the complex impedance matrix elements are /SO important applications in microstrip structures [9]. The
tabulated and show that the difference is less than 2%. evaluation of the impedance matrix elements for the electric

Index Terms—integral equation methods, method of moments field integral Qquation is an importa_nt ste.p in such prob_lems.
(MoM), nonhomogeneous media. For the various geometrical configurations of waves in strat-
ified media, the important case is when both source and field
points are located on the same interface separating two dif-
ferent dielectric media as shown in Fig. 1. We shall denote this

E present this paper in memory of Prof. James R. Waipnfiguration as the surface electric field case and shall exclu-
for his pioneering work in the research of stratifiecsively address this case. For geophysical probing, this configu-
media. Radiation of waves in stratified media were studigdtion will have the maximum effect of subsurface properties.
extensively, beginning during the time of Prof. Wait, fofFor microstrip structures, this configuration is common. How-
application in geophysical probing [1]-[4]. He evaluategéver, for this configuration, the integrand of Sommerfeld inte-
the Sommerfeld integrals by contour integration, asymptotytal does not have exponential decay for laige The inte-
methods, and the use of vertical branch cuts [3]. He algpand of the electric field actually grows Witﬁ/2 for largek,
calculated near-field static and quasi-static solutions [1]-[4haking the Sommerfeld integral singular. To circumvent the dif-
For the half-space case, the vertical branch cuts were afmulty, potentials such as Hertz potentials and mixed potentials
selected with a result that the Zenneck surface wave pole [[@$-[4], [8], [9] are used because the integrands are less sin-
on the lower Riemann sheet [3], [5]. Subsequently, numeriagllar. Techniques such as complex image method are also used
methods are used to evaluate the Sommerfeld integrals [AQ]-[13]. This leads to the mixed potential integral equation
[6]-[8]. Recently, the problem of waves in stratified media ha@®1PIE)[9] in the spatial domain for calculating current distri-
bution on stratified media. Impedance matrix elements are cal-
) ) ) culated using mixed potentials. An alternative is to use spectral
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measurable in experiments. Second, the electric fields have K
simple cosine/sine dependence onglwmordinate. Once calcu-
lated, thep dependence can be tabulated. The electric fields fc
varioug and¢ can be easily retrieved by the lookup table. For
the case of impedance matrix elements, they can be calculat
readily by using the tabulated values and simple quadrature ov
the spatial extent of the subsectional basis and testing functior
To calculate the surface electric fields in the spatial
domain and to deal with the,?i/ 2 growth in the integrand of
the Sommerfeld integral, we recently applied a technique c

higher order asymptotic extraction [15], [16]. In the higher c
order asymptotic extraction, the asymptotic parts were calct & ’
lated analytically. The remainder which decayskag/ * was o >

calculated numerically along the Sommerfeld contour patl ¢,
of integration. The integration path in Fig. 2 is referred to

as “Sommerfeld integration path” because the original patl | I k,
of integration was identified by Sommerfeld in his book 0 PN
[17]. Miller actually did the numerical integration along Surface Wave Pole

the contour [18]. The results were illustrated for stratified
media [15], [16]. In this paper, we use a different extractiofig. 2. Sommerfeld contour integration path used in numerical integration,
technique—the half-space extraction. After the half-spaée = ¢+ + C2:

extraction, the integrand of Sommerfeld integral of stratified o _
media decays exponentially and the integral is calculatBgtween the present method (surface electric field in the spatial

along the Sommerfeld integration paths. The ha|f_spaggmain)_and the spectral domain method showing that the dif-
extraction part is calculated by numerical integration alorf§'€nce is less than 2%.

the vertical branch cuts [1], [5], [7]. The surface electric

fields are calculated for stratified media. In a related work |- EVALUATION OF THE ELECTRIC FIELDS OF THE SPATIAL

using the extraction technique, Tsalamengas studied the GREEN'S FUNCTIONS ON THESURFACE

problem of TE-scattering by conducting strips right on the Consider a stratified media as shown in Fig. 1. The electric
dielectric interface [19]. In this paper, the approach is ofeld spatial domain Green’s function with source and observa-
the use of the spatial domain electric field Green’s functiofion point on the surface of the dielectric substrate can be ex-
without using the potentials. Also, an efficient approach fgiressed by

the evaluation of the Sommerfeld integral associated with

half-space was describe by Michalski [20]. We note that in Gaw (X, Y) =W, (p)cos® ¢ — W, (p)sin® ¢ (1)

the presented method, the computation time is dominated b

the nonhalf-space solution part. The half-space solution itsg{ﬁere

only accounts for a small portion of the total computation (Y

. . . =vX2+Y?2 and ¢ =ts = 2
time. The results of half-space extraction and higher order r + ¢ = tan X 2)
asymptotic extraction are in good agreement. In these tw -1

procedures of calculating surface electric fields for stratifie o(p) = Zh_%l+ drwe

media, the location of poles are not required. The use of , ik
potentials is not required, either. To validate the accuracy {/ dkpkpk=(1 — Rrm)Ji(kpp)e ™7

of the solution, we also compute the impedance matrix kSQ Ik,p)
elements using electric field, testing, and basis functions all +_0/ dk,(1+ Rrg)- L\pP e—ﬂ’“zZ} (3)
in spatial domain. The results are then compared with the P Jc, k-

results of the spectral domain method [14]. The comparisong, (p) = lim
are tabulated and show that the difference is less than 2%. z—0t drweg

In Section I, we give the formulation of the electric field spa- 1 o . —jk.z
tial Green’s functions for stratified media. In Section I11, we de- ' {_ /C Aok (1 = Rov) L (Rpp)e
scribe the solution of surface electric field using the half-space )
extraction technique. In Section IV, we briefly summarize the "‘ko/ dk,(1+ Rrn

. . . . C,

results of the higher order asymptotic extraction technique. In
Section V, numerical results are shown for the computed surfableec ¥+ is included in (3) and (4) for the definition of the in-
electric fields up to 1.5 free-space wavelengths. It is shown tagration. It will be suppressed from now on. Because the source
the results computed with half-space extraction and higher orédnd field points are at the same interface, the integrand does
asymptotic extraction are in good agreement. In Section VI, thet have exponential decay. The integrand grows \kﬁ’(’?.
results of impedance elements are presented up to a separafimaGreen’s functio,... (X, ) represents the component of
distance of 1.5 free-space wavelengths. Comparisons are mealéetric field due to an infinitesimat-directed current source.

)k,,J{k(/fpp) e—jk;z} . (4)

z
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Note that, andW only depend omp. Thus they can be cal- k,
culated as a function gf and tabulated. Then for a givek A
andY, G,.(X,Y) can be readily calculated by using (1). In
(3) and (4),C, is the Sommerfeld Integration path as shown ir
Fig. 2. The reflection coefficients of the stratified media are reg
resented byrry andRrg, respectively, for TM and TE waves.

For the case of the source point on the surface of the stratifi k K,

. . . . . 0 !
media [17]-[19], reflection coefficients are calculated using th > k,
recurrence relationship

A 2k A A
B,
A(l+1) 29k =hat) _672jk(1+1>;(h(“rmfhl)_|_RIT%\'I or TE
B41) (1+1)
A1) .
2]k(1+1>;h(1+1> _RT]\'I or TE' 72]k(1+1>;(h(1+1>7h1) 1
e 4 i (&2
B(l+1) W+ + BC, \L N2
()
Fig. 3. Integration contour of the branch cuts for the half-space solution as a
where result of half-space extraction.
RIE  _ ki — kagry. o™ Gk — eikug). _ _ _
G R S Fsn): WD ™ ke + etk(it). where BCO represents vertical branch cut associated With

and BC'1 represents the vertical branch cut associated kith
andk;, = \/k? — k2, ki = wy/pioer, ko = wy/iogo, hi is the Thus
layer thickness of théth layer. _ (N (H, BCO) (H, BC1)

Because of singularities on the réglaxis, the integration is Wolp) = W’EN)(p) + W’EH BCO)(p) + W’EH BCI)(p) (10)
carried out on the Sommerfeld integration pathwhich passes ~ Wy(p) =W '(p) + W3 777 (p) + Wy 7 (p) (11)
the origin and lies in the first quadrant asymptotically parallel
to the realk,, axis. The complex variable, has real and imagi- Where
nary parts denoted by, andk;, respectively. In the numerical —1 ™
integration that is performed in this paper, we have chosen e (p) = { c dkpkpks (R01 - RTM) J1(kpp)

drwe
line contour integrals of’; andCs, as shown in Fig. 2, so that 0 12 To(k,p)
Cy = CL + C2.ONCy, kpy = jE with 0 < K < k. ON +—°/ dk, (Rre — RYY) lk” }
Ca, ky = k), 4k} o, With 0 < &/, < 0o. However, because of pJos # (12)

thekﬁ/2 growth of the integrand, numerical integration can only

be done after extraction as illustrated in the fOlIOWing SeCti0n$he integrand decay exponentia”y for |ar@£after ha|f-space
After extraction, the choices of numerical parameters in thistraction. The half-space solution can be calculated by inte-

paper arek;,... = 0.1/h and the step siz&\k;, = Ak, = gration along the two branch cuBC0 and BC'1. Although the

min(0.147 .., 0.05/p, 0.01ko) alongCy andCs, respectively. integrand of the half-space solution grows wih the results of

Along C; we integrate up t@y, ,,,,, = max(10/h, 15k1). the integration actually exists (Appendix I). For the half-space
problem, there is no pole @XM in the upper Riemann sheet if
[ll. EVALUATION OF SURFACE ELECTRIC FIELD SPATIAL vertical branch cuts are used [3], [5].
GREEN'S FUNCTION USING HALF-SPACE EXTRACTION For BCO, which is the branch cut df,

In the method of half-space extraction, we have W (H, BEO)
» (p)

_ _ pTM T™ -

Ry = (Rrwm ng]l: )+ fiﬂi _ 1 ~ /I ko i 2k, k3. (k)R H Pk, p)

RTE = (RTE - R()ll) + R()lj (7) 47TCU€0 o i k%z — (ET(/{}Z)R)Q ! r
R3M andREF represents half-space solutidiyyy — REM and k2 [ 2(k)r 2)

TF - i +— Jdkym— s Hi (kpp)
Ry — Ry, represents remainder after half-space extraction. o) PR2 —((k)gr)2 "t Y
Thus (13)
N H
Wpor ¢(p) = W/Eor)qb(p) + W/Eor)qb(p) (8)

wheree,. = €1 /ep.
where(V) denotes numerical ar(d{ ) denotes half-space. The [N (13).k, = k+ jk; wherek; runs from—oco to 0. In (13),

half-space is evaluated by using the two vertical branch cuts(ds) is the value oft.on the right side of the branch cut. If
shown in Fig. 3. we use(k. ), to denote the value df. on the left side of the

branch cut, thertk.)r = —(k.)r. On BCO, Re(k.)r < O

Wi (o) =W + Wi PN () (9) andIm(k.)r < 0. Also onBCO in (13), Re(k1.)r > 0 and



1536

Im(klZ)R
kind is in the integrand of branch cut integration. G¢1,
which is the branch cut fok; .

W/EH, BC1) (p)

1 2e,.k,k2(k1.)r

Imkq
= — 4 1 H, (2)
= { S I e H 0
k.g Imky . Z(klv)R @
W /_oo TR = ey T e?)
(14)

OnBC1, k, =k +jk;7’ wherek;j runs from—oc to Ik ).
In (14), (k
and left side ofBC1, respectively. We havBe(%:.)r < 0 and
Im(k;.)r < 0. Also on BC1 in (2), Im(k.) < 0. Integrals in
(13) and (14) can be solved numerically for nonzgr&imi-
larly, for W (p) we have

WM (o)
1 1 ,
= dnweg {; /CS dkpk. (Rg" — Ron)-Jy (K, p)
J{(k
+k§/c dk,)k,)(RTE_ROTF)%} (15)
WéH BCO)( )
1 1 Imkq y 2]{%‘ (k» )R @
= - _mrla\re/ v H;
4W%{me R S MER L
Imk
0 2k, (k) r
+kg / jdk! 2R @)
0 —0oo pk%z ((kz)R)2 L ( pp)
(16)
quH, BCI)(p)
1 1 Imkq " 257‘k~2(klz)R )
= - n z H
*W%{p[mj%wa@V4w@m21(“”
Imk
! 2k (klz)R
2 1w “hp\R1z)R H (2) .
+k; /_Oo dkp 2= (ko)) 1 (k,,p)
a7

The criterion of deciding the sign of the square root of

k. and k. is the same as in the evaluation ¥f,(p). Also
note that the half-space solution is only a functionpofnd

)R = —(k.)r, whereR and L denote the right side

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 48, NO. 10, OCTOBER 2000

> 0. Note also that Hankel function of the secon@omes from subtracting out the leading two orders oflepen-
dence. Thusl¥V,(p) of (3) is decomposed as follows:

Wo(p) = W (p) + WED (p) + WM () (18)

’ {kﬂszTl\'IJ{(kpp) — Fy(kp, 2 =0)

_k_OR Ju(k

5 pp)
) Bre—

jk, K
J; Jl(kpp)

(19)

Fo(kp, 2) = {_kpszJO(kpp) -
+‘7'Kk85,,
(1+e)

ep—1

er+1°

(20)

k)| et

K=

In (18),(P) stands for “primary wave,{RA) stands for “re
sponse analytical,” andR V) stands for “response numerical.”
The primary wave is the analytic result of the spatial Green’s
function in free-space, the “response analytical” is the part of
the response of the asymptotic extraction and has an analytical
result. The “response numerical” is the part of the response that
is to be evaluated numerically

1 je % [ 25k 2
(P) J _aJko & 21
Wi = T (FER L S) e
1 iK (1§ K
WRD (p) = —— {_J_ <_2 + @) I } (22)
drweg p AP p p?

The integrand with higher order asymptotic extraction decays
ask, ** whenk, is large. We integratéV ™) numerically
along the Sommerfeld integration path. The Green’s function
W, (p) can be calculated in a similar manner

k1/ko. They can be computed and tabulated. We integrajghere
WJ‘ numerically along the Sommerfeld integration path as

in F|g 2. ForWH the integration is given as (13) and (14)

—|k max|- We usek’

£ max = 40/p and
0.05/p, 0.01k).

starting fromk” =
Ak = min(0. lk

p max?

IV. EVALUATION OF ELECTRIC FIELD SPATIAL GREEN'S
FUNCTION USING HIGHER ORDER ASYMPTOTIC EXTRACTION

In the following the results of higher order asymptotic ex-
traction are summarized [15], [16]. The important convergence ¢

Walp) = W5 (p) + WD (p) + W (p) (23)
T ———

{(- )%IﬁMh( p) = Fallip, 2 = 0)]

+k2 k” ReJ{(k,p } (24)

Folk 2) = |ty K () - K, o] et @

k/’
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Comparison of Integrands

10 r 7 r T
10" | :
" C
T
f=
s
g 10° | .
E T T —
y
= . B
k]
o 1 00 L [ S S ol
=] "
3 5
'S
o B
@ E
E 10° | |
5 LA
g — without extraction
g ............ with higher order asymptotic extraction }
107 e With half space extraction J
10-15 L 1 L S ! "
10° 10' 10* 10 10

Fig. 4. Absolute values of the integrand A with half-space extraction, the integtamith the higher order extraction and the integranevithout the extraction
as afunction ok, in m~*. A log-log scale is used showing the exponential decay in A and power-law dependéheadhinverse power-law dependencein
for largek;,. The parameters are: frequeney8 GHz,&1 = 2eq, €2 = 4eo, €3 = Teo, €4 = 1leg andhy = hy = ks = 0.0013 m. The integrands are afk
of the Sommerfeld integration path witlf = 76.923 m~". Alsop = 1.5A.

; (r) (RA) . k2 Ji(k
and the analytic results 8% (p) and W™ are as follows: _ {(kpszqu{(kpp) CEy) - M Ry 1(k‘pp)}
. (29)
K —jkp ]%2 1 9
wpy=-—2_° <k2 _ I —) 26 1 k J1(kpp)
¢ (p) drweg  p 0 p P> (26) C= Irwe, (kpk.RrvJi(k,p)) — 70 RTEk—: (30)
is the primary field A is the integrand of¥,(p) with the half-space extractio?

is the integrand ofV,(p) with the higher order asymptotic ex-
1 1 K jK?K? traction, and” is the integrand without any extraction. For large
< ) <p—2 i ) (27) k), the figure shows that the integrardwith the half-space ex-
traction decays exponentially, the integrageavith higher order
asymptotic extraction decays 5,53/ ?. On the other hand, the
integrandC’ without extraction grows witf> 2. Note that along
Cs, k;{ is equal tok” so that the denominator dfty; is

(RA) _
W, =

drweg 0

is the analytical response due to asymptotic extraction.

p max
V. RESULTS OF SURFACE ELECTRIC FIELDS BASED ON never equal to zero. The peak of the integrand occurs when the
HALF-SPACE EXTRACTION AND ON HIGHER ORDER path is close to the surface wave pole. Also, for lakgethe
ASYMPTOTIC EXTRACTION function B andC of Fig. 4 on the log—log scale asymptotically

In Fig. 4, we plot the integrand df¥’,(p) with half-space approach straight lines s_,howing the power-law dependence of
extraction, higher order asymptotic extraction and without adje growth ofB and the inverse power-law dependencecof
extraction. We plot the magnitudes of the integrands along The case we illustrate is four layers with = 2eo, e2 = 4<o,
of the Sommerfeld path as a function/df on a log-log scale. €3 = 7€o, andes = 1leo. Next, we plot the numerical results of
The integrands are W, andW 4 using half-space extraction and higher order asymp-
totic extraction respectively. Because of the large magnitude dif-
ferences in the distance range betwédi2\ to 1.5\ where\

A=— {kka(ROTf\ ' — Ry S (k,p) is the free-space wavelengths, we plot the results separately for
drweg the real and the imaginary parts and for two distances ranges to
k2 T J1(kpp) show more clearly the results which exhibit wave-like behavior
+_(RTE — Ry, ) (28) . . .
k. as a function of distance. We plot the numerical results of the
1 electric field spatial Green’s functiod®, andW, as a function

" drweg of p from 0.02X to 0.2X. In this distance range, the magnitude
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18F ! x Imaginary part(higher order extraction) |
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Fig. 5. The real part and imaginary part of surface electric fields of spatial Green'’s functions as a function of gistewegelengths(.02XA — 0.2X). The

parameters are: frequeney 8 GHz; s, = 2¢q; €2 = 4eq; 3 = 7eg; €4 = 11eg; hy = hy = hy = 0.0013 m.

x 107 Wyle)
2 T L} L} T T T T T
or mxv-"”“"'”x'“'
_,3{'"
2t Il _
ix"
8l '_,."' ]
10+ , i
A2t ]
A4} i
——  Real part(half space extraction)
A6EX e Imaginary part(half space extraction) ;
. Real part(higher order extraction)
-18}; x Imaginary part(higher order extraction)|{ |
_20 : 1 L ) L 1 L 1 i
0.0 0.04 006 0.08 0.1 012 014 0.16 0.18 0.2

Fig. 6. The real part and imaginary part of surface electric fields of spatial Green’s functions as a function of distewegelengths{.02A — 0.2X). The

parameters are: frequeney 8 GHz; ¢, = 2¢q; €2 = 4¢g; €3 = 7£g; €a = 11eg; hy = hy = he = 0.0013 m.

of the imaginary parts are much larger than the magnitude of the VI. COMPARISON OFRESULTS OFIMPEDANCE MATRIX
real parts. The results are shown in Figs. 5 and 6. In Figs. 7 andELEMENTS BETWEEN SURFACE ELECTRIC FIELD GREEN'S
8, we showi¥’,, and W, as a function op from 0.02X to 1.5A. FUNCTION METHOD AND SPECTRAL DOMAIN METHOD

In this distance range, the spatial Green’s functidngp) and
W, (p) show interference wave patterns. Note that the results ofTo validate the solution of the computed surface electric

half-space extraction and higher order asymptotic extraction diedd, we compare the results of impedance matrix element
between the present method of the surface electric field spatial

in good agreement, as shown in Figs. 5-8.



TSANG et al. SURFACE ELECTRIC FIELDS AND IMPEDANCE MATRIX ELEMENTS OF STRATIFIED MEDIA

1.5 T T

W (o)

Y T T T

Real part(half space extraction)
Imaginary part(half space extraction)
Real part(higher order extraction)
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Fig. 7. The real part and imaginary part of surface electric fields of spatial Green’s functions as a function of gistenmewelengths{.2A — 1.5X). The
parameters are: frequeney 8 GHz; s, = 2¢q; 62 = 4eq; 3 = 7eg; €4 = 11ég; hy = hy = hy = 0.0013 m.

W,lp)

T T T T

Real part(half space extraction)
Imaginary part(half space extraction)
Real part(higher order extraction)
Imaginary part(higher order extraction)

0.2 0.4 0.6

0.8 1 1.2 1.4

p(A)

Fig. 8. The real part and imaginary part of surface electric fields of spatial Green’s functions as a function of gisteweselengths{.2A — 1.5\). The
parameters are: frequeney 8 GHz; ¢, = 2¢q; €2 = 4eq; €3 = 7€0; €4 = 11leg; hy = hy = he = 0.0013 m.

(SEFS) Green's function method and the spectral domaith patch (source). The impedance matrix element in the spatial

method [14]. The impedance elements are important stepsdtumain is
solve integral equations for antenna radiation on the surface of

stratified media.

In the method of moments solution, the impedance matri 5;; = // dx dyw;(z, y)

element relates the “interaction” of thith patch (field) and the

jthpatch
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Impedance Matrix Elements

15+

-20

----------------- Present: Zxx(Real)
———  Present: Zxx(imaginary)
. Spectral: Zxx(Real)
x Spectral: Zxx(Imaginary)

0.2 0.4

0.6

0.8 1 1.2 1.4

Distance between i-patch and j-patch (1=free space wavelength)

Fig. 9. The real part and imaginary part of impedance matrix eleméfitg(Ax)?(Ay) along thez-axis, as determined by source current direction using
spatial domain method and spectral domain method. The other parameters are: fregue@dyz;c; = 10.65¢¢; hy = 0.0013 m; Az, Ay = 0.00024 m;

A =0.0375 m; 2 = ¢y =y = 0.

de' dy Gon(x — &', y — ) )bi(2, ') (31)

ith patch

integrals in (32) are done by using three-point quadratures for
each integraliz, dz’, dy anddy’. The results are denoted as

SEFS method (present method). For self patch and overlap
patch, the calculation of the impedance matrix elements are

where the basis functions and the testing functions; are given in Appendix Il. A common method of calculating the

nonzero only on théth patch and thgth patch, respectively. impedance matrix elements for many years is the spectral
The center of theth patch is afz;, ;) and the center of the domain method [14]. We next compare (32) based on the
Jjthpatchis az;, y;) . We use Galerkin's method and rooftoppresent method with the impedance matrix elements using this
for both testing and basis functions. Equation (31) becomes common spectral domain method with the same rooftop testing

B z;+Ax z;+ Az y;+(Ay/2)
zZ :/ dx/ dx’/
z;—Ax z; — Az y;—(Ay/2)

Yi +(Ay/2)
- / 't (2) (&) - Gl — 7/, y — o)
Y

functions and basis functions as before. For the spectral domain
method, the impedance matrix element is

. 1 T .
z :H// dky dley P (= k., —k,)

i—(Ay/2)
where where
|z — ] 2 272
1- 21 for|e —a,| <A - —wp | k; k2k2
tacj (37) = Az |x x1| =27 wa(kwa ky) = Wu {k_g(l + RTE) + W(l - RTM)}
0, elsewhere * ’ ’ 1)
41
|z — ] ,
1— —nl <A
t, (.’IZ'/) — Ar for |.’L’ -’L'Z| S Ax (34) sin? <&]€x>
0, elsewhere. Wk, k) = ke (A2F25) 2

Based on the computed and tabulatéd,(p) and Wy(p),
G..(z — 2/, y — 4/) can be calculated easily. These are then
used to calculate the impedance matrix elements as given in
equation (32) with rooftop testing and basis functions. The

ko )2

A
2sin <—y ky>
ek (u D) N2 ) (42)

Y
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TABLE |
THE REAL PART AND THE IMAGINARY PART OF IMPEDANCE MATRIX ELEMENTS Z7% /(Ax)?(Ay) ALONG THE 2-AXIS AS DETERMINED BY SOURCE CURRENT
DIRECTION. FOR PERCENTAGEDIFFERENCE IN THELAST COLUMN, WE USE THEFORMULA |(Z; — Z3)/Z2| WHERE Z; REPRESENTS THEVALUES USING THE
SEFS METHOD AND Z>; REPRESENTS THEVALUES USING THE SPECTRAL DOMAIN METHOD. THE OTHER PARAMETERS ARE: FREQUENCY = 8 GHz;
g1 = 10.6520; by = 0.0013 M; Az, Ay = 0.00024 M; A = 0.0375 M; () = ¢V =y =0

Spectral Domain Method Present Method
Patches Real part Imaginary part | Real part Imaginary part | Percentage
separation difference(%)
n (nAx)
0 -2.09E+01 1.97E+06 0.00E+00 1.98E+06 0.60%
1 -1.84E+01 | -6.78E+05 0.00E+00 | -6.71E+05 0.98%
3 -1.902E+01 | -4.896E+04 | -1.893E+01 | -4.870E+04 0.52%
13 -1.783E+01 | -4.249E+02 | -1.776E+01 | -4.239E+02 0.25%
23 -1.631E+01 | -1.560E+01 | -1.525E+01 | -1.580E+01 0.99%
33 -1.182E+01 | 7.558E+00 | -1.179E+01 | 7.522E+00 0.32%
43 -7.621E+00 | 1.028E+01 | -7.601E+00 | 1.023E+01 0.40%
53 -3.290E+00 | 1.078E+01 | -3.282E+00 | 1.073E+01 0.43%
63 7.057E-01 | 9.987E+00 | 7.021E-01 | 9.943E+00 0.44%
73 3.9563E+00 | 8.100E+00 | 3.941E+00 | 8.065E+00 0.41%
83 6.155E+00 | 5.433E+00 | 6.136E+00 | 5.411E+00 0.36%
93 7.161E+00 | 2.404E+00 | 7.136E+00 | 2.394E+00 0.35%
103 6.976E+00 | -5.436E-01 | 6.951E+00 | -5.508E-01 0.37%
113 5.768E+00 | -3.047E+00 | 5.743E+00 | -3.030E+00 0.46%
123 3.810E+00 | -4.766E+00 | 3.794E+00 | -4.745E+00 0.44%
133 1.478E+00 | -5.555E+00 | 1.469E+00 | -5.528E+00 0.49%
143 -8.476E-01 | -5.383E+00 | -8.520E-01 | -5.355E+00 0.51%
153 -2.818E+00 | -4.366E+00 | -2.820E+00 | -4.344E+00 0.43%
163 -4.167E+00 | -2.737E+00 | -4.167E+00 | -2.724E+00 0.27%
173 -4.736E+00 | -8.047E-01 | -4.735E+00 | -7.994E-01 0.11%
183 -4 496E+00 | 1.106E+00 | -4.500E+00 | 1.103E+00 0.11%
193 -3.547E+00 | 2.701E+00 | -3.559E+00 | 2.685E+00 0.46%
203 -2.099E+00 | 3.747E+00 | -2.113E+00 | 3.716E+00 0.79%
213 -4.122E-01 | 4.145E+00 | -4.286E-01 | 4.070E+00 1.86%
223 1.239E+00 | 3.774E+00 | 1.209E+00 | 3.734E+00 1.26%
233 2.567E+00 | 2.839E+00 | 2.537E+00 | 2.807E+00 1.15%
sin? <£km> We illustrate results for the casesof’ = ¢ = 4 = 0
b (ko k) :C—jkI(Aa;+xi)—2 and variablexéj). The xﬁf) assume discrete values based on
e ko \ 2 the cell sizesAz andz$’ = nAz wheren = 0, 1, 3, 10, - --
<§> Az up to 233. Each cell has the dimensionsof by Ay where
Ay Az = Ay = 0.00024 m = 0.0064\. The Fig. 9 shows that
2sin <—ky> there is a good agreement between this method and spectral
eIk ((Ay/2)+yi) \2 7/ . (43) domain method. In Table I, the results of the normalized

¥ impedance matrix using spatial domain method and spectral
domain method are tabulated and the percentage difference be-
tween two methods is shown in the last column. The percentage
. difference i9(Z; — Z»)/Z>| whereZ; is the value using SEFS
letk, = k ok, =k cand [ dk, [ dk, = . ; .
wele p COS Prs Ky pSin i / J dky (this) method and; is the value of spectral domain method. It

27 . .
{20 )C/Ufféléf(’) fQI_h:d;’\“/ ali c;rtighnegz’“ :ztgg:glt'?sné;vrﬁeu dsﬁg): _the shows that the difference between two methods is less than 2%
) [T P 9 9 for the whole range frond to 1.5\. Note that the first row and

Sommerfeld integral path, as in Fig. 2, using the following nu-
. I h
merical parametersAk, = 0.005 * ko, &, ... = 30/h, and second row of the tables are the self patch and overlap patch,

L = 0.1/h, respectively. The calculation of these two rows are given in

pmax .
In the following, we compare and tabulate the results &ppenmx .

the impedance matrix elements using the present method and
spectral domain method for a two-layer case= 10.65¢,

€2 is a perfect electric conductor, frequeney 8 GHz and In this paper, we calculated the surface electric field Green's
hy = 0.0013 m = 0.0347. In Fig. 9, we show the normalized function for stratified media in the spatial domain with field and
impedance matrix element’, /(Az)?(Ay) with the jth patch  source points on the same interface surface dividing stratified
centered a(Lr,Sf), y;”) and theith patch centered ar;”, y,S:)). media. Numerical calculations are performed by numerically

Note thatw, and Ewdecay for largek,. In the calculation,

VIlI. CONCLUSION
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carrying out the integration along the Sommerfeld integration
path and using half-space extraction. The half-space extraction
part is calculated by numerical integration along the vertical

branch cuts. Surface electric fields for the stratified media are Z; (

computed directly without the use of the potentials and without

the need for location of poles. The computed values are com-
puted as a function of distance range from 0.02 free-space wave-
lengths to 1.5 free-space wavelengths. To validate the accuracy

where

1+K Az Az
)ii — I(
Tweol Ax </ da:/ dz'I(x, z')

Az 0
—/ da:/ da' L,(z, a:’))
0 —Ax

of the solution, we also compute the impedance matrix elements(z, =) = Ayln (Ay +V(z + (Ay)? )

using surface electric field, testing, and basis functions all in
spatial domain. The results are then compared with the results

— V(@ =o' +(Ay)? +Iw—$’|

of the spectral domain method. The comparisons are tabulatedzg(gf;m = M (In(2Azx) — In(Axz)) (A.4)
and show that the difference is less than 2%. Solutions for dis- mweo

tance larger that 1.5 free-space wavelengths and derivatives may

be calculated by asymptotic method [1]-[4], [21]-[23]. 2) overlap-patctf|z; — z;| = Az)

APPENDIX |

The integral identities are obtained by using Sommerfeld in-
tegral. Derivative of these integrals are then taken with respect
to pand/orz and then the limit = 07 is taken.

The Sommerfeld integral identify is

Lip. By = [ dby e otk
Cy z

_jk,,,
wherer = /p2 +22. (A1)

.C
=J

r

If we differentiate (A.1) twice with respect toand then take
z — 0T, we have

285 = 20 4 2

where

hii . A+ K) e
ZQ(UQ)”: + {/ da:/ de'I(z, z')
rweg(Az)? Az

2Ax Az
/ da:/ de'I,(z, z')
2Ax 00
/ dx/ da' Iy(x, ')
—Ax
Ax Az
—/ da:/ da'L,(x, a:’)}
0 0

g JOI+HK)Ay (7 9
AL JA+K)Ay {— In(Az)—8In(2Az)+ = 111(3Ax)} .
22 k 2mweg 2 2
_ . —jk.z (AS)
= — lim / dk,,k,,kZJo(k,,p)e*jk:Z
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