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Integral Equation Solution of Maxwell’s Equations
from Zero Frequency to Microwave Frequencies

Jun-Sheng Zhadviember, IEEEand Weng Cho Chewrellow, IEEE

Abstract—\We develop a new method to precondition the matrix first principles using numerical methods so that increasingly
equation resulting from applying the method of moments (MoM)  complex structures can be handled.
to the electric field integral equation (EFIE). This preconditioning After the establishment of Maxwell's theory in 1864 [1]

method is based on first applying the loop-tree or loop-star decom- . . .
position of the currents to arrive at a Helmholtz decomposition of [52], the early EMs analyzes were associated with simple

the unknown currents. However, the MoM matrix thus obtained ~Shapes such as spheres, cylinders, planes, etc. [2]{8]. As the
still cannot be solved efficiently by iterative solvers due to the large scientific and engineering demand for sophistication rose,

number of iterations required. We propose a permutation of the  solutions to more complex geometries were needed. As a result,
Ioop-tree or Ioop-star currents by a connection matrix, to arrive approximate teChniqueS were developed to solve Maxwell's

at a current basis that yields a MoM matrix that can be solved fi o . ircuit th d df f
efficiently by iterative solvers. Consequently, dramatic reduction equations. Une can view circuit theory as a reauced form o

in iteration count has been observed. The various steps can be re-Maxwell's theory in the low frequency limit where approximate
garded as a rearrangement of the basis functions to arrive at the analyzes of many complex geometries have been obtained with

MOM matrix. Therefore, they are related to the origin_al MoM ma-  astounding success. High-frequency ray theory, diffraction
trix by matrix transformation, where the transformation requires theory, and perturbation theory were developed to provide

the inverse of the connection matrix. We have also developed a fast . . , .
method to invert the connection matrix so that the complexity of aPProximate solutions to Maxwell's theory [9]-[17]With

the preconditioning procedure is of O(IN') and, hence, can be used the advent of computer technology in the sixties, numerical
in fast solvers such as the low-frequency multilevel fast multipole methods such as finite-difference method [19], finite-element

algorithm (LF-MLFMA). This procedure also makes viable the use  method [20], and method of moments (MoM) [21], [22] were
of fast solvers such as MLFMA to seek the iterative solutions of eye|oped to allow more versatility and accuracy in the solution
Maxwell’'s equations from zero frequency to microwave frequen- -
cies. methods. But for many years, numerical methods could only
) . solve relatively small problems involving a small number of
Index Terms—Convergence improvement, loop-tree basis, low ,nknowns. However, the recent advances in fast computational
frequency, surface integral equation. . .
algorithms and computer hardware has allowed numerical
methods to solve problems of unprecedented sizes involving
|. INTRODUCTION millions of unknowns [23].

UE to the rapidly increasing capability of computers, t!:or a closedﬁs trufctureihthe. sturface intergral equitllon forg‘h“'
computational electromagnetics (EMs) is becoming ir@ lons may sufler from e Interior resonance problems. |Ne

creasingly important. This is partly due to the predictive pow&niqueness_of _solu_tion of electrig field integ_ral equation (EFIE)
of Maxwell's theory as proven over the years—MaxweII’?nd magnetic field integral equation (MFIE) is not guaranteed at

theory can predict the design performances or experimental 0 hgse interior resonant frequencies [18], [24], [53]' M.any reme-
comes if Maxwell's equations are solved correctly. Moreove ,|es have been proposed, such as the combined field integral

Maxwell’s theory, which governs the basic principle behind th§quation (CFIE) method [25], [26], the extended boundary con-

manipulation of electricity, is also extremely pertinent in man |t:3n metho_d [27],tr[IZE(Sj],Ztgetﬁomblnl;r?g |(;1ter|or and ?:tzrlgg
electrical engineering and scientific technologies. Examples ot'c expression metho [29), the combined-source method [30],

these technologies are radar, remote sensing, geoelectrorr?{g—the dual-surface formulation method [31].

netics, bioelectromagnetics, antennas, wireless communicatio ,owever, desp|te. all these gdvances, there remain many
.unsolved problems in computational EMs. For example, even

gugh fast Laplace solvers [32], [33] and fast solvers for
Imholtz and related electrodynamic equations exist [34],

optics, high-frequency circuits, etc. Furthermore, Maxwell
theory is valid over a broad range of frequencies spanning st
to optics and over a large dynamic range of length scales fr } i
subatomic to intergalactic length scales. In view of this, the ] there does not exist a method that can solve Maxwell's

is always a quest to solve Maxwell's equations accurately frofﬁuations rapidly all the way from zero frequency to microwave
requencies. This is an important problem, because there is

a pressing need to simulate EM phenomena in circuits and
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short wavelength compared to the size of the simulated objemtnsideration of the frequency scaling of the irrotational com-
In this manner, fine details can be simulated accurately, e.ganent of the current as mentioned above. This effect can be
in circuit components such as inductors and capacitors. In gleaned from studying the following integral representation of
antenna feed, fine features often dictate the input impedancetu# electric field:

the antenna. Such a situation also prevails in geoelectromag-

netics [36], where very long wavelength is used to enhance . , o

the penetration depth of geophysical probing tools, and the E(r) :'M“/S g(r, r')I(x)dr

dimensions of the tools and the feature being probed are a 1 e, "

small fraction of a wavelength. In addition, electrodynamic -V g g(r, r)V' - J(r') dr'. (2

phenomena, which are due to the finite wavelength effect,
e.g., in high-speed or high-frequency circuits, and resonarpge to the finite machine precision, the contribution from the
behavior of antennas need be simulated accurately. vector potential (the first term) will be lost during the numer-
However, numerical solution of Maxwell's equations at lovical process whew — 0. Furthermore, the scalar potential part
frequencies is plagued with numerous problems. This is the cafthe above integral operator has a null space because of its di-
sequence of the decoupling of electric and magnetic fields yargence operator. This makes the impedance matrix nearly sin-
Maxwell's equations right at zero frequerfclso, the electric gular and difficult to invert at low frequencies [37], [38]. But the
and magnetic fields become curl free at zero frequency outsiggctor potential term may be as important as the scalar potential

the source region term though it produces an electric fiel®{w) smaller at very
low frequencies. However, it generates a nonvanishing magnetic
VxE=0, VxH=J field whenw — 0. The loss of the contribution from the vector

V.- ¢E=p=lim V.-J/iw, V-pH=0. (1) potential makes the solution inaccurate [37], [38]. Physically,
w0 this corresponds to the problem separating into an inductive part
A harmonic time dependenee=* is assumed here and is ap_a_md a capacitive part. Ho_wever, the inductive effec_t and capaci-
; tive effect can be equally important at low frequencies such as in
plied throughout the paper. S .
a0 LC tank circuit. Therefore, a correct numerical method needs

This decoupling of the electrostatic and magnetostal the inducti h in addition to th
fields manifests itself in the current by separating itself into.tg preserve the inductive pnénomenaon in addition 1o the capac-
e phenomenon when the frequency goes to zero.

solenoidal (divergence-free) component and a complementéWTh bl tioned ab by int
irrotational (nonsolenoidal or curl-free) component. At zer €S€ problems, as mentioned above, are overcome by Intro-

frequency, the two currents decouple completely: The div ucing the loop-star basig anq loop-tree basis [37]-{44]. These
gence-free current produces only a magnetic field, while t18>%S separate the contributions from the vector potential and
irrotational current produces only an electric field. Thereforttz,e scalar potential in the impedance matrix. In this manner, the

the current undergoes a natural Helmholtz decomposition. contribution from the vector potential will not be swamped by

Notice from the above that the irrotational current requirestgat from the scalar potential after an appropriate frequency nor-

divergence that goes to zero with vanishing frequency so asnggliz?tionr.] Thirefpre, tpehim.peddar?ce mr?trix Is no Iongedr nearly
produce a physically finite chargéiz V-J ~ O(w), w — 0. singular, the physics of the inductive phenomenon and capac-

Hence,J — J..; + Jin., Where the irrotational component itive phenomenon is captured correctly and the solutions are

J.;.. vanishes withy linearly asw — 0. Notice that no such muchh more a]:C(r:]ur(’I:\te. he | basis. foll db
frequency scaling is required of the solenoidal compodegnt The use of the loop-star or the loop-tree basis, followed by

Because of the discrepant frequency dependence of {htaquency nqrmalization, only solves. the problem_ of singular
solenoidal and irrotational components of the current when Mmatrices partially at very low frequencies. The matrix, however,

tends to zero, a working numerical method has to include ﬂ“‘;Sstill ill-conditioned. If an iterative solver is used, the iteration

Helmholtz decomposition and ascribe the requisite frequen‘f:%}unt is usually very large and may even diverge for some prob-
dependencies to the solenoidal and irrotational component: Gps:

the current. This decomposition is achieved by the loop-treel? Many cases, the matrix equation has to be solved by
and the loop-star method [37], [38]. an iterative solver. For example, the only known path to

large scale computing involving millions of unknowns is via

. o ; iterative solvers. Direct inversion methods cannot be used due
iwA — V¢. The _contrlbut_lon _from the c_hargms related to o the O(N?) memory andO(N?) central processing unit
the scalar potentiap, contribution of the field under a Lorentz . -mory ) P 9

gauge, while the contribution from the curreiis related to the (CPY) time requirements. In comparison, the low-frequency
vector potential, contribution of the electric field. At very low Multilevel fast multipole algorithm (LF-MLFMA) [45] has a
frequencies, when the electric field integral equation (EFIE) f88mory requirement ab(/V) and the number of floating-point
solved by the straightforward MoM with the rooftop basis oPPerations per iteration is ab(V). But the LF-MLFMA is
Rao-Wilton-Glisson (RWG) basis [37], the contribution fronpased on iterative solvers. Also there are cases where iterative
the vector potential to the impedance matrix is much small§P!Vers are preferred: for example, when a sweep of frequencies

than the contribution from the scalar potential due to the lack 8 & SWeep of incident wave angles for plane wave excitation
is needed, an iterative solver has an advantage because the

2The complete decoupling does not exist in a conductive medium, howev%?luuon at each step of the sweep is a QOOd initial gqess fOI‘
and we will treat this situation in a later paper. the next step. Therefore, we cannot avoid the use of iterative

In the potential method of solving Maxwell's equatiEh=
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solvers in many cases and the convergence problem of thieere E™<(r) represents the incident electric fields atid)
matrix equation based on the loop-star and loop-tree bassan arbitrary tangential unit vector on the surface. Using the
needs to be overcome. loop-tree basis designed for low-frequency problems

In this paper, we develop a method to transform the matrix Ny Ne
equation obtained by the loop-star or loop-tree method. The no_ / /
new impedance matrix thus obtained has a very good spectral I = nz::l Lind, () + Z lende, () @
property. When the new matrix equation is solved by iterative ] )
solvers, it converges much faster than the original one. THi&ereJz, (r') andJc, (r') are, respectively, divergence-free
transformation of the matrix equation is motivated by noticinlpOP basis and nondivergence-free tree basis defined in
that for electrostatic problems, where Laplace’s equation [B71-[44]- I, (r') is a surface-loop basis, a wire-loop basis,
solved, no convergence problem has been observed. Theref8fe Wire-surface-loop basidc, (r') is a surface-tree basis, a
a connection matrix is developed to rearrange the basis fulfre-tree basis, or a wire-surface-junction basis as defined in
tions associated with the loop-tree or loop-star method so th&fl-[48]- Equation (4) can be rewritten in the matrix form as
they reduce to the electrostatic case at zero frequency. . Iy = IL(r) - I, + IL(r) - Ie (5)

The rearrangement of the basis can be viewed as a precondi-
tioner via a change of basis and, hence, is equivalent to a matsittere J.(r’), I, Jo(r’), I are column vectors containing
transformation of the original matrix equation. This transforma¥,, ('), I, J¢, (r'), andic,,, respectively.
tion of the matrix requires the inverse of the connection matrix. The first term in (5) is divergence free, but (5) does not
Hence, for the loop-tree basis, we have developed a methoddpresent a complete Helmholtz decomposition because the
perform the multiplication (action) of the inverses of the corsecond term is not curl free. However, as shall be shown, a
nection matrix (or its transpose) with a vector in oflyN) op- complete Helmholtz decomposition is not mandatory to solve
erations, wheréV is the number of unknowns. Consequentlthis problem as long as the second term always has a component
the total number of floating-point operations for the rearrangat the curl free-space. By substituting (5) into (3), testing with
ment scales a®@(V). This makes viable the use of this method .(r) andJ(r), and applyingV - J.(r) = 0, we have the
together with LF-MLFMA to solve large-scale problems sincenatrix equation

the computational complexity of LF-MLFMA is ab(V). 7 VA I v
LL LC L L
& = . = 6
|:ZCL ch:| [IC} [Vc} ©)

n=1

A note is in order on the fast multipole algorithm—its form
as reported in the literature [23], [34], [35], breaks down at low
frequencies as well. However, a frequency renormalized veyhere
sion can be developed that can give reduced computational com-

plexity at low frequencies [45]. Therefore, a fast algorithm for Vi = —(Ji(r), E™(r))
a matrix-vector product now exists all the way from zero fre- Ve = — (Je(r), EP(r))
quency to microwave frequencies. Zor, = iwp(IL(r), o(r, ), It ("))
Zic :iwﬂ<JL(r)7 g(r, I‘/), JtC‘(r/»
Il. GENERAL EQUATIONS Zep =iwpJIe(r), g(r, v'), I3 (x)) = Z're
Zee =iwp{Ic(r), g(r, v), JL(x"))

In this section, we first give a brief review of the original ma-
trix equation for a system of conducting bodies interconnected -
by wires based on the loop-star and loop-tree basis. After il-
lustrating the problem with the original equations, we preseni@the above,
method to transform the matrix equation to obtain a good con-
vergence property. Then we discuss a method to perform th&(r), g(r, '), B'(r')) = / drA(r) - / dr'g(r, ¥)B'(r').
multiplication (action) of the inverses of the connection matrix
and its transpose with a vector efficiently for the tree basis. TiEguation (6) is the matrix equation based on the loop-tree basis

details are shown in the following subsections. for solving very-low-frequency problems.
When the frequency is very low, the elements of the
A. Original Matrix Equation with Loop-Tree Basis impedance matrix, the excitation vector and the results scale

) _ ) _with respect to the frequeney as follows:
The EFIE of three-dimensional perfectly conducting bodies

interconnected by wires can be written as Zr(OWw)  Zre(OW)) { 1,(0(1)) }

— = 1
Zer(0w) Zec (0( ) | [1et0w)
E / / ’_ LA = [V;(O(w))} 7
iwpt(r) /S g(r, v')I(x) dr’ — -—i(r) Va(0(1) (7)
. v/ g(r, )V’ - J(x') dr’ where the expressions in the brackets are the scaling properties
of the matrix elements at very low frequencies or whes- 0.

= —#(r) - E™(r), rcsS (3) The matrix equation in (7) is unbalanced and ill conditioned
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whenw — 0. This imbalance stems from the fact that we use dfor a charge neutral system, we must have
electric field integral equation, but the inductive part produces N
dominantly a magnetic field, with a subdominant electric field. - .

Hence, the upper left hand block of the matrix becomes sub- /S plr)ds = nz_:l @n Pa(r) dS =0, (10)
dominant in an electric field equation. To remedy this, (7) can

Sh

be frequency normalized in a balanced manner as Then
N / Po(r)dS
5.,
Laom) zicow) | [ BOW) Qup == 2
w 1 n=1 / Py, (r)dS
Zer(OWw))  wZee(0(1)) | | 5 1e(O) Sxp
1 Np—1
_ ;VL(O(l)) ) (8) = - Z ganQn (11)
Ve (0(1)) i
where
We have also normalized the current associated with the charge
I, with w ™! to force it to vanish with vanishing frequency as / P,(r)dS
mandated by the discussion in the introduction. Consequently, OnNp = e — (12)
(1/wZrr, wZece, (1/w)V and Ve remain finite,Zpc = / Py, (r)dS
Zt., — 0whenw — 0. Snp
It can be seen from (6) that the contribution from the vect . -
potential has been uplifted and hence preserved becaus(gul?smu“ng (11) into (9) we have
is separated from the contribution from the scalar potential Ne
and boosted at low frequencies. Consequently, low-frequency p(r) = Z Qn P (r)
breakdown does not appear in the numerical computation. n=1
Therefore, the frequency-normalized impedance matrix based Ne_l
on the loop-tree basis is no longer nearly singular and the = Z [Pa(r) = gnnp Prp (0)] Qn
matrix equation can be solved by direct inversion methods "fl
without any problem. =N'(r)-Q (13)
But when the matrix equation is solved by iterative SOlvera}hereN(r) andQ are vectors of lengtVp — 1 and
the iteration count is usually very large. As discussed in the
introduction, the iterative solvers are the preferred method for IN(r)] = Po(r) = gun, Py, (1)
many cases. Therefore, itis imperative that we improve the spec- —1 9 N1 (14)
tral property of the impedance matrix. To this end, a method is NPT L A
presented in the next section. Q)] =@n
n=1,2,..., Np—1. (15)

B. Impedance Matrix Transformation by Basis Rearrangeme'_nrtom the current continuity condition, we have

To study the spectral property of the impedance matrix in (8)
whenw — 0, we ignore the off-diagonal blocks to simplify the V- J(r) = iwp(r) (16)
discussion because they are smaller than the diagonal blOCkﬁ'ereJ and, here are surface current and surface charge den-
Then the problem can be divided into two parts: the electrostasllxt:Ies respegtively After using (5) and (13) in (16) and applying
part and the magnetostatic part, which can be solved indep ?J, (r) = 0 We.have
dently of each other. The magnetostatic pat£) converges L '
very fast, but the electrostatic pafi{) converges very slowly. V- JL(r)-Tc = iwN'(r) - Q. (17)
As we know, the matrix equation for electrostatic problem based
on pulse basis converges rapidly. That means the charge basising the inner product witl(r), we have
arising from the divergence of the current basis is the main cul-
prit for the matrix ill conditioning. We can transform the matrix (P(r), V- Jo(r)) - Ic = iw(P(r), N'(r)) - Q (18)
equation so that the resultant matrix reduces to that based on the .
pulse basis in the static limit. The electrostatic part needs to \glréereP(r) 's a vector of lengthV» — 1 such that

transformed by basis rearrangement. P(r)], = P.(r), n=1,2 ..., Np—1. (19)
Expanding the surface charge densities in terms of the pulse
basis set, we have In this manner{P(r), N'(r)) is a diagonal matrix and we can

rewrite (18) as
K I =iwQ (20)

whereK is a square matrix.

Np
pr) =" QuPu(r). )
n=1
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Alternatively, we can test (17) witlN(r) to obtain or rewritten as
(N(), V- IL(r)  To = iw(N(), N'(r)) - Q. (21) I 0 7[ -tz tze]l n
0 Kt_l} W’“ZL H 7 {Kl ) Q}
In this case{N(r), N*(r)) is nondiagonal and we can rewrite A cacr  webco
the above as — VL
= | twp (28)
K - Ic = iwQ (22) K
where As shall be shown later, the transformed matrix has a good spec-
tral property and the matrix equation converges very rapidly.
K' =(N(r), V- J&(r)) (23) For the loop-star basis, we use the same technique to trans-
Q =(N(r), N'(r)) - Q. (24) form the matrix equation and give the same form of the repre-

sentation. The transformed impedance matrices for the loop-star
But theQ’ above does not connect directly to the static problerdnd the loop-tree bases are the same and have the same spectral
Equations (20) and (22) also imply thRt has to scale as  Property.
whenw — 0, as is required in the discussion in the introduction.
By using (20) in (6), we have C. Inverting the Connection Matrix witt?(N) Operations

In implementing the matrix transformation as shown in (28),

L.z iwLLc} {IL} B .iVL we need to perform the multiplications (actions) of inverses
. _1 = iw (25) . . . .
wLer,  Cge Q K Ve of the connection matrix and its transpose with a vector. The
number of floating-point operations &(N?) for a direct in-
where version method and(N?) for an iterative method. Because
1 the complexity of the LF-MLFMA isD( V), the complexity of
Lyp=—2Z;11 these multiplications should be no worse tHafV). Luckily,
Zi” we can perform these multiplications with V) floating-point
Lic= o Zrc - K1, operations for the loop-tree basis. For the loop-star basis, they
. can always be rearranged into a loop-tree basis by some connec-
Ler = o K' - Zcop=Lic tion matrix and apply the same algorithm thereafter. We describe

the algorithm for the loop-tree basis below.
We rearrange the current basis and the pulse charge basis in
a specific order and partition the connection makiinto four

Czl =iwK'  Zee K1

the L, is the self-inductance matrix of the loop badisg,c
is the mutual inductance matrix between loop and nondivefarts as
gence-free bases aMity ¢ is the self capacitance matrix of the . ) I A, B I
nondivergence-free basis. Equation (25) has the same form as w {Q } =K- { 1} = {AQ BJ : {Icl} (29)
the equation for circuit problems [49].
After this matrix transformation, th€¢. block of the matrix whereI, contains the expansion coefficients of all the junc-
equation in (25) is exactly the same matrix equation as for tien bases and, contains the expansion coefficients of the
electrostatic case based on the pulse basis. The new form ofridst of the nondivergence-free current ba@s.has the same
matrix equation is well balanced in scaling with respecito dimension adc,. After this matrix partitioning, the inverse of
The scaling of the matrix is the connection matrix can be represented as [50], as shown in

) (30) at the bottom of the next page, where
[ ‘ L. .(O(1)) 'LWL_TiC(O(w)):| {L,(O(l))}
iwLerp(O(w))  Cpe(0(1)) )
_ l —VL(0()
K™ Ve(O(1)

ICQ 2

D,=B,- A, -A['-B; (31)

(26) is a small matrix. o
To calculate the multiplication (action) &~ with a vector,

. ) we need first to calculate the following:
When applying (25), we should further normalize the matrix

equation so that the diagonal elements of the i_mpedance ma- x;=A7" -y, (32)
trix have almost the same order of value. Equation (25) can be
further normalized as wherey; is a vector. Equation (32) gives the solution of the
4 4 following matrix equation:
om Lo ~Zrc K I o
_Nl N_l Q A X1 =Y1- (33)
K! . ZCL iweK? . ZCC Kt
4 The matrix partitioning method can also be applied to calcu-
— Vi i i ix. Sim-
_ iwt 27) late the inverse of the transpose of the connection matrix. Sim

—4+—1
Kt Ve ilarly, when we calculate the multiplication (action) W
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with a vector, we need to calculate the solution of the followinghere
matrix equation: . Top X Tpd

B |I‘e,b X I‘bd|

v, =

A x =y (34)

B 2A‘P'(I‘eb><ﬁi)
To avoid all zero elements in one column&f, Q- does notin- ‘
clude all the pulse bases associated with one current basis fuitdA; is the area of the triangle. Equation (35) can be rewritten
tion. If we studyA; carefully, we find that (33) and (34) canas

be solved recursively with one or several elements which can VE = (35, Ei““( )

be obtained directly for any arbitrary structureQ includes no
at least one pulse basis for each surface and each wire part ex- - _ Z / -E®(r)dS
cept the part that has the removed pulse basis. The number of

floating-point operations to solve (33) and (34) recursively is
obviouslyO(N). The matrixA, is very sparse. It has a max-
imum of 3 nonzero elements in one row or one column. There-

-y / E™ . (; x Vo li(r)) dS

fore, the memory requirement to store the nonzero elements in = Z / W, (r)f; - V x EX(r) dS

A; is O(N). Because the memory requirements for the rest of

the matrices and the number of floating-point operations for the . R inc

rest of the operations in the matrix partitions are|IV), the quz r)i; - H™(r) dS. (37)

total memory requirements, and the number of floating-point

operations for performing the multiplication of the inverse ofhere is no cancellation in (37) in the numerical computation.
the connection matrix with a vector and the multiplication of thé the incident wave is a plane wave and is represented as
inverse of the transpose of the connection matrix with a vectB**(r) = Eoc™™, (37) becomes

are allO(N).
If we use the basis rearrangement (22), the techniques de- V- —M“Z / < k x E™(r )) ds
scribed above can also be applied. In this chsgcontains the
expansion coefficients of the junction bases and the bases that inc
overlap the pulse basis set that has been remaQedshould kZ (i k FER(r) dS. (38)

satisfy the following rules: 1) it includes at least one pulse basis

function for each surface and each wire part and 2) if the pulééternatively, one can writ&*® = jw A — V¢, and notice
basis function which is removed by charge neutrality is not #tat the scalar potential term Ei* contributes to zero in (35).
the end of a wire or a chain of tree badi3; must include at

least one pulse basis on each side of the removed pulse basis. IV. NUMERICAL RESULTS
Figs. 2-5 show distributions of eigenvalues in the complex
1. EXCITATION VECTOR OF THELOOP BASIS plane for various cases. All eigenvalues are for diagonally pre-
Usually the excitation vector for the loop basis is calculategPnditioned impedance matrices. The test objects are either an
by isolated conducting sphere or two conducting spheres connected
by a wire. The radius of the sphere is 0.2 m and the length of
vE = —(3L(r), E™(r)). (35) the wire is 0.5 m. The radius of the wire is 5 mm. The surface

of the sphere is discretized by 72 triangular facets, and the wire

The evaluation of’ - by (35) over a loop may result in substanis discretized by 6 segments.

tial cancellation of the electric field vector and a subsequent losg™19- 2 shows the distribution of eigenvalues for the RWG basis
of precision when the loop dimension is very small compared & & high frequency of 300 MHz and at a very low frequency of
the wavelength. A method to solve this problem for the magné-KHz. There is a zero eigenvalue at the very-low-frequency
tostatic problem was presented in [42] and was applied to tf@se, which causes the matrix equation to be singular due to the

low-frequency problem of EFIE [43], [44]. As shown in Fig. 1 divergence operator in the scalar potential term. Therefore, the
the loop basis can be represented as RWG basis cannot be used at very low frequencies.

Fig. 3 shows the distribution of eigenvalues for loop-tree and
- Z JL(r) = Z f; x Vsly(r) (36) theloop-star bases when the frequency is 1 KHz. The eigenvalue
: : at the origin is removed but there is still a cluster of eigenvalues

__ . .__. ), - . __ . (30)
2
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Fig. 1. Aloop basis.
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Fig. 2. The distribution of eigenvalues in the complex plane for RWG basis GPNVErge much faster than the 0r|g|nal one.

various frequencies. (a) Frequency is 300 MHz. (b) Frequency is 1 KHz. Note Fig. 5 shows the distribution of eigenvalues for the loop-tree
basis with and without basis rearrangement at a high frequency
of 300 MHz. Unlike the RWG basis with no eigenvalues near
near the origin. Hence, the matrix equation from the loop-trélee origin, there is an eigenvalue cluster near the origin for the
or loop-star basis is still nearly singular. The iteration number @giginal loop-tree basis. Therefore, the basis rearrangement is

the existence of a zero eigenvalue at the origin.

very large when it is solved by an iterative solver.

Fig. 3. The distribution of eigenvalues in the complex plane for (a) loop-star
basis and (b) loop-tree basis. The frequeacy kHz. A magnification around
the origin indicates that the zero eigenvalue has been displaced from the origin.

eigenvalues of the quasi-electrostatic pdit-{) away from the
origin and makes them almost the same as the static case. The
quasi-electrostatic parZ¢¢) alone with basis rearrangement
converges very fast. Because the quasi-magnetostatic part
(Z11) also converges fast and off diagonal blocks.& and
Z 1) are much smaller than diagonal block,(, andZcc),
the basis rearrangement makes the transformed matrix equation

detrimental to the spectral property of the impedance matrix at
Fig. 4 shows the distribution of eigenvalues for the loop-trdégh frequencies. In addition, the loop-tree basis needs more
basis with and without basis rearrangement at a very lawatrix filling time than the RWG basis. Therefore, we switch

frequency of 1 KHz. The basis rearrangement moves tbeer to using the RWG basis when frequency gets high.
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Fig. 4. The distribution of eigenvalues for loop-tree basis in the complex plapgy. 5. The distribution of eigenvalues in the complex plane for loop-tree basis
at a low frequency of 1 kHz. (a) Without basis rearrangement. (b) With basis a high frequency of 300 MHz. (a) Without matrix rearrangement. (b) With
rearrangement (22). (c) With basis rearrangement (20). Note the different sca}ggrix rearrangement (22). (c) With matrix rearrangement (20).

of the figures. Magnification of the origin shows that rearrangement further

removes the eigenvalues from the origin.

1400 T T T v
f=1KHz s
Figs. 6 and 7 show the number of iterations used for dif- 1200F  Plane wave Tolerance = 1.E-4 1
ferent forms of matrix equations. To give a fair comparison, / -
the diagonal preconditioning is applied to all cases. The 1000 1
test object for Fig. 6 is a conducting sphere whose radiu: g
is 1 m. The sphere is illuminated by a plane wave at ¢§ 8%0°r ]
frequency of 1 KHz. The transformed matrix equation uses 2 —— Loop-tree
about 1/10 of the iterations of the original matrix equation & &° — »~ 77 Loop-star | .
for loop-tree and loop-star basis. Fig. 7 shows the numbe &
of iterations for a conducting plate. The plate is excited§ aoor 1
by a delta-gap source on the strip. The matrix equatior = | B o tggg;};ggmgp gg; ‘ |
based on loop-star basis is always divergent. The matri: T
equation based on loop-tree basis converges but with ver o i e
large number of iterations. However, the transformed matri> 0 500 1000 1500 2000 2500
equations have significantly reduced iteration counts. The Number of unknowns

plane wave excitation case gives almost the same results.

- . Fig. 6. Number of iterations versus the number of unknowns for different
To prove the capability of the proposed method and its ca| ses. The testing object is a conducting sphere whose radius is 1 m and is

bility from very low frequencies to electrodynamic frequencieuminated by a plane wave. The frequency is 1 KHz. The tolerance g 10
for complex structures, the input impedance of a Hertzian dipdh&gonal preconditioning is applied to all cases.

is calculated. The so-called Hertzian dipole comprises two con-

ducting spheres connected by a length of wire and fed at tigency is high. At very low frequencies, the Hertzian dipole re-
center of the wire. We first use the loop-tree basis with basis gembles a series LC network. The input impedance is
arrangement to improve the iteration convergence at very low 1

frequencies and then switch over to the RWG basis when fre- Zin = —iwl — — (39)
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Fig. 7. Number of iterations versus the number of unknowns for different @)
cases. The testing object is a conducting plate excited by a delta-gap source at the

arm. The frequency is 1 kHz. The tolerance is"10Diagonal preconditioning 2500
is applied to all cases. :

— Resistance
2000 b~ Reactance

wherelL is the inductance and' is the mutual capacitance be- 1500

tween the two spheres. Because the inductance of the wire &
very small, at very low frequencies, the input impedance is ag § 1000
proximated by 9
1 .§ L B~ F e e
Zin R ———,. 40 2
iwC (40) E’ obomv — ]
Fig. 8 shows the input impedance of the Hertzian dipole from : \\]\._ i : ,," i
Hz to 100 MHz. Fig. 8(a) shows the comparison of the reactanc 500 F--------- SR dmnfmonnes I

from plain CG, LF-MLFMA and the capacitor approximation at
very low frequencies. The loop-tree basis with basis rearrange ~1000
ment is used in the LF-MLFMA and the plain CG method.

Fig. 8(b) shows the input resistance and reactance from about
10-100 MHz. We use loop-tree basis at frequencies near 10 ()

MHz and then switch to the RWG basis. Only plain CG methdglg. 8. Input impedance of a Hertzian dipole from very low frequency to

is used in this frequency range. We observe that the EM physi&lgrowave frequency. (a) Input reactance at very low frequencies. Rearranged
. . __loop-tree basis is used. (b) Input resistance and reactance from the plain CG
is correctly captured by the solution method. Atlow frequenciegethod. Rearranged loop-tree and RWG bases are used separately at different

the Hertzian dipole correctly behaves like a capacitor, while quencies.
higher frequencies, it behaves like an LC tank circuit.

Fig. 9 shows the comparison of the input admittance of a wire
antenna mounted on a conducting plate between the numer
results and the experimental results done by Gétaal. [51].
The agreement is very good. The time dependence is chose
¢t here to meet the convention in [51].

|
t |
3 3
| |
0.02 0.04 0.06 0.08 0.1
Frequency (GHz)

l[1;341sformation does not increase the computational complexity.
The memory requirements and the number of floating-point op-
B&tions still scale a®(N) as in LF-MLFMA.

The matrix transformation here can also be viewed as a pre-
conditioning procedure whereby the convergence and the spec-
tral property of the original matrix has been changed by the ma-

The matrix equations of EFIE at very low frequencies basddx transformation. The important result here is that the appli-
on the loop-tree basis and the loop-star basis are transforneation of this matrix transformation can be effectedV)
by a connection matrix, which represents a rearrangementaopierations with a minimal cost. Therefore, this preconditioning
the basis. The new representation of the matrix equations gancedure can be combined with the LF-MLFMA that performs
be solved efficiently by iterative solvers. It converges fast armlmatrix—vector product i€(N) operations, without increase
no low-frequency break-down occurs in the numerical compthe overall complexity of the solution method. This work has
tation. A method to perform the multiplication of the inverses dfeen incorporated into LF-MLFMA to solve large problems at
the connection matrix and its transpose with a vector with onlery low frequencies. The LF-MLFMA can also be merged with
O(N) floating-point operations is also developed. When thihe dynamic MLFMA to solve large-scale problems all the way
LF-MLFMA is applied to solve large-scale problems, the matriffom zero frequency to electrodynamic frequencies.

V. CONCLUSION
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Fig. 9.

Input admittance of a wire antenna mounted on a conducting plate. (a
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(15]
(16]

(17]

(18]

(19]

(20]
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Geometry of the wire antenna mounted on a conducting plate. (b) Comparison
of the input admittance between numerical results and experimental results [51[]29]
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