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Integral Equation Solution of Maxwell’s Equations
from Zero Frequency to Microwave Frequencies
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Abstract—We develop a new method to precondition the matrix
equation resulting from applying the method of moments (MoM)
to the electric field integral equation (EFIE). This preconditioning
method is based on first applying the loop-tree or loop-star decom-
position of the currents to arrive at a Helmholtz decomposition of
the unknown currents. However, the MoM matrix thus obtained
still cannot be solved efficiently by iterative solvers due to the large
number of iterations required. We propose a permutation of the
loop-tree or loop-star currents by a connection matrix, to arrive
at a current basis that yields a MoM matrix that can be solved
efficiently by iterative solvers. Consequently, dramatic reduction
in iteration count has been observed. The various steps can be re-
garded as a rearrangement of the basis functions to arrive at the
MoM matrix. Therefore, they are related to the original MoM ma-
trix by matrix transformation, where the transformation requires
the inverse of the connection matrix. We have also developed a fast
method to invert the connection matrix so that the complexity of
the preconditioning procedure is of ( ) and, hence, can be used
in fast solvers such as the low-frequency multilevel fast multipole
algorithm (LF-MLFMA). This procedure also makes viable the use
of fast solvers such as MLFMA to seek the iterative solutions of
Maxwell’s equations from zero frequency to microwave frequen-
cies.

Index Terms—Convergence improvement, loop-tree basis, low
frequency, surface integral equation.

I. INTRODUCTION

DUE to the rapidly increasing capability of computers,
computational electromagnetics (EMs) is becoming in-

creasingly important. This is partly due to the predictive power
of Maxwell’s theory as proven over the years—Maxwell’s
theory can predict the design performances or experimental out-
comes if Maxwell’s equations are solved correctly. Moreover,
Maxwell’s theory, which governs the basic principle behind the
manipulation of electricity, is also extremely pertinent in many
electrical engineering and scientific technologies. Examples of
these technologies are radar, remote sensing, geoelectromag-
netics, bioelectromagnetics, antennas, wireless communication,
optics, high-frequency circuits, etc. Furthermore, Maxwell’s
theory is valid over a broad range of frequencies spanning static
to optics and over a large dynamic range of length scales from
subatomic to intergalactic length scales. In view of this, there
is always a quest to solve Maxwell’s equations accurately from
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first principles using numerical methods so that increasingly
complex structures can be handled.

After the establishment of Maxwell’s theory in 1864 [1],
[52], the early EMs analyzes were associated with simple
shapes such as spheres, cylinders, planes, etc. [2]–[8]. As the
scientific and engineering demand for sophistication rose,
solutions to more complex geometries were needed. As a result,
approximate techniques were developed to solve Maxwell’s
equations. One can view circuit theory as a reduced form of
Maxwell’s theory in the low frequency limit where approximate
analyzes of many complex geometries have been obtained with
astounding success. High-frequency ray theory, diffraction
theory, and perturbation theory were developed to provide
approximate solutions to Maxwell’s theory [9]–[17].1 With
the advent of computer technology in the sixties, numerical
methods such as finite-difference method [19], finite-element
method [20], and method of moments (MoM) [21], [22] were
developed to allow more versatility and accuracy in the solution
methods. But for many years, numerical methods could only
solve relatively small problems involving a small number of
unknowns. However, the recent advances in fast computational
algorithms and computer hardware has allowed numerical
methods to solve problems of unprecedented sizes involving
millions of unknowns [23].

For a closed structure, the surface intergral equation formu-
lations may suffer from the interior resonance problems. The
uniqueness of solution of electric field integral equation (EFIE)
and magnetic field integral equation (MFIE) is not guaranteed at
these interior resonant frequencies [18], [24], [53]. Many reme-
dies have been proposed, such as the combined field integral
equation (CFIE) method [25], [26], the extended boundary con-
dition method [27], [28], the combining interior and exterior
field expression method [29], the combined-source method [30],
and the dual-surface formulation method [31].

However, despite all these advances, there remain many
unsolved problems in computational EMs. For example, even
though fast Laplace solvers [32], [33] and fast solvers for
Helmholtz and related electrodynamic equations exist [34],
[35] there does not exist a method that can solve Maxwell’s
equations rapidly all the way from zero frequency to microwave
frequencies. This is an important problem, because there is
a pressing need to simulate EM phenomena in circuits and
antennas, where the simulated objects or parts can be a tiny
fraction of wavelength to a sizable fraction of a wavelength.
Therefore, a Maxwell solver should be capable of simulating
EM fields corresponding to very long wavelength as well as

1These references are by no means complete; more references can be found
in [18], [53].

0018–926X/00$10.00 © 2000 IEEE



1636 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 48, NO. 10, OCTOBER 2000

short wavelength compared to the size of the simulated object.
In this manner, fine details can be simulated accurately, e.g.,
in circuit components such as inductors and capacitors. In an
antenna feed, fine features often dictate the input impedance of
the antenna. Such a situation also prevails in geoelectromag-
netics [36], where very long wavelength is used to enhance
the penetration depth of geophysical probing tools, and the
dimensions of the tools and the feature being probed are a
small fraction of a wavelength. In addition, electrodynamic
phenomena, which are due to the finite wavelength effect,
e.g., in high-speed or high-frequency circuits, and resonance
behavior of antennas need be simulated accurately.

However, numerical solution of Maxwell’s equations at low
frequencies is plagued with numerous problems. This is the con-
sequence of the decoupling of electric and magnetic fields in
Maxwell’s equations right at zero frequency.2 Also, the electric
and magnetic fields become curl free at zero frequency outside
the source region

(1)

A harmonic time dependence is assumed here and is ap-
plied throughout the paper.

This decoupling of the electrostatic and magnetostatic
fields manifests itself in the current by separating itself into a
solenoidal (divergence-free) component and a complementary,
irrotational (nonsolenoidal or curl-free) component. At zero
frequency, the two currents decouple completely: The diver-
gence-free current produces only a magnetic field, while the
irrotational current produces only an electric field. Therefore,
the current undergoes a natural Helmholtz decomposition.

Notice from the above that the irrotational current requires a
divergence that goes to zero with vanishing frequency so as to
produce a physically finite charge,viz. .
Hence, , where the irrotational component,

vanishes with linearly as . Notice that no such
frequency scaling is required of the solenoidal component.

Because of the discrepant frequency dependence of the
solenoidal and irrotational components of the current when
tends to zero, a working numerical method has to include this
Helmholtz decomposition and ascribe the requisite frequency
dependencies to the solenoidal and irrotational components of
the current. This decomposition is achieved by the loop-tree
and the loop-star method [37], [38].

In the potential method of solving Maxwell’s equation
. The contribution from the charge is related to

the scalar potential , contribution of the field under a Lorentz
gauge, while the contribution from the currentis related to the
vector potential , contribution of the electric field. At very low
frequencies, when the electric field integral equation (EFIE) is
solved by the straightforward MoM with the rooftop basis or
Rao–Wilton–Glisson (RWG) basis [37], the contribution from
the vector potential to the impedance matrix is much smaller
than the contribution from the scalar potential due to the lack of

2The complete decoupling does not exist in a conductive medium, however,
and we will treat this situation in a later paper.

consideration of the frequency scaling of the irrotational com-
ponent of the current as mentioned above. This effect can be
gleaned from studying the following integral representation of
the electric field:

(2)

Due to the finite machine precision, the contribution from the
vector potential (the first term) will be lost during the numer-
ical process when . Furthermore, the scalar potential part
in the above integral operator has a null space because of its di-
vergence operator. This makes the impedance matrix nearly sin-
gular and difficult to invert at low frequencies [37], [38]. But the
vector potential term may be as important as the scalar potential
term though it produces an electric field smaller at very
low frequencies. However, it generates a nonvanishing magnetic
field when . The loss of the contribution from the vector
potential makes the solution inaccurate [37], [38]. Physically,
this corresponds to the problem separating into an inductive part
and a capacitive part. However, the inductive effect and capaci-
tive effect can be equally important at low frequencies such as in
an LC tank circuit. Therefore, a correct numerical method needs
to preserve the inductive phenomenon in addition to the capac-
itive phenomenon when the frequency goes to zero.

These problems, as mentioned above, are overcome by intro-
ducing the loop-star basis and loop-tree basis [37]–[44]. These
bases separate the contributions from the vector potential and
the scalar potential in the impedance matrix. In this manner, the
contribution from the vector potential will not be swamped by
that from the scalar potential after an appropriate frequency nor-
malization. Therefore, the impedance matrix is no longer nearly
singular, the physics of the inductive phenomenon and capac-
itive phenomenon is captured correctly and the solutions are
much more accurate.

The use of the loop-star or the loop-tree basis, followed by
frequency normalization, only solves the problem of singular
matrices partially at very low frequencies. The matrix, however,
is still ill-conditioned. If an iterative solver is used, the iteration
count is usually very large and may even diverge for some prob-
lems.

In many cases, the matrix equation has to be solved by
an iterative solver. For example, the only known path to
large scale computing involving millions of unknowns is via
iterative solvers. Direct inversion methods cannot be used due
to the memory and central processing unit
(CPU) time requirements. In comparison, the low-frequency
multilevel fast multipole algorithm (LF-MLFMA) [45] has a
memory requirement of and the number of floating-point
operations per iteration is of . But the LF-MLFMA is
based on iterative solvers. Also there are cases where iterative
solvers are preferred: for example, when a sweep of frequencies
or a sweep of incident wave angles for plane wave excitation
is needed, an iterative solver has an advantage because the
solution at each step of the sweep is a good initial guess for
the next step. Therefore, we cannot avoid the use of iterative
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solvers in many cases and the convergence problem of the
matrix equation based on the loop-star and loop-tree basis
needs to be overcome.

In this paper, we develop a method to transform the matrix
equation obtained by the loop-star or loop-tree method. The
new impedance matrix thus obtained has a very good spectral
property. When the new matrix equation is solved by iterative
solvers, it converges much faster than the original one. This
transformation of the matrix equation is motivated by noticing
that for electrostatic problems, where Laplace’s equation is
solved, no convergence problem has been observed. Therefore,
a connection matrix is developed to rearrange the basis func-
tions associated with the loop-tree or loop-star method so that
they reduce to the electrostatic case at zero frequency.

The rearrangement of the basis can be viewed as a precondi-
tioner via a change of basis and, hence, is equivalent to a matrix
transformation of the original matrix equation. This transforma-
tion of the matrix requires the inverse of the connection matrix.
Hence, for the loop-tree basis, we have developed a method to
perform the multiplication (action) of the inverses of the con-
nection matrix (or its transpose) with a vector in only op-
erations, where is the number of unknowns. Consequently,
the total number of floating-point operations for the rearrange-
ment scales as . This makes viable the use of this method
together with LF-MLFMA to solve large-scale problems since
the computational complexity of LF-MLFMA is of .

A note is in order on the fast multipole algorithm—its form
as reported in the literature [23], [34], [35], breaks down at low
frequencies as well. However, a frequency renormalized ver-
sion can be developed that can give reduced computational com-
plexity at low frequencies [45]. Therefore, a fast algorithm for
a matrix-vector product now exists all the way from zero fre-
quency to microwave frequencies.

II. GENERAL EQUATIONS

In this section, we first give a brief review of the original ma-
trix equation for a system of conducting bodies interconnected
by wires based on the loop-star and loop-tree basis. After il-
lustrating the problem with the original equations, we present a
method to transform the matrix equation to obtain a good con-
vergence property. Then we discuss a method to perform the
multiplication (action) of the inverses of the connection matrix
and its transpose with a vector efficiently for the tree basis. The
details are shown in the following subsections.

A. Original Matrix Equation with Loop-Tree Basis

The EFIE of three-dimensional perfectly conducting bodies
interconnected by wires can be written as

(3)

where represents the incident electric fields and
is an arbitrary tangential unit vector on the surface. Using the
loop-tree basis designed for low-frequency problems

(4)

where and are, respectively, divergence-free
loop basis and nondivergence-free tree basis defined in
[37]–[44]. is a surface-loop basis, a wire-loop basis,
or a wire-surface-loop basis. is a surface-tree basis, a
wire-tree basis, or a wire-surface-junction basis as defined in
[46]–[48]. Equation (4) can be rewritten in the matrix form as

(5)

where , , , are column vectors containing
, , , and , respectively.

The first term in (5) is divergence free, but (5) does not
represent a complete Helmholtz decomposition because the
second term is not curl free. However, as shall be shown, a
complete Helmholtz decomposition is not mandatory to solve
this problem as long as the second term always has a component
in the curl free-space. By substituting (5) into (3), testing with

and , and applying , we have the
matrix equation

(6)

where

In the above,

Equation (6) is the matrix equation based on the loop-tree basis
for solving very-low-frequency problems.

When the frequency is very low, the elements of the
impedance matrix, the excitation vector and the results scale
with respect to the frequencyas follows:

(7)

where the expressions in the brackets are the scaling properties
of the matrix elements at very low frequencies or when .
The matrix equation in (7) is unbalanced and ill conditioned
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when . This imbalance stems from the fact that we use an
electric field integral equation, but the inductive part produces
dominantly a magnetic field, with a subdominant electric field.
Hence, the upper left hand block of the matrix becomes sub-
dominant in an electric field equation. To remedy this, (7) can
be frequency normalized in a balanced manner as

(8)

We have also normalized the current associated with the charge
, with to force it to vanish with vanishing frequency as

mandated by the discussion in the introduction. Consequently,
, , and remain finite,
when .

It can be seen from (6) that the contribution from the vector
potential has been uplifted and hence preserved because it
is separated from the contribution from the scalar potential
and boosted at low frequencies. Consequently, low-frequency
breakdown does not appear in the numerical computation.
Therefore, the frequency-normalized impedance matrix based
on the loop-tree basis is no longer nearly singular and the
matrix equation can be solved by direct inversion methods
without any problem.

But when the matrix equation is solved by iterative solvers,
the iteration count is usually very large. As discussed in the
introduction, the iterative solvers are the preferred method for
many cases. Therefore, it is imperative that we improve the spec-
tral property of the impedance matrix. To this end, a method is
presented in the next section.

B. Impedance Matrix Transformation by Basis Rearrangement

To study the spectral property of the impedance matrix in (8)
when , we ignore the off-diagonal blocks to simplify the
discussion because they are smaller than the diagonal blocks.
Then the problem can be divided into two parts: the electrostatic
part and the magnetostatic part, which can be solved indepen-
dently of each other. The magnetostatic part () converges
very fast, but the electrostatic part ( ) converges very slowly.
As we know, the matrix equation for electrostatic problem based
on pulse basis converges rapidly. That means the charge basis
arising from the divergence of the current basis is the main cul-
prit for the matrix ill conditioning. We can transform the matrix
equation so that the resultant matrix reduces to that based on the
pulse basis in the static limit. The electrostatic part needs to be
transformed by basis rearrangement.

Expanding the surface charge densities in terms of the pulse
basis set, we have

(9)

For a charge neutral system, we must have

(10)

Then

(11)

where

(12)

Substituting (11) into (9) we have

(13)

where and are vectors of length and

(14)

(15)

From the current continuity condition, we have

(16)

where and here are surface current and surface charge den-
sities, respectively. After using (5) and (13) in (16) and applying

, we have

(17)

Taking the inner product with , we have

(18)

where is a vector of length such that

(19)

In this manner, is a diagonal matrix and we can
rewrite (18) as

(20)

where is a square matrix.



ZHAO AND CHEW: INTEGRAL EQUATION SOLUTION OF MAXWELL’S EQUATIONS 1639

Alternatively, we can test (17) with to obtain

(21)

In this case, is nondiagonal and we can rewrite
the above as

(22)

where

(23)

(24)

But the above does not connect directly to the static problem.
Equations (20) and (22) also imply that has to scale as

when , as is required in the discussion in the introduction.
By using (20) in (6), we have

(25)

where

the is the self-inductance matrix of the loop basis,
is the mutual inductance matrix between loop and nondiver-
gence-free bases and is the self capacitance matrix of the
nondivergence-free basis. Equation (25) has the same form as
the equation for circuit problems [49].

After this matrix transformation, the block of the matrix
equation in (25) is exactly the same matrix equation as for the
electrostatic case based on the pulse basis. The new form of the
matrix equation is well balanced in scaling with respect to.
The scaling of the matrix is

(26)

When applying (25), we should further normalize the matrix
equation so that the diagonal elements of the impedance ma-
trix have almost the same order of value. Equation (25) can be
further normalized as

(27)

or rewritten as

(28)

As shall be shown later, the transformed matrix has a good spec-
tral property and the matrix equation converges very rapidly.

For the loop-star basis, we use the same technique to trans-
form the matrix equation and give the same form of the repre-
sentation. The transformed impedance matrices for the loop-star
and the loop-tree bases are the same and have the same spectral
property.

C. Inverting the Connection Matrix with Operations

In implementing the matrix transformation as shown in (28),
we need to perform the multiplications (actions) of inverses
of the connection matrix and its transpose with a vector. The
number of floating-point operations is for a direct in-
version method and for an iterative method. Because
the complexity of the LF-MLFMA is , the complexity of
these multiplications should be no worse than . Luckily,
we can perform these multiplications with floating-point
operations for the loop-tree basis. For the loop-star basis, they
can always be rearranged into a loop-tree basis by some connec-
tion matrix and apply the same algorithm thereafter. We describe
the algorithm for the loop-tree basis below.

We rearrange the current basis and the pulse charge basis in
a specific order and partition the connection matrixinto four
parts as

(29)

where contains the expansion coefficients of all the junc-
tion bases and contains the expansion coefficients of the
rest of the nondivergence-free current bases.has the same
dimension as . After this matrix partitioning, the inverse of
the connection matrix can be represented as [50], as shown in
(30) at the bottom of the next page, where

(31)

is a small matrix.
To calculate the multiplication (action) of with a vector,

we need first to calculate the following:

(32)

where is a vector. Equation (32) gives the solution of the
following matrix equation:

(33)

The matrix partitioning method can also be applied to calcu-
late the inverse of the transpose of the connection matrix. Sim-

ilarly, when we calculate the multiplication (action) of
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with a vector, we need to calculate the solution of the following
matrix equation:

(34)

To avoid all zero elements in one column of , does not in-
clude all the pulse bases associated with one current basis func-
tion. If we study carefully, we find that (33) and (34) can
be solved recursively with one or several elements which can
be obtained directly for any arbitrary structure if includes
at least one pulse basis for each surface and each wire part ex-
cept the part that has the removed pulse basis. The number of
floating-point operations to solve (33) and (34) recursively is
obviously . The matrix is very sparse. It has a max-
imum of 3 nonzero elements in one row or one column. There-
fore, the memory requirement to store the nonzero elements in

is . Because the memory requirements for the rest of
the matrices and the number of floating-point operations for the
rest of the operations in the matrix partitions are all , the
total memory requirements, and the number of floating-point
operations for performing the multiplication of the inverse of
the connection matrix with a vector and the multiplication of the
inverse of the transpose of the connection matrix with a vector
are all .

If we use the basis rearrangement (22), the techniques de-
scribed above can also be applied. In this case,contains the
expansion coefficients of the junction bases and the bases that
overlap the pulse basis set that has been removed,should
satisfy the following rules: 1) it includes at least one pulse basis
function for each surface and each wire part and 2) if the pulse
basis function which is removed by charge neutrality is not at
the end of a wire or a chain of tree basis, must include at
least one pulse basis on each side of the removed pulse basis.

III. EXCITATION VECTOR OF THELOOPBASIS

Usually the excitation vector for the loop basis is calculated
by

(35)

The evaluation of by (35) over a loop may result in substan-
tial cancellation of the electric field vector and a subsequent loss
of precision when the loop dimension is very small compared to
the wavelength. A method to solve this problem for the magne-
tostatic problem was presented in [42] and was applied to the
low-frequency problem of EFIE [43], [44]. As shown in Fig. 1,
the loop basis can be represented as

(36)

where

and is the area of the triangle. Equation (35) can be rewritten
as

(37)

There is no cancellation in (37) in the numerical computation.
If the incident wave is a plane wave and is represented as

, (37) becomes

(38)

Alternatively, one can write , and notice
that the scalar potential term in contributes to zero in (35).

IV. NUMERICAL RESULTS

Figs. 2–5 show distributions of eigenvalues in the complex
plane for various cases. All eigenvalues are for diagonally pre-
conditioned impedance matrices. The test objects are either an
isolated conducting sphere or two conducting spheres connected
by a wire. The radius of the sphere is 0.2 m and the length of
the wire is 0.5 m. The radius of the wire is 5 mm. The surface
of the sphere is discretized by 72 triangular facets, and the wire
is discretized by 6 segments.

Fig. 2 shows the distribution of eigenvalues for the RWG basis
at a high frequency of 300 MHz and at a very low frequency of
1 KHz. There is a zero eigenvalue at the very-low-frequency
case, which causes the matrix equation to be singular due to the
divergence operator in the scalar potential term. Therefore, the
RWG basis cannot be used at very low frequencies.

Fig. 3 shows the distribution of eigenvalues for loop-tree and
the loop-star bases when the frequency is 1 KHz. The eigenvalue
at the origin is removed but there is still a cluster of eigenvalues

(30)
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Fig. 1. A loop basis.

(a)

(b)

Fig. 2. The distribution of eigenvalues in the complex plane for RWG basis at
various frequencies. (a) Frequency is 300 MHz. (b) Frequency is 1 KHz. Note
the existence of a zero eigenvalue at the origin.

near the origin. Hence, the matrix equation from the loop-tree
or loop-star basis is still nearly singular. The iteration number is
very large when it is solved by an iterative solver.

Fig. 4 shows the distribution of eigenvalues for the loop-tree
basis with and without basis rearrangement at a very low
frequency of 1 KHz. The basis rearrangement moves the

(a)

(b)

Fig. 3. The distribution of eigenvalues in the complex plane for (a) loop-star
basis and (b) loop-tree basis. The frequency= 1 kHz. A magnification around
the origin indicates that the zero eigenvalue has been displaced from the origin.

eigenvalues of the quasi-electrostatic part ( ) away from the
origin and makes them almost the same as the static case. The
quasi-electrostatic part ( ) alone with basis rearrangement
converges very fast. Because the quasi-magnetostatic part
( ) also converges fast and off diagonal blocks ( and

) are much smaller than diagonal blocks ( and ),
the basis rearrangement makes the transformed matrix equation
converge much faster than the original one.

Fig. 5 shows the distribution of eigenvalues for the loop-tree
basis with and without basis rearrangement at a high frequency
of 300 MHz. Unlike the RWG basis with no eigenvalues near
the origin, there is an eigenvalue cluster near the origin for the
original loop-tree basis. Therefore, the basis rearrangement is
detrimental to the spectral property of the impedance matrix at
high frequencies. In addition, the loop-tree basis needs more
matrix filling time than the RWG basis. Therefore, we switch
over to using the RWG basis when frequency gets high.
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(a)

(b)

Fig. 4. The distribution of eigenvalues for loop-tree basis in the complex plane
at a low frequency of 1 kHz. (a) Without basis rearrangement. (b) With basis
rearrangement (22). (c) With basis rearrangement (20). Note the different scales
of the figures. Magnification of the origin shows that rearrangement further
removes the eigenvalues from the origin.

Figs. 6 and 7 show the number of iterations used for dif-
ferent forms of matrix equations. To give a fair comparison,
the diagonal preconditioning is applied to all cases. The
test object for Fig. 6 is a conducting sphere whose radius
is 1 m. The sphere is illuminated by a plane wave at a
frequency of 1 KHz. The transformed matrix equation uses
about 1/10 of the iterations of the original matrix equation
for loop-tree and loop-star basis. Fig. 7 shows the number
of iterations for a conducting plate. The plate is excited
by a delta-gap source on the strip. The matrix equation
based on loop-star basis is always divergent. The matrix
equation based on loop-tree basis converges but with very
large number of iterations. However, the transformed matrix
equations have significantly reduced iteration counts. The
plane wave excitation case gives almost the same results.

To prove the capability of the proposed method and its capa-
bility from very low frequencies to electrodynamic frequencies
for complex structures, the input impedance of a Hertzian dipole
is calculated. The so-called Hertzian dipole comprises two con-
ducting spheres connected by a length of wire and fed at the
center of the wire. We first use the loop-tree basis with basis re-
arrangement to improve the iteration convergence at very low
frequencies and then switch over to the RWG basis when fre-

(a)

(b)

Fig. 5. The distribution of eigenvalues in the complex plane for loop-tree basis
at a high frequency of 300 MHz. (a) Without matrix rearrangement. (b) With
matrix rearrangement (22). (c) With matrix rearrangement (20).

Fig. 6. Number of iterations versus the number of unknowns for different
cases. The testing object is a conducting sphere whose radius is 1 m and is
illuminated by a plane wave. The frequency is 1 KHz. The tolerance is 10.
Diagonal preconditioning is applied to all cases.

quency is high. At very low frequencies, the Hertzian dipole re-
sembles a series LC network. The input impedance is

(39)
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Fig. 7. Number of iterations versus the number of unknowns for different
cases. The testing object is a conducting plate excited by a delta-gap source at the
arm. The frequency is 1 kHz. The tolerance is 10. Diagonal preconditioning
is applied to all cases.

where is the inductance and is the mutual capacitance be-
tween the two spheres. Because the inductance of the wire is
very small, at very low frequencies, the input impedance is ap-
proximated by

(40)

Fig. 8 shows the input impedance of the Hertzian dipole from 1
Hz to 100 MHz. Fig. 8(a) shows the comparison of the reactance
from plain CG, LF-MLFMA and the capacitor approximation at
very low frequencies. The loop-tree basis with basis rearrange-
ment is used in the LF-MLFMA and the plain CG method.
Fig. 8(b) shows the input resistance and reactance from about
10–100 MHz. We use loop-tree basis at frequencies near 10
MHz and then switch to the RWG basis. Only plain CG method
is used in this frequency range. We observe that the EM physics
is correctly captured by the solution method. At low frequencies,
the Hertzian dipole correctly behaves like a capacitor, while at
higher frequencies, it behaves like an LC tank circuit.

Fig. 9 shows the comparison of the input admittance of a wire
antenna mounted on a conducting plate between the numerical
results and the experimental results done by Chaoet al. [51].
The agreement is very good. The time dependence is chosen as

here to meet the convention in [51].

V. CONCLUSION

The matrix equations of EFIE at very low frequencies based
on the loop-tree basis and the loop-star basis are transformed
by a connection matrix, which represents a rearrangement of
the basis. The new representation of the matrix equations can
be solved efficiently by iterative solvers. It converges fast and
no low-frequency break-down occurs in the numerical compu-
tation. A method to perform the multiplication of the inverses of
the connection matrix and its transpose with a vector with only

floating-point operations is also developed. When the
LF-MLFMA is applied to solve large-scale problems, the matrix

(a)

(b)

Fig. 8. Input impedance of a Hertzian dipole from very low frequency to
microwave frequency. (a) Input reactance at very low frequencies. Rearranged
loop-tree basis is used. (b) Input resistance and reactance from the plain CG
method. Rearranged loop-tree and RWG bases are used separately at different
frequencies.

transformation does not increase the computational complexity.
The memory requirements and the number of floating-point op-
erations still scale as as in LF-MLFMA.

The matrix transformation here can also be viewed as a pre-
conditioning procedure whereby the convergence and the spec-
tral property of the original matrix has been changed by the ma-
trix transformation. The important result here is that the appli-
cation of this matrix transformation can be effected in
operations with a minimal cost. Therefore, this preconditioning
procedure can be combined with the LF-MLFMA that performs
a matrix–vector product in operations, without increase
the overall complexity of the solution method. This work has
been incorporated into LF-MLFMA to solve large problems at
very low frequencies. The LF-MLFMA can also be merged with
the dynamic MLFMA to solve large-scale problems all the way
from zero frequency to electrodynamic frequencies.
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(a)

(b)

Fig. 9. Input admittance of a wire antenna mounted on a conducting plate. (a)
Geometry of the wire antenna mounted on a conducting plate. (b) Comparison
of the input admittance between numerical results and experimental results [51].
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