2000 IEEE.
Personal use of this material is
permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for
creating new collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the
IEEE.
IEEE Transactions on Antennas and Propagation
Volume 48 Number 11, November 2000
Table of Contents for this issue
Complete paper in PDF format
Design of a 5: 1
Bandwidth Stripline Notch Array from FDTD Analysis
Mark Kragalott, Member, IEEE William R. Pickles, Member, IEEE and Michael S. Kluskens Member, IEEE
Page 1733.
Abstract:
A 5: 1 bandwidth stripline notch array antenna
is designed from parametric investigations of flare and feed dimensions. The
finite-difference time-domain (FDTD) method is employed to perform the parametric
studies. Both linear and planar single-polarization arrays are considered
with half-wavelength element spacing at the highest frequency. The linear-array
elements depend upon E-plane element mutual coupling
to achieve wideband behavior. Edge elements, which cannot benefit from full E-plane coupling, are shown to maintain good transmit performance
with the application of amplitude tapering. The planar array is shown to have
a scannability (active VSWR {<}2) averaging
51° off broadside in the
E-plane and exceeding 60° in the H-plane. As an infinite planar array, the antenna is predicted
to have a bandwidth exceeding 7: 1 on broadside. Measurements
are in good agreement with the computations.
References
-
P. J. Gibson, "The Vivaldi antenna", in European Mic. Conf. , 1979, pp. 101-105.
-
M. J. Povinelli, "A planar broadband flared microstrip slot antenna", IEEE Trans. Antennas Propagat., vol. 35, pp.
968-972, Aug. 1988.
-
R. Janaswamy, "An accurate moment method model for the tapered slot antenna", IEEE Trans. Antennas Propagat., vol. 37, pp. 1523-1528,
Dec. 1989.
-
D. H. Schaubert, J. A. Aas, M. E. Cooley and N. E. Burris, "Moment method analysis of infinite stripline-fed tapered slot antenna arrays with a ground plane", IEEE Trans.
Antennas Propagat., vol. 42, pp. 1161-1166, Aug. 1994.
-
E. Thiele and A. Taflove, "FDTD analysis of vivaldi flared horn antennas and arrays", IEEE Trans. Antennas Propagat., vol. 42, pp.
633-641, May 1994.
-
D. T. McGrath, "Periodic structure analysis using a hybrid finite element method", Radio Science, vol. 31, pp. 1173
-1179, Sept. 1996.
-
M. Gustavsson, J. Sanford and M. Sundberg, "An analysis approach for large planar arrays using a bound FDTD model", in URSI Int. Symp. Dig., July 1995, p. 5.
-
K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media", IEEE Trans.
Antennas Propagat., vol. 14, pp. 302-307, May 1966.
-
R. J. Luebbers, User's Manual for XFDTD,
State College, PA 16805: REMCOM, Inc., July 1994.
-
B. Scheik and J. Kohler, "An improved microstrip-to-microslot transition", IEEE Trans. Microwave Theory Tech., pp.
231-233, Apr. 1976
.
-
A. K. Lai, A. L. Sinopoli and W. D. Burnside, "A novel antenna for ultra-wide-band applications", IEEE Trans. Antennas Propagat., vol. 40, pp. 755-760,
July 1992.
-
W. Wasylkiwskyj and W. K. Kahn, "Element patterns and active reflection coefficient in uniform phased arrays", IEEE Trans. Antennas Propagat., vol. 22, pp. 207-212, Mar. 1974.
-
R. C. Hansen, Microwave Scanning Antennas: Array Theory and Practice, New York: Academic, 1966,vol. 2.
-
K. L. Shlager, G. S. Smith and J. G. Maloney, "Optimization of bow-tie antennas for pulse radiation", IEEE Trans. Antennas Propagat., vol. 42, pp. 975-982,
July 1994.