2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 11, November 2000

Table of Contents for this issue

Complete paper in PDF format

Design of a 5: 1 Bandwidth Stripline Notch Array from FDTD Analysis

Mark Kragalott, Member, IEEE William R. Pickles, Member, IEEE and Michael S. Kluskens Member, IEEE

Page 1733.

Abstract:

A 5: 1 bandwidth stripline notch array antenna is designed from parametric investigations of flare and feed dimensions. The finite-difference time-domain (FDTD) method is employed to perform the parametric studies. Both linear and planar single-polarization arrays are considered with half-wavelength element spacing at the highest frequency. The linear-array elements depend upon E-plane element mutual coupling to achieve wideband behavior. Edge elements, which cannot benefit from full E-plane coupling, are shown to maintain good transmit performance with the application of amplitude tapering. The planar array is shown to have a scannability (active VSWR {<}2) averaging 51° off broadside in the E-plane and exceeding 60° in the H-plane. As an infinite planar array, the antenna is predicted to have a bandwidth exceeding 7: 1 on broadside. Measurements are in good agreement with the computations.

References

  1. P. J. Gibson, "The Vivaldi antenna", in European Mic. Conf. , 1979, pp.  101-105. 
  2. M. J. Povinelli, "A planar broadband flared microstrip slot antenna", IEEE Trans. Antennas Propagat., vol. 35, pp.  968-972, Aug.  1988.
  3. R. Janaswamy, "An accurate moment method model for the tapered slot antenna", IEEE Trans. Antennas Propagat., vol. 37, pp.  1523-1528,  Dec.  1989.
  4. D. H. Schaubert, J. A. Aas, M. E. Cooley and N. E. Burris, "Moment method analysis of infinite stripline-fed tapered slot antenna arrays with a ground plane", IEEE Trans. Antennas Propagat., vol. 42, pp.  1161-1166, Aug.  1994.
  5. E. Thiele and A. Taflove, "FDTD analysis of vivaldi flared horn antennas and arrays", IEEE Trans. Antennas Propagat., vol. 42, pp.  633-641, May  1994.
  6. D. T. McGrath, "Periodic structure analysis using a hybrid finite element method", Radio Science, vol. 31, pp.  1173 -1179, Sept.  1996.
  7. M. Gustavsson, J. Sanford and M. Sundberg, "An analysis approach for large planar arrays using a bound FDTD model", in URSI Int. Symp. Dig., July 1995, p.  5. 
  8. K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media", IEEE Trans. Antennas Propagat., vol. 14, pp.  302-307, May  1966.
  9. R. J. Luebbers, User's Manual for XFDTD, State College, PA 16805: REMCOM, Inc., July 1994.
  10. B. Scheik and J. Kohler, "An improved microstrip-to-microslot transition", IEEE Trans. Microwave Theory Tech., pp.  231-233, Apr.  1976 .
  11. A. K. Lai, A. L. Sinopoli and W. D. Burnside, "A novel antenna for ultra-wide-band applications", IEEE Trans. Antennas Propagat., vol. 40, pp.  755-760,  July  1992.
  12. W. Wasylkiwskyj and W. K. Kahn, "Element patterns and active reflection coefficient in uniform phased arrays", IEEE Trans. Antennas Propagat., vol. 22, pp.  207-212, Mar.  1974.
  13. R. C. Hansen, Microwave Scanning Antennas: Array Theory and Practice, New York: Academic, 1966,vol. 2.
  14. K. L. Shlager, G. S. Smith and J. G. Maloney, "Optimization of bow-tie antennas for pulse radiation", IEEE Trans. Antennas Propagat., vol. 42, pp.  975-982,  July  1994.