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Accurate Solution of the Volume Integral Equation
for High-Permittivity Scatterers

Jorg P. Kottmann and Olivier J. F. Martin

Abstract—We present a formalism based on the method of  The major advantage of this approach lies in the fact that only
moment to solve the volume integral equation using tetrahedral the scatterer must be discretized. Moreover, nontrivial back-

(3-D) and triangular (2-D) elements. We introduce a regularization  ,,nds |ike multilayer structures can be included in the Green’s
scheme to handle the strong singularity of the Green’s tensor. tensor [2]

This regularization scheme is extended to neighboring elements, g . .
which dramatically improves the accuracy and the convergence  Different techniques can be used to solve (1) numerically. In
of the technique. Scattering by high-permittivity scatterers, like the coupled-dipole approximation [3], [4] the scatterer is dis-

semiconductors, can be accurately computed. Furthermore, cretized with cubes and the field assumed constant over each

plasnzion—[c)iolarlton resonances in dispersive materials can also bee|ement_ Although there have been several efforts to overcome
reproduced. its intrinsic limitations [5]-[7], this method does not seem suit-

Index Terms—EIectro_magnetic (EM) scattering, finite-element gple for high permittivities [8].

ir;‘;tigcr’]d?’egﬁaer?csef‘;?:t'&g’r T;Teegégﬁh%iis{iopr!asmons’ regular- Another approach to solve (1) is to use finite elements. Since
' »SIng P ' the work of Richmond [9], the finite-element method has been
broadly used in computational EMs [10]-[14]. Here, the geom-

|. INTRODUCTION etry can be well discretized by elements like tetrahedra, and the

LECTROMAGNETIC (EM) scattering by high-per- variation of the field over an element can be modeled using non-

mittivity materials is a very important issue since mostf'v'al basis functions.

semiconductors have a large index at optical wavelengtf(ljsﬁﬂov;’tek\)/er’ applylpghthetmethoq offlmlt_te eI??;]enéstotr}e:/lEls
Typical values are, for example = 11.20 for gallium arsenide Mcu't because of the Strong singuiarity of In€ reen's tensor

_ N ; o 15], [16]. To handle this singularity, a modified point-matching
at 1 [um] ore = 16.65 + 0.23i for silicon at 546 [nm] [1]. [ o .
Unfortunately, the computation of scattering by such a syst thod [17]and modified Galerkin methods were proposed [18],

is difficult because of the very short effective wavelength insi 9. Moreover, the strong singularity of the Green’s tensor can

the material and the strong field discontinuities at its boundary: C|r-cumvented by r'novmg the derivatives that Ieaq to the sin-
Furthermore, practical situations often involve a combinati pilarity of the Green’s tensor onto the test and basis functions

of localized scatterers with semiinfinite backgrounds IikHSing partial integration. To avoid surface integrals, rooftop func-
silicon particles on a wafer, defects buried in a muItiIa;/eret ns defined on cubical or tetrahedral elements can then be used
' [50‘9] [20]-[24]. In the same context, Mendes and Arvas com-

semiconductor, etc. Such intricate boundary conditions can X Lo . ) .
difficult to handle for many computational techniques. puted high-permittivity two-dimensional (2-D) scatterers, using

Our aporoach is based on the volume intearal equation (VIE pecial set of basis functions that avqids both spuri.ous volyme
PP g g ( a??d surface charges [25]. However, this type of basis functions

o , , , , cannot be extended to three-dimensional (3-D) problems.
E(r) =E(r) + / dr'G(r, r') - V(r)E(r') @) A formalism independent on the type of basis functions re-

v quires a regularization scheme to remove the singularity of the

to compute the total scattered fieki{r), when a system de- Green’s tensor [26]-[29]. In this paper, we introduce such a
scribed by a dielectric functios(r) embedded in an infinite ho- scheme. In Section II, a general formalism is proposed for the
mogeneous background mediugis illuminated with an inci- solution of the VIE using tetrahedral elements. We show how
dent fieldE°(r) (throughout the paper, we assume nonmagnetie remove the singularity of the Green’s tensor by subtracting
materials and aaxp(—iwt) time dependence for the fields). Ina term that can be integrated analytically. To improve accuracy,

(1), V(r) represents the scatterer polarizability this regularization scheme is extended to neighboring elements.
In Section 1ll, we apply this general formalism to 2-D geome-
V(r) = kg(g(r) —€0) (2) tries. Numerical results to assess the accuracy of the formalism

are presented in Section IV.

with &, the vacuumwavenumber a6ir, r’') the Green’stensor.
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with ¢(r, r') the scalar Green’s function: mentA are given by inserting', ..., £ in the transformation
exp ikoR (10) [Fig. 1(b)]. Them basis functionsp; (§), ..., ¢..(£) are
g(r,r') = 4R for 3-D also first defined on the canonical element. They are related to
p T (4) the global basis functiong, (r) on elementA via the transfor-
9(r,x) = H (k,p) exp(ik. ). for 2-D mation (10), i.e.
where we introduce® = |R| = |r—r’|. For 2-D, the geometry falra(©)] = ¢*(6). (11)

has a translation symmetry indirection and we introduced
the transverse coordinatedefined byR = (p, Z) and the
transverse wave vectdr,: k = (k,, k.).

Using (10) and (11), we perform the integration on tetrahedron
A by Gaussian quadrature. Equations (7)—(9) become

To solve (1) we use the method of moments and divide the i i o i s iy g
scatterer intaV tetrahedra (triangles in 2-D) with voluma, by =Vada| Y wé (€)' (€Y) (12)
(surfaces/4 in 2-D), A = 1, ..., N. On each element4 we ‘Tl
assume a constant polarizabil¥y and definemn scalar basis P o 1i 0/ a
functionsf}, ..., /7 that vanish outsidd. For the fieldE(r) €4 =Vala <§_:1 W (EEN(r) (13)

inside the scatterer, we write
d; =VaJaVp

N m o
= Z Z al, fi (®) n ‘ '
=y (X v ([ areas )| as
i . _ . . a= V
with a’, the unknown vectorial coefficients. Inserting (5) in ! —= ~~
(1), symmetrizing by multiplication witd/(r) and applying Tap
Galerkin’s scheme, we obtain the systermalV x m/N vec- with .J4 the Jacobian of the transformation (10). It represents
torial equations the volume of elemem in units of the volume of the canonical
. element (1/6 in 3-D and 1/2 in 2-D).
i i 17 L With (12) and (13), we have numerical expressions for the
bia d{,-aj =e, 6 ; P
Z Z Z A T8 A A N ©) coefﬁuentsb” ande’, of (6). Note that for polynomial basis

B=1 j=1
= functions¢? (g) the coefﬂment?&:“ can also be evaluated analyt-
with ically [30]. To evaluate the tensorial coefficient§ ; we must
i ; j distinguish two cases depending whether the eleméiatsd B
J 7 J
ba=Va /VA dr fa(r)fa(r) () are different or coincide.
; ; o 1) Evaluation of 145 for Different Elements:When 4 #
e1="Va /v drfi (r)E(r) () B, we can apply standard Gaussian integratiofi ¢g in (14)
N B ‘ ' and obtain
dp =VaVp drf4(r) dr'G(r, ') f4(r"). (9)
- ”B Lo =Js[ 3 G (s13) w'oieh | . @)
= r r .
The numerical solution of (6) gives the unknown coefficients for AB B = A7 7B

the field inside the scatterer. The field outside the scatterer can
then be determined from the field inside the scatterer using (Note that, even located in different elements, the two Gaussian
pointsr¢ andrB can be very close to each other, which leads
B. Evaluation of the Integrals to an inaccurate value fdrs 5 using (15) because of the sin-
Standard Gaussian integration technique is applied to eva@lar behavior of the Green’s tensor for small arguments. A
uate the integrals in (7)—(9). To carry out this numerical quadrgorkaround for this will be proposed in Section II-B-3.
ture, we map each elementon the canonical element with the 2) Regularization ofl,, 5 for Identical Elements:For A =
transformatior?’y [Fig. 1(a)]. Since the Gaussian points and th& we have to introduce a regularization scheme for the evalu-
basis functions are originally defined on the canonical elemeation of 1,4 because of the strong singularity of the Green’s

we will need the inverse transformatidn * [Fig. 1(b)]: tensor forr’ = r (~1/R? in 3-D and~1/R? in 2-D).
b b The main |dea of the regularization is to subtract from the
o1 ‘ i+1p integrand a function with the same singular behavior, but which
&) =R <1 - Z 51) + Z R &, can be integrated analytically. This is fulfilled by
A=1,...,N. (10) Lia =T, +15, (16)
In (10), D is the space dimension (3 or B, ..., R3*! are \yhere we choose for the regular part
the edges of element, andé = (&1, ..., &p) is our newlocal
coordinate [Fig. 1(a)]. i, = dr’
On the canonical element, we defingsaussian integration Va

points &, ..., €7 and their weightsw!, ..., w? [Fig. 1(b)]. VV ¢
The correspondinglobal Gaussian pointsl,, ..., r’, on ele- |GG )fA( r')- k2 9°(rd, x) ) (€| (A7)
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Fig. 1. Affine transformation. (a) Transformatidf, of triangle A onto the canonical element. (b) Inverse transformafigh. The Gaussian points and the
basis functions are originally defined on the canonical element.

and for the singular part +/adr { (r%, r )fA( r')
A% 4
= dr' — ¢5(r%, v’ 18 vv , e
44 = ¢’ (& )/\/4 r k% g (ry, ') (18) . <?gs(rj, r’)) ¢J(£ )} (21)
0
with ¢5(r, r') the static Green’s function: where 85 is a sphere with volumev®.J,4 centered atr9
[Fig. 2(a)]. This approach is illustrated in Fig. 2(a).
S, ) = 1 7 for 3-D (19) In a further step, let us divide the integral in (21) into two
47r{2 terms:
S /
g>(r,r") =——log(p), for2-D. (20) A\AY PN
2 [ ar|ees e - (5 et o]
Note in (17) the important relatioﬁi(rj*) #’(£€%). The op- : N , w o~ VV ¢ ,
eratorvV in (17), (18), and in the following has to be applied =¢’'(€ )/n dr <G(1°Av r') - k2 g, r )>
forr = r9. A
The integrand in (17) is still singular faf = r%. However, + dr'G(r%, r') [fi(r/) - fi(rj)} (22)
this singularity is now weak and Gaussian quadrature can be Si

applied to the integral with a special treatment if the integration
variabler’ is nearr? [Fig. 2(a)]. For the numerical value df ,
we take

where we useg’ (£%) = fA( % ). The first integral does not de-
pend on the explicit form of the basis functions and can easily be
performed analytically. The second integral, however, depends
n ' on the explicit form of the basis functions. It vanishes for con-
= > {JAw'ﬁ [G(r‘i, )¢l (€7) stant basis functions singé (r') = f%(r%). For higher-order
f=L1, f#a basis functions, the integrand must be expanded in a Laurent se-
VV ¢ ; ries with respect t¢r’ — r%| using the spherical coordinates of
< k3 9~ (%, rA)) ¢ (€ )} } r’ —r%, and retaining only the singular and constant terms with



1722 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 48, NO. 11, NOVEMBER 2000

(b)

Fig. 2. (a) Gaussian integration is performed Kd, . Instead of the (undefined) value fef, = r<, we take the integral inside a sphere of volume.J .
(b) The pointr; for the regularization in (26)—(28) is the Gaussian point on B with the minimal distancg.to

respect tdr’ — r%|. (Note that, for a regular function without / dr’ [G(r‘* r/)fj (')
singularity, Gaussian quadrature corresponds to retaining only 55 A A
the constant term and dropping the others.) For polynomial basis AV o
functions this leads to integrals that can be solved analytically. - <7 g (g, r )) (€ )}
To determine the integraf, ,, given by (18), one has two op- 0 N
tions: The first one is to take the Cauchy principal value by intro- + ¢/ (&) -1 E do (25)
ducing an exclusion volume around the singularity, as done by 2(D—-Dm Joy, Q°

Yaghian [15]. This approach is well suited for simple elementg,o e the integral over the sphee has to be solved asin (22).
like a sphere ora cube, where the integration on the elemeng) Regularization of T.5 for Neighboring ElementsAs
volume is easily performed [4]. For tetrahedral elements, howis,ssed previously, even for different elemefits2 B, the

ever, the theory of generalized functions described by Gel'fad,)ation of 4 ; with Gaussian integration [(15)] can be inaccu-
and Shirkov is more appropriate, since it reduces to integratipf wherr4, is close to the elemet [Fig. 2(b)]. Itis, however,

on the element boundary [31]. _ o possible to apply a similar regularization scheme in that case.
_ Following this approach, we obtain after one partial integra- aq for identical elements, let us divide-; into two parts (the
tion for themnth component of the tensdf, ,: R . . AB

tilde in AB indicates neighboring elements)

. — =TF 5
(B =€ 0107005, 2000 L =Lt s (6)
Va4 .
i with
prFEM (23) ) vV '
U 1t =] o'l ) (o e ) )ele)
with 8V, indicating the boundary of element As stressed by  ° VB 0
Leeet alin a similar context [26], one can write this tensor as (27)
A and
. -1 NQ S j /VV Sl
5, = ¢ (&%) ——r— —do. I~=Jw/d— ). 28
AA d) (£ ) 2(D _ 1),]{_ BV QD do (24) AB d) (£ ) Vo r k_g g (rA I‘) ( )

R The Gaussian poir§” in (27) is such that the corresponding
Here N is the unit outward normal vector a4, andQ is  global Gaussian point}, of (27) is the Gaussian point on tetra-
defined a¥) = r% —r’. This integral can be solved analytically.nedronB with the minimal distance te? [Fig. 2(b)].

Combining (21) and (24), we finally obtain the valuelofs  Applying Gaussian quadrature X8 and using (24) (which

for identical elements is also valid ifr4 is outside the integration region) we obtain
n n
Las=Ja Y. {w@ [G(r‘j, r’))¢ (€7) I = Z{J,;w@ [G(r‘j, rn)¢’ (€7)
8=1, Ba 8=1

- (T fun)ee)|] (T funh) i)
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H(E) 1 NQ d (29) Since a regularization scheme is not necessary for this polariza-
B 2(D — D) Sy, QP 7 tion, neighboring elements can simply be treated with (15).
which completes our general formalism. B. TE Case

In the TE-case, the Green’s tensor is & 2 tensor, given
by the zy-components of (30). To determirg 4 for identical

The general scheme derived in the previous section will naslements, we first evaluate the analytical integral @rFol-
be applied to the 2-D case, i.e., we assume a scatterer with andiving (22) and expanding the last integrand in a Laurent series,
finite symmetry axis in the-direction. Furthermore, we assumet turns out that for polynomial basis functions all integrals over
that the wave vectok of the incident field is in thery-plane  the relevant terms (i.e., the singular and constant terms with re-
(ie.,k. =0, ko = k). Inthat case the Green’s tensor reads [4pect to|r’ — r¢%|) vanish because of the integration over the
polar angley. The other integral in (22) can easily be performed

I1l. A PPLICATION OF THESCHEME FOR THE2-D-CASE

0,0, 8,9, 0

Glr,x) = |14 5[ 29, 8,9, 0][grx) @0) and (21) bec:mes

0 0 0 .
= | (Gag e €
with g(r, r’) now given by B#a
A g GO RAL Y
g(r,r') = ZHO (koR) (31) —¢’ (& )k—gg (ry, ry)

with r = (z, ). + ¢i(ga)<ﬂ HY(kRY) - %) 1. (34)

As implied by the form of the Green’s tensor [(30)], we can 4k 2k

distinguish two cases when the electrical field is polarized in T determine the value af,_, given by (24), we parameterize
z-direction [transverse magnetic (TM)] or when it is in th§ne poundaryV, of elementd and determine its unit outward

zy-plane [transverse electric (TE)]. _ _ normal vectors. Definin®R?, = R}, the parameterization of
We use triangular elements. The corresponding basis fumga ;th side of triangled is given by

tions up to cubic order can be found in [11], [30], and [32], . ‘ .

whereas appropriate Gaussian points up to order 10 can be founts (t) = (1 — )R’y +tR/', [0, 1], i =1, 2, 3 (35)
in [33]-[35]. Note that all the Gaussian points must be defingd . ; o
inside the element. The computation of the matrix elem&fts and the unit outward normal vectd’, for this side is

ar)'dei1 is straightforward. We will only detail the procedure for ., 1 ij? — Rfu i=1.93
d'{, i.e., we give expressions fby 5 defined by (14) for iden- AT IR — R, <Rj1 = Rijll) ’ TR A
tical and neighboring elements and 5. ’ ’ (36)
Like this, (24) becomes
A. TM Case
In the TM-case, the Green’s tensor is given by the scalar 5, = L PEN >
Green’s function itself, (31). Hence, no regularization is nec- 2m i=1
essary and we only have to handle the weak singularity of the L re — r’a(t) .
scalar Green'’s function as described in Section II-B.2. (Note : / dt AR
that the formulas of the general description are still valid, but 0 A4

all the derivatives vanish since they are with respectitothe ; S/
TM-case.) Y P =¢ (ga) [Z <% NQN,ZAKA
To determinel 4 4 (which now is a scalar), we first evaluate =1 i1 ;
the analytical integral ove$$. Following (22) and expanding _ (RA‘ - RY)
the lastintegrand in a Laurent series, we see that in the TM-case, 4R — R
for polynomial basis functions, this series does not have any
gular or constant terms with respectto— r<|. We can there-

Nng)} (37)

SWhere we introduced, and L, given by

fore omit it. Performing the other integral in (22), we finally K =log[(r3 — RY)?] —log[(r4 — R (38)
obtain forl 4 ) N¢ a _Ri
LY = arctan< ’3 % (raA zA)>
n ) ' N, - (r4 - RY) ‘
Taa=Ja Z g(rd, v)w’ ¢ (€%) Ny % (rg — R
i — arctan . - i+l (39)
j NY - (rq —R5)

+ @7 (£%) <ﬂ Hl(l)(koRj’) - i) (32) where the 2-D vector produetx b = aibs — azb; is a scalar.
2 The symmetry of the tensd¥; , is easily verified using the re-
with R% the radius corresponding &, namely lation Zf’zl K" =0.
With these resultd 4 4 reads

a w(yJA
A=y (33) L =I5, +15, (40)
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= 24 | ' I ] 10° ;
3 oo i\ Mie (TM) ] a—= £=16.64+0.23i
5 << [ = Numerical result (TM) B B—a =40
=20%y 0 Mie (TE) ] 107 ¢
2 1.8 '} » Numerical result (TE) ]
3 1.6 | 1 4
] . 107°
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© 12} W 4as |
1.0 | 10
S 0.8
2 f 10° |
5 06
@ 04 ¢
£ 02 107 |

0.0 S '

0 60 120 180 100 1000

Scattering angle [degree] Number of elements
g.4. Absolute error as a function of the number of elements fer4 and
Fig. 3. Differential scattering cross section as a function of scattering angle_ 16.64+0.23i (Silicon) for both TE polarization (continuous line) and TM

for ¢ = 4 and size parameter = 10.43, for both TM and TE polarization. pojarization (dashed line)A(= 546.1 [nm] and cylinder diametei = 100
The numerical results are compared to the reference solution obtained with lfjg)).

theory [30].
- e : 10° F ' Al :
with Iy ,, respectivelyl’ ,, given by (34), respectively, (37). Bmmmmmmeees Al A i
For neighboring elements, we obtain 107" | Thenet” ]
_ 1R S 2
L =T +15. 1) 10
with 107
’ : S 4o
= 3 [ (€605 ) 510
p=t 10
; \AY
—¢(&) 7= 72 9> (x%, rB))} 42 10°
7 G a8 £=4.0
andIfZB can be obtained froi ,, (37)—(39), by the substitu- 10 F 2 £=(16.64+0.23i)
tions’y (£) — ri(t), ¢7(6") — ¢/(€), Ry — R, Ny - 107 ' '
N;, where we want to keep in mind that the Gaussian pgint 100 1000
corresponds to the global Gaussian peijtwith minimal dis- Number of elements

-
tance tor7; [Flg' Z(b)]' Fig. 5. Absolute error as a function of the number of elements for TE

polarization with (continuous line) and without (dashed line) the regularization
IV. 2-D CALCULATIONS for neighboring elements. (Same parameters as in Fig. 4.)

In this section, we present 2-D-calculations. To assess the ac-
curacy of the numerical results we choose examples where andiseretize the geometry for both TM and TE polarization. The
alytical solution exists. Throughoutthe exampleswe use constagplinder diameter is 100 [nm] and the wavelength 546 [nm].
basis functions and Gaussian points corresponding to order 7.We show the result for = 4 andes = 16.65 + 0.23¢, the
In the first example we compare the differential cross sectidaiter corresponding to silicon at that wavelength [1]. We see
for a cylinder ¢ = 4, diameterd) for both TM and TE with that even with few elements, the formalism gives very accurate
the analytic Mie solution. The size parametex m+/=d/)g is  results including for bodies with a high permittivity.
10.43. To demonstrate the importance of the regularization for
As Fig. 3 implies, for a certain scattering angle we can defimeighboring elements presented in Section II-B.3, we compare
an error for the numerical result by taking the square of the dift Fig. 5 the error of the numerical result with and without this
ference between the numeric and analytic far-field amplitudesgularization for TE polarization. We use the same parameters
normalized to the square of the analytic far-field amplitude. Is in Fig. 4. These results emphasize the importance of the
tegration over the scattering angles gives us the absolute emagularization for neighboring elements.
of our result. Dispersive materials like silver are known to exhibit a reso-
To show the convergence of our formalism, Fig. 4 gives thisant behavior at particular optical wavelengths (plasmon- po-
absolute error as a function of the number of elements usedaaton) [36]. Many numerical methods are known to be inac-
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Fig. 6. Scattering cross section as a function of the wavelength for a silver
cylinder (diametet = 100 [nm]), for TE polarization. The plasmon resonance
at 347 [nm] is very well reproduced with our approach.

[71
curate at the resonance. The scattering cross section of a silvg?]
cylinder with diameterl = 100 [nm] is represented in Fig. 6 as
a function of the wavelength of the incident TE field (TM does [9]
not exhibit resonant behavior), 132 triangles were used. The res-
onance is very well reproduced by the present method. [10]
In our numerical calculations, it turns out that higher-order
basis functions like linear or quadratic basis functions provide
even better results in the TM-case for the same number of elét!]
ments. This is also the case for TE polarization. However, for g 7]
very small ratio of the element length to the wavelength, con-
stant basis functions give better results for TE polarization. Thi%13
surprising issue may be understood in the following manner:
For very small elements (compared to the wavelength) a con-
stant basis function can approximate the field over the element”
very well and therefore the natural advantage of high-order basis
functions decreases. Furthermore, for higher-order basis funé!
tions, the size and the condition of the system of equations iy
crease rapidly. Finally, for small elements, the Gaussian points
lie very close to each other and the regularization procedur@”
becomes extremely important. This regularization procedure is
most accurate for constant basis functions since fHgn’) (18]

¢’ (£7) [(A7)].

V. CONCLUSION [19]

We applied the method of moment to the VIE using 3-D and
2-D elements. We presented a regularization scheme to handlg
the strong singularity of the Green'’s tensor. This regularization
scheme was further developed to take into account neighboring
elements, which strongly enhanced the accuracy and the copq;
vergence of the method. The formalism was given in a gen-
eral way that can be easily implemented for 3-D systems. We,,
demonstrated that our approach is well suited for scattering cal-
culations in high-permittivity materials. Furthermore, we were
able to accurately reproduce the plasmon resonances in smKT
metallic particles.
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