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The Radiation Operator

Ismo V. Lindell, Fellow, IEEE

Abstract—The concept of the radiation operator is introduced Because of the many approximations involved, one tends to
to assist in the analysis of various problems involving sources and have the idea that some information of the true field is lost in the

their radiation fields. It gives the field outside the source region as ,5cegs. However, as it turns out, the far field carries along all
operating on the field of a point source. Because there is a simple .

connection between the radiation vector describing the far-field Inf(_)rmatlon of the field e_verywhere OUtS'de the source region.
and the radiation operator, it can be used to define fields anywhere This can be understood in terms of the radiation operator, to be
outside the source region from their values in the far-field zone. introduced in the sequel, which has a simple connection to the
Another important property of the radiation operator is its ability  radiation vector. Knowing the radiation vector, we can actually
to express sources of fields given their radiation pattern and polar- express the potential field everywhere outside the source region

ization in the far zone. The source of such a field can be written . ¢ fth diati i i the G f
in the form of radiation operator operating on a current element, Interms or the radiation operator operating on the tsreen tunc-

the delta function source. To interpret this in terms of computable tion, which is the field from a point source at the origin. Further,
functions, existing tables of operational rules for different classes we are able to express the source of the radiated field in terms
of operators can be applied. Examples of radiation operators cor- of the radiation operator operating on the point source, i.e., the
responding to different sources are given together with examples of delta function

sources corresponding to given radiation field patterns. Finally, itis - . L .
shown that the radiation operator allows a considerable simplifica- Operating with the radiation operator falls under the title

tion to the derivation of the multipole expansion theory when com- “Heaviside operational calculus™ [5], which preceded the
pared to the classical recursion-formula derivation through spher- modern Laplace and Fourier transformation techniques by a

ical harmonic eigenfunctions. couple of decades. Of course, the operator method could be
Index Terms—Antenna theory, electromagnetic (EM) radiation, replaced by one based on integral transformations. However,
operator methods. because the operational technique works in the physical space

without introducing a separate transformation space, the
concepts appear more simple to grasp. Corresponding to the
tables of integral transforms, operational rules for various
N BOOKS on antennas and radiation problems (see, e.@peratorsL(V) in the form L(V)8(r) = f(r) where f(r)
[1]-{4]) the far-field expressions for radiated fields are typis a computable function, are required. Tables of such rules
ically derived after approximating the distance functionas have been collected by this author in the previous papers

I. INTRODUCTION

Dir—1') = N/ S [e1, [71, [20]_. In the examples di_scgssed in the present paper,
demonstrating the use of the radiation operator, only basic ones
~ry/1—=2u,-r'/r of such operational rules are needed.
~r—u, -t 1)
where Il. THE RADIATION OPERATOR
r field point, A. The Field

r’ point in the source region, and
u,. radial unit vector /r.
After this, the vector potential fieldis approximated as

Let us consider fields radiated by a time-harmonic source
J(r) occupying a confined regioN. The electric fieldE(r)
can be expressed in terms of the vector potertial) as

e—ikD e—ikr ) ,

A — / ! ~ jku,-r / /. . — 1

(r) L p SV E A J(r W(Z) E(r) = —qu<1+ ﬁvv) CA(r). @)
The vector function OutsideV, the vector potential can be expressed as a regular

, , integral
F(u,) = / IR T J (Y dV7 (3)
_ - _ A@r) = / Glr—r)- 3¢y dV"’ (5)

sometimes called the radiation vector [4], depends on the di- Vv

rection of propagatiom,. and thus gives the information of the;,, tarms of the free-space Green function
field distribution in the far zone as well as the polarization of

i e JkD ik
the vector potential. G(r—1') = __JF ho(kD) (6)
A7 D A7
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Using the shifting operator [5]=*"V we can express the dis-C. Examples

tance and Green functions as Let us consider a few simple examples of electric current

D(r—r') :e—r’.vD(r) — oY, ) sourcesJ(r) and the corresponding radiation oper_at_ors. It is
) e seen that, after a detour through the operator, the original source
Glr—r)=e¢"VG(r)= L ho(kr)  (9) can be recovered, although other equivalent sources could also
am be possible results. This shows us that the information of the ra-
and the potential integral as diating source is not lost in the operator.

o Dipole: For the elementary dipole with momeht. at the
Am = [ ¢ TEEIE D ~LTIGE 10 orign
v

where the vector operatdr( V) called the radiation operator is J(r) = ulLé(r) (16)
defined by _ _ o
. whereu is a unit vector, the radiation operator (11) reduces to
L(V) :/ I e av’. (11) the constant vector

) . . ) L(V)=1ILu. a7)
This has a form slightly resembling the Laplace or Fourier trans-
formation of the source function. The dimension of the radiatia®oth (5) and (10) are seen to give the same potential field
operator is [Am].

Because the previous steps can be reversed, (10) and (5) actu- A(r) = ILuG(r). (18)
ally represent the same potential function outsiderhe radi-
ation-operator form (10) appears simpler to use for finding thfgso, the original source (16) is recoveredlasv)é(r).
far-field approximation or multipole series expansion when the More generally, a dipole at the poing
exponential operator is expressed in Taylor series. On the other

hand, (5) remains valid also inside the source region when the J(r) = ulLé(r —r,) (19)
integral is interpreted in such a way that the singularity is prop- o

erly taken care of. corresponds to the radiation operator

B. The Source L(V)=ulLe™ ™V, (20)

The source of the potential field can be found straightfofr,q original source (19) is again recoveredI4&)s(r). By

wardly from the Helmholtz equation, if the potential is knowniting the radiation operator in Taylor series results in a multi-
analytically, as pole series expansion at the origin for the dipole:

(V2 +EHA(r) = —J(r). (12) 1
J(r) =wlL|1—(r, V) + o (r,- V)?
The source can also be expressed in operator form by starting 2!
from the Green function equation 1 3
—i(ro-V) + | 6(r). (21)
(V2 4+ E*)G(r) = —6(r). (13)

This multipole is equivalent to the original dipole, because in-

Operating on (10), we obtain the simple result (commutation Qf 4 in the integral (5) and after partial integrations it yields
constant-coefficient operators is tacitly assumed here)

I(r) = (V2 4+ BL(V)G(r) = L(V)§(r).  (14) A(r) = uILG(r = ro). (22)
This can be also formally verified through (11) as Linear Array of Dipoles: Taking an array ofN parallel
dipoles at equal distanceswith progressive phase shijft
L(V)s(r) = A 3 Vo) v .
J(r)=u,IL "8(2 — na)é(p) (23)
= / J(r)6(r — ') dV’ = J(r). (15) nz::O
v
Itis thus seen that the radiation operdgR’) contains allin- e radiation operator (11) becomes
formation of the radiated potential field. However, the source of N_1
th.e field must be ynderstood in the sense of_ equivalgnt sources. L(V) =u, /L Z In® —nad:
Different expressions &(r) are not necessarily analytically the o
same, but, in the field integral they produce the same potential —u, I L/ ((N=1)/2)¢ = ((N=1)/2)ad.
field outside the source region. For example, making the Taylor N
expansion of the operat®n(V) in (14) in terms of powers o¥ sin 5 (¢ +jad:)

gives us a multipole source at the origin, equivalent to the orig- (24)

1 . ’
inal source. sin 5 (¢ + jads)
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Applied to the Green function in (10) we have Itis obvious that information of the fields outside the sources
N1 is not lost in this limit process, because from the radiation vector
Alr) =u,IL Z eIm% e G(r) by settingu,, — —V/;jk we can restore the radiation operator
n=0
N1 L(V) = F(=V/jk). (32)
=u,lL Z ¢"*G(r —u.na). (25)

This means that knowledge of the far field gives us knowledge of
éhe field everywhere outside the confined sources. However, as
is well known [8], the source of the radiated fields is not unique
and can be replaced by equivalent sources. From the far field we
J(r) = u.Isink(a —|2|)U(a® — 22)8(p) (26) are able to determine sources equivalent to the original one and

whereU (z) denotes the Heaviside unit step function. Assuminrﬁ'@ld'atmg the correct fields outside the source region.

a half-wave dipole we have = n/2k = A/4. Applying the B. The Synthesis

integral formula
caz Given a radiation pattern for the vector potential in the form
—— lasin(bz +c) —beos(bz+c¢)]  of the radiation vectoF(u,.), we can find in operational form
a?+b (27) @source function giving the same radiation pattern. In fact, ap-
plying (32), the possible source can be expressed from (14) as

n=0
Half-Wave Dipole: Finally, let us choose the current sourc
as that of a thin dipole of lengtbx,

/ e* sin(bx +c) de =

the radiation operator becomes in this case

LW =t [ sink(a— e a2 I) = L(V)se) = F(-V/ik)s(e). (39
720811(@@) Now the problem remains to interpret this in terms of com-
=u.2kl T (28)  putable functions. This question has been treated in [6], [7], and

) ) ) [20] where tables for some operator families were presented for

As a check, operating on the delta function and using knov&;prect use.
operator properties [6] we have In most practical cases, instead of the radiation vector, only its
cosh(ad,) 5(r) scalar magnitude and the polarization in the main direction are
92 + k2 of interest. This leaves us somewhat more freedom for the syn-
thesis, which is not easily applicable, however. Itis not possible

L(V)é(r) =u.2jknl

1 ad. —ad. 1.
=u.2kl [e°% +em] % sin(kz)U(2)6(p) o delve into this problem here. Let us simply choose a radiating
=u_jnl[sin(k(z + a))U(z + a) vector potential function with constant polarization defined by
+sin(k(z — a))U(z — a)]6(p) (29) the unit vectom as
which, again, reproduces the original source (26). F(u,) = uF(u,) (34)
[Il. SYNTHESIS OFRADIATION PATTERNS where a scalar radiation functidi(u,.) is left for the synthesis.

This limits the polarization of the electromagnetic (EM) field

Itis shown that by requiring certain field pattern and polariz% TM with respect tax. Corresponding TE-polarized case can
tion for the vector potential in the far zone uniquely determine@i

- o ) e handled in a similar way by starting from magnetic current
the radiation operator. This, in turn, can be used to determine y by g g

source of the radiation, provided the operator expression can o%rces. If the main beam is perpendicular to the veajdhe
P P P po?arization of the electric field in the main beam coincides with

u. Of course, this choice limits the source to the fom#(r).
A. The Far Field Let us consider some simple examples on synthesizing sources

. . of radiated far fields.
Because thev operator in (10) operates on the function 1) Gaussian BeamWe wish to synthesize a radiator with
e~/* /r, in the far zoner — oo it can be replaced by the radiation vector of the form

V — —jku, and we have

interpreted in terms of computable functions.

F(u,) = u, ] Le~2(in8/2)°

— uxILe—K,(l—cos 8)
In this limit, the radiation operator becomes an algebraic factor —u,[Le Flmus=ur) (35)

MﬂﬁLFMmﬁ®:—%LGMmWMﬂ (30)

L(V) = L(—jku,) = A I@)eM 0 dV = F(ur) (31)  yhich, for large values of the parametercan be approximated

. . . . . . by the Gaussian function
a function of the unit vectoun,., i.e., the direction of radiation. y

It can be identified as the radiation vector (3) with the dimen- F(u,) ~ uwILefné)Z/Q' (36)
sion [Am]. It also contains the information on the polarization

of the radiated potential field. To find the polarization of the Cofrhe procedure above gives the radiation operator
responding electric field, the function must be multiplied by the

projection dyadid — u,u,. L(V) = F(=V/jk) = u, [ Le "(Hu="V/ik)  (37)
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which leads to the equivalent source Forka = = there is a null along the direction of theaxis. The
radiation operator is
J(r) =L(V)é(r)

: inh(au, -
—u, [ Le eVl L(V) = u.l W. (46)
=u,ILe "8(r — ru, /jk). (38) _ -
Because of the operational rule [7], [20]
This is a dipole of momeniL located in the complex space sinh(ad. 1
point % 6(z) = 5 Ua® — 22). (47)
r =u.k/jk (39) The source becomes the constant current line segment
z < a
aresult first given by Deschamps in 1971 [9]. Whebecomes 7
large, the radiation beam becomes narrow.#es 0 the dipole J(r) =u. = U(a® — 22)é(p). (48)

at the origin is obtained with constant radiation vector. This cor- 2

responds to the isotropic radiation pattern of the vector poten-4) Another Broadside PatternLet us study another rota-

tial while that of the electric field is modified by the dyadictionally symmetric pattern:

= u,.u,. 1 1
2) Endfire Pattern: As another example, let us take the ra- F(u,)=u.Ja ———— =uw,Ja ————.

diation vector defined by cosh(ka cos ) cosh(kau, - u”)(49)

_ 2 N
F(u.) =u,IL[cos(2kasin®(6/2))] ) This pattern has only one lobe with maximum o 7 /2 and
=u,IL[cos(ka — kau, - u,.)]" (40)  minimum foré = 0, . For largeka the minimum is small. The
radiation operator is

whereN is a natural numbeN = 1, 2, 3, .... Forka = 7 /2
this pattern has a single radiation lobe for= 0. The radiation L(V)=u.la ; (50)
operator now becomes cos(au, - V)
; From the operational rule [7], [20
L(V) = u,IL[cos(ka — jau_ - V)]® (41) P [71. 1201
1 1
. . 6(z) = (51)
and the source in the operator form is cos(ady) 2a cosh(rz/2a)
I(r) = L(V)8(r) = up L Ljcos(ka — jau. - VY]V8(r). (42) W€ obtain the normalized source
1
To interpret this, we apply the binomial expansion I(r) = L(V)é(r) = u. 2 cosh(rz/2a) (o) (52)
N_ L oia, jarN which is an infinite line current along theaxis, whose ampli-
[cosa]™ = 5% [ e ] tude has maximum at the origin and decays exponentially for
N z — “4oo. Fora — 0 it approaches the delta function, i.e.,

1 N\ (n—oma proac
=58 > <n>6’(]\ 2 (43) asmall current element. This limit corresponds to the constant
radiation vectof(u,) = u./a.

n=1

and the result can be expressed as
P IV. MULTIPOLE EXPANSION

I =w. o5 method to find equivalent sources in the form of multipoles by
1\ expressing the far field in terms of spherical harmonics. Let
1L NY on . us again assume that the source and the vector potential have
it Ji(N—2n)ka _ g p
Z <n>e 6(r + (N — 2n)au). constant polarizatiomu.J(r), uA(u,.), in which case we can
(44) work with scalar functions and operatal§V) = ul(V),
F(u,) = uF(u,). This limits the polarization of the fields to

This corresponds to an array of elementary dipoles with piM with respect to the direction af. The TE polarization could

nomial amplitude distribution and progressive phase, a welie considered in a similar way in terms of another vector poten-
known structure in classical antenna theory. tial. Another approach through Debye potentials and TE, TM

3) Broadside Pattern:As an example of a rotationally Sym_polarized (with respect to the radial direction) fields is also pos-
metric radiation pattern with a beam radiating normal to the ax3!€, but the definition of the source of a Debye potential is not

N - . . .
IL Z <N> N Zuka (V- 2m)aus ¥ ) The radiation operator gives rise to another straightforward
n

of symmetry, let us consider the radiation vector so straightforward. Also functions: E(r) andr - H(r) can be
used instead of the potentials with simpler source descriptions,
Flu) = w.l sin(ka cos 8) —wl sin(kau, - u,,)' (45) see [10]. However, to keep the analysis simple enough, let us

k cos 0 limit to TM field problems and scalar formulation.

ku. -u,
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A. Spherical Harmonics In fact, substituting these in (55) we obtain the spherical har-
Outside the source region the amplitude of the vector potdRONIC expansion of the radiation operator as
tial can be expanded in spherical harmonics as [11] L(V) =F(=V/jk)
'S} n 4 = n
A) = 3 40P (cos O)ho(kr) + 3 =k 2 ZJ
n=0 m=1 )
) ) 1)771
AR+ AT eI ] P (cos 0)h (Kr) ’ Po(=0:/5k) + Z [1— (=0./jk)2™/2
m= 1
(53) A7 (ay - VR + A ’"(af -V/ik)™]
whose every term satisfies the Helmholtz equation. Because in - PM(=8./5k) | . (61)
the far field we havé,,(kr) — j"ho(kr), the vector potential
expression is of the form Because of the above, the field defined by
ik j
A(r) = Fu)G(r) = = F(uho(kr)  (54) A(r) = 25 B9 /jRho(he) (62)
s
with the radiation function defined as coincides with the original field outside the source area.
Ay & n Applying the formula
Flu,) = — — AO cos ) + m
=G T (arien 3 o= (TE) R 6

.[Amejnw +A—me—jnw] P (cos) | . (55) whereP,S,m)(x) denotesm-fold differentiation of P,,(z), the
" " " sourceJ(r) of the field can be written as

The radiation function is uniquely represented by the coeffi- J(r) =L(V)6(r)

cientsA*, —n < m < n. This is due to the orthogonality of 4 o,
the spherical harmonics [11] = - ik J"
n=0
27 v
m —jmp m’ im’ e : n
/0 /0 (P (cosB)e ) (Pn, (cos B)e ) sin 6 df dy . <A2Pn(—az/jk) + Z
_Ar(n+m)! m=1
= @nt 1)(n = my OO (56) AT (ay - ViR + AT @l -V /i)™
The coefficientsA’* can be obtained from the radiation function .Pr(]/m)(_az/jk)> §(r). (64)
as
A — _Jk (2n 4 1)(n — |m! [*" F This expression represents a multipole source because the oper-
n 47 dmgn(n 4+ |m)|)! (u,) ator operating on the delta function is a polynomial operator in-
(P (cos O)e ﬂmg,) sin d9 d(p. (57) volving derivatives of differentorders. The same operator expres-

sionwasderivedinthe classical papers[12],[13]and, forthe static
case, already by Maxwell[14], [15], through a considerably more

B. Radiation Operator complicated analysis than that above, by applying mathematical
Now we can find the scalar radiation operatbfv) — relations betweenthesphericalharmonicfunctions.
F(—V/jk) by replacing An operator method similar to the multipole representation

above has previously been introduced to the analysis of spherical
cosf =u.-u, — —u - V/jk=—-08./jk (58)  near-field scanning, see [16]-[18]. In that method, the receiving

antenna (probe) was expressed as a differential operator oper-

ating on the incident field to produce the measurable voltage.

+ie — + jsin
‘ ::is'i Jemy C. Gaussian Pattern
ai -, —ai v /jk As an example, let us again apply the muItipoIe. expansi_on
= m) \/1 = (—0./jh) (59) me'Fho_d to the syntheS|§ of t.hg rotationally symmetr_lc Gags_&an
=0T radiation pattern. For simplicity, let us take the main radiation
whereé the two complex vectors are defined as along thez-axis. In this case, the radiation pattern can be de-
) fined as
ay =u,tju,, a;-a_=2, ay-ag=0. (60)

F(u,) _ ILe—Qm(sin 0/2)2
3A careful reader might note that the produét e—7+ would be replaced

by an operator that is not unity. However, the difference from unity equals an = ILC_K’CK’ cos 6

operator containin®’# + k2, which when operating ohq (kr) would give a A

multiple of the delta function. This means that the operator can be replaced by = - — "AO P, (cos?). (65)
unity without changing the field far # 0. Jk el
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Using the orthogonality of Legendre polynomials, the coeffators are polynomial. On the other hand, the coefficients must
cients A7 are found to vanish form # 0 and otherwise we be found from integral expressions. The multipole series is not
have too attractive if too many multipoles are involved.
ak ™
A% = — ‘i—k 2n + ! / F(u,.)P,(cosf)sin 6 db ACKNOWLEDGMENT
w257 Jo
JkIL " 2n+1

The author would like to thank one of the referees for the

/ e®<? P, (cos 8) sin 6 df
0
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JEIL _ 2n+1 | 2
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