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The Radiation Operator
Ismo V. Lindell, Fellow, IEEE

Abstract—The concept of the radiation operator is introduced
to assist in the analysis of various problems involving sources and
their radiation fields. It gives the field outside the source region as
operating on the field of a point source. Because there is a simple
connection between the radiation vector describing the far-field
and the radiation operator, it can be used to define fields anywhere
outside the source region from their values in the far-field zone.
Another important property of the radiation operator is its ability
to express sources of fields given their radiation pattern and polar-
ization in the far zone. The source of such a field can be written
in the form of radiation operator operating on a current element,
the delta function source. To interpret this in terms of computable
functions, existing tables of operational rules for different classes
of operators can be applied. Examples of radiation operators cor-
responding to different sources are given together with examples of
sources corresponding to given radiation field patterns. Finally, it is
shown that the radiation operator allows a considerable simplifica-
tion to the derivation of the multipole expansion theory when com-
pared to the classical recursion-formula derivation through spher-
ical harmonic eigenfunctions.

Index Terms—Antenna theory, electromagnetic (EM) radiation,
operator methods.

I. INTRODUCTION

I N BOOKS on antennas and radiation problems (see, e.g.,
[1]–[4]) the far-field expressions for radiated fields are typ-

ically derived after approximating the distance function as

(1)

where
field point,
point in the source region, and
radial unit vector .

After this, the vector potential field1 is approximated as

(2)
The vector function

(3)

sometimes called the radiation vector [4], depends on the di-
rection of propagation and thus gives the information of the
field distribution in the far zone as well as the polarization of
the vector potential.
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1For convenience, we denote byA what is commonly written asA=�.

Because of the many approximations involved, one tends to
have the idea that some information of the true field is lost in the
process. However, as it turns out, the far field carries along all
information of the field everywhere outside the source region.
This can be understood in terms of the radiation operator, to be
introduced in the sequel, which has a simple connection to the
radiation vector. Knowing the radiation vector, we can actually
express the potential field everywhere outside the source region
in terms of the radiation operator operating on the Green func-
tion, which is the field from a point source at the origin. Further,
we are able to express the source of the radiated field in terms
of the radiation operator operating on the point source, i.e., the
delta function.

Operating with the radiation operator falls under the title
“Heaviside operational calculus” [5], which preceded the
modern Laplace and Fourier transformation techniques by a
couple of decades. Of course, the operator method could be
replaced by one based on integral transformations. However,
because the operational technique works in the physical space
without introducing a separate transformation space, the
concepts appear more simple to grasp. Corresponding to the
tables of integral transforms, operational rules for various
operators in the form where
is a computable function, are required. Tables of such rules
have been collected by this author in the previous papers
[6], [7], [20]. In the examples discussed in the present paper,
demonstrating the use of the radiation operator, only basic ones
of such operational rules are needed.

II. THE RADIATION OPERATOR

A. The Field

Let us consider fields radiated by a time-harmonic source
occupying a confined region . The electric field

can be expressed in terms of the vector potential as

(4)

Outside , the vector potential can be expressed as a regular
integral

(5)

in terms of the free-space Green function2

(6)

where denotes the distance function

(7)

2The spherical Hankel functionsh (kr) are denoted byh (kr) for brevity.
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Using the shifting operator [5] we can express the dis-
tance and Green functions as

(8)

(9)

and the potential integral as

(10)

where the vector operator called the radiation operator is
defined by

(11)

This has a form slightly resembling the Laplace or Fourier trans-
formation of the source function. The dimension of the radiation
operator is [Am].

Because the previous steps can be reversed, (10) and (5) actu-
ally represent the same potential function outside. The radi-
ation-operator form (10) appears simpler to use for finding the
far-field approximation or multipole series expansion when the
exponential operator is expressed in Taylor series. On the other
hand, (5) remains valid also inside the source region when the
integral is interpreted in such a way that the singularity is prop-
erly taken care of.

B. The Source

The source of the potential field can be found straightfor-
wardly from the Helmholtz equation, if the potential is known
analytically, as

(12)

The source can also be expressed in operator form by starting
from the Green function equation

(13)

Operating on (10), we obtain the simple result (commutation of
constant-coefficient operators is tacitly assumed here)

(14)

This can be also formally verified through (11) as

(15)

It is thus seen that the radiation operator contains all in-
formation of the radiated potential field. However, the source of
the field must be understood in the sense of equivalent sources.
Different expressions of are not necessarily analytically the
same, but, in the field integral they produce the same potential
field outside the source region. For example, making the Taylor
expansion of the operator in (14) in terms of powers of
gives us a multipole source at the origin, equivalent to the orig-
inal source.

C. Examples

Let us consider a few simple examples of electric current
sources and the corresponding radiation operators. It is
seen that, after a detour through the operator, the original source
can be recovered, although other equivalent sources could also
be possible results. This shows us that the information of the ra-
diating source is not lost in the operator.

Dipole: For the elementary dipole with moment at the
origin

(16)

where is a unit vector, the radiation operator (11) reduces to
the constant vector

(17)

Both (5) and (10) are seen to give the same potential field

(18)

Also, the original source (16) is recovered as .
More generally, a dipole at the point

(19)

corresponds to the radiation operator

(20)

The original source (19) is again recovered as . By
writing the radiation operator in Taylor series results in a multi-
pole series expansion at the origin for the dipole:

(21)

This multipole is equivalent to the original dipole, because in-
serted in the integral (5) and after partial integrations it yields

(22)

Linear Array of Dipoles: Taking an array of parallel
dipoles at equal distanceswith progressive phase shift

(23)

the radiation operator (11) becomes

(24)
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Applied to the Green function in (10) we have

(25)

Half-Wave Dipole: Finally, let us choose the current source
as that of a thin dipole of length ,

(26)

where denotes the Heaviside unit step function. Assuming
a half-wave dipole we have . Applying the
integral formula

(27)
the radiation operator becomes in this case

(28)

As a check, operating on the delta function and using known
operator properties [6] we have

(29)

which, again, reproduces the original source (26).

III. SYNTHESIS OFRADIATION PATTERNS

It is shown that by requiring certain field pattern and polariza-
tion for the vector potential in the far zone uniquely determines
the radiation operator. This, in turn, can be used to determine the
source of the radiation, provided the operator expression can be
interpreted in terms of computable functions.

A. The Far Field

Because the operator in (10) operates on the function
, in the far zone it can be replaced by

and we have

(30)

In this limit, the radiation operator becomes an algebraic factor

(31)

a function of the unit vector , i.e., the direction of radiation.
It can be identified as the radiation vector (3) with the dimen-
sion [Am]. It also contains the information on the polarization
of the radiated potential field. To find the polarization of the cor-
responding electric field, the function must be multiplied by the
projection dyadic .

It is obvious that information of the fields outside the sources
is not lost in this limit process, because from the radiation vector
by setting we can restore the radiation operator

(32)

This means that knowledge of the far field gives us knowledge of
the field everywhere outside the confined sources. However, as
is well known [8], the source of the radiated fields is not unique
and can be replaced by equivalent sources. From the far field we
are able to determine sources equivalent to the original one and
radiating the correct fields outside the source region.

B. The Synthesis

Given a radiation pattern for the vector potential in the form
of the radiation vector , we can find in operational form
a source function giving the same radiation pattern. In fact, ap-
plying (32), the possible source can be expressed from (14) as

(33)

Now the problem remains to interpret this in terms of com-
putable functions. This question has been treated in [6], [7], and
[20] where tables for some operator families were presented for
direct use.

In most practical cases, instead of the radiation vector, only its
scalar magnitude and the polarization in the main direction are
of interest. This leaves us somewhat more freedom for the syn-
thesis, which is not easily applicable, however. It is not possible
to delve into this problem here. Let us simply choose a radiating
vector potential function with constant polarization defined by
the unit vector as

(34)

where a scalar radiation function is left for the synthesis.
This limits the polarization of the electromagnetic (EM) field
to TM with respect to . Corresponding TE-polarized case can
be handled in a similar way by starting from magnetic current
sources. If the main beam is perpendicular to the vector, the
polarization of the electric field in the main beam coincides with

. Of course, this choice limits the source to the form .
Let us consider some simple examples on synthesizing sources
of radiated far fields.

1) Gaussian Beam:We wish to synthesize a radiator with
the radiation vector of the form

(35)

which, for large values of the parameter, can be approximated
by the Gaussian function

(36)

The procedure above gives the radiation operator

(37)
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which leads to the equivalent source

(38)

This is a dipole of moment located in the complex space
point

(39)

a result first given by Deschamps in 1971 [9]. Whenbecomes
large, the radiation beam becomes narrow. For the dipole
at the origin is obtained with constant radiation vector. This cor-
responds to the isotropic radiation pattern of the vector poten-
tial while that of the electric field is modified by the dyadic

.
2) Endfire Pattern: As another example, let us take the ra-

diation vector defined by

(40)

where is a natural number . For
this pattern has a single radiation lobe for . The radiation
operator now becomes

(41)

and the source in the operator form is

(42)

To interpret this, we apply the binomial expansion

(43)

and the result can be expressed as

(44)

This corresponds to an array of elementary dipoles with bi-
nomial amplitude distribution and progressive phase, a well-
known structure in classical antenna theory.

3) Broadside Pattern:As an example of a rotationally sym-
metric radiation pattern with a beam radiating normal to the axis
of symmetry, let us consider the radiation vector

(45)

For there is a null along the direction of the-axis. The
radiation operator is

(46)

Because of the operational rule [7], [20]

(47)

The source becomes the constant current line segment

(48)

4) Another Broadside Pattern:Let us study another rota-
tionally symmetric pattern:

(49)

This pattern has only one lobe with maximum for and
minimum for . For large the minimum is small. The
radiation operator is

(50)

From the operational rule [7], [20]

(51)

we obtain the normalized source

(52)

which is an infinite line current along the-axis, whose ampli-
tude has maximum at the origin and decays exponentially for

. For it approaches the delta function, i.e.,
a small current element. This limit corresponds to the constant
radiation vector .

IV. M ULTIPOLE EXPANSION

The radiation operator gives rise to another straightforward
method to find equivalent sources in the form of multipoles by
expressing the far field in terms of spherical harmonics. Let
us again assume that the source and the vector potential have
constant polarization , , in which case we can
work with scalar functions and operators ,

. This limits the polarization of the fields to
TM with respect to the direction of. The TE polarization could
be considered in a similar way in terms of another vector poten-
tial. Another approach through Debye potentials and TE, TM
polarized (with respect to the radial direction) fields is also pos-
sible, but the definition of the source of a Debye potential is not
so straightforward. Also functions and can be
used instead of the potentials with simpler source descriptions,
see [10]. However, to keep the analysis simple enough, let us
limit to TM field problems and scalar formulation.
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A. Spherical Harmonics

Outside the source region the amplitude of the vector poten-
tial can be expanded in spherical harmonics as [11]

(53)

whose every term satisfies the Helmholtz equation. Because in
the far field we have , the vector potential
expression is of the form

(54)

with the radiation function defined as

(55)

The radiation function is uniquely represented by the coeffi-
cients . This is due to the orthogonality of
the spherical harmonics [11]

(56)

The coefficients can be obtained from the radiation function
as

(57)

B. Radiation Operator

Now we can find the scalar radiation operator
by replacing

(58)

(59)

where3 the two complex vectors are defined as

(60)

3A careful reader might note that the producte e would be replaced
by an operator that is not unity. However, the difference from unity equals an
operator containingr + k , which when operating onh (kr) would give a
multiple of the delta function. This means that the operator can be replaced by
unity without changing the field forr 6= 0.

In fact, substituting these in (55) we obtain the spherical har-
monic expansion of the radiation operator as

(61)

Because of the above, the field defined by

(62)

coincides with the original field outside the source area.
Applying the formula

(63)

where denotes -fold differentiation of , the
source of the field can be written as

(64)

This expression represents a multipole source because the oper-
ator operating on the delta function is a polynomial operator in-
volvingderivativesofdifferentorders.Thesameoperatorexpres-
sionwasderivedintheclassicalpapers[12], [13]and,for thestatic
case,alreadybyMaxwell [14], [15], throughaconsiderablymore
complicated analysis than that above, by applying mathematical
relations between thesphericalharmonic functions.

An operator method similar to the multipole representation
above has previously been introduced to the analysis of spherical
near-field scanning, see [16]–[18]. In that method, the receiving
antenna (probe) was expressed as a differential operator oper-
ating on the incident field to produce the measurable voltage.

C. Gaussian Pattern

As an example, let us again apply the multipole expansion
method to the synthesis of the rotationally symmetric Gaussian
radiation pattern. For simplicity, let us take the main radiation
along the -axis. In this case, the radiation pattern can be de-
fined as

(65)
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Using the orthogonality of Legendre polynomials, the coeffi-
cients are found to vanish for and otherwise we
have

(66)

Here, we have applied the integral identity [19, (2.17.5.2)],

(67)

The radiation operator can, thus, be represented as the operator
series

(68)

Invoking a formula from [19, vol. 2, (5.10.3.2)],

(69)

the series can be summed in closed form and the radiation op-
erator becomes quite simply

(70)

Thus, the normalized source becomes

(71)

which is a dipole of moment in complex space. The result
coincides with that in (38).

V. CONCLUSION

The concept of radiation operator was introduced to simplify
the analysis of EM radiation problems. It was seen that it can
be used to express sources of given radiation fields in the far
zone in compact operational form. For the interpretation, ex-
isting tables of operational rules expressing in func-
tional form can be used. The idea was elucidated through
several simple examples. Also, an alternative multipole expan-
sion method was discussed in terms of the radiation operator
and which avoids the use of operational rules because the oper-

ators are polynomial. On the other hand, the coefficients must
be found from integral expressions. The multipole series is not
too attractive if too many multipoles are involved.
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