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The Koch Monopole: A Small Fractal Antenna

Carles Puente Baliard&lember, IEEEJordi RomeuMember, IEEEand Angel Cardamaember, IEEE

Abstract—Fractal objects have some unique geometrical prop-  Inthis paper, the behavior of the Koch monopole is presented.
erties. One of them is the possibility to enclose in a finite area an \While some preliminary results were discussed by the authors in
infinitely long curve. The resulting curve is highly convoluted being - 19] this paper provides an indepth insight to the behavior of the
nowhere differentiable. One such curve is the Koch curve. In this . . ..
paper, the behavior the Koch monopole is numerically and exper- antenng and its relation to the_fu_ndf_;lmental limits of antennas.
imenta”y ana|yzed. The results show that as the number of itera- In Section ”, the fundamental limitations of small antennas are
tions on the small fractal Koch monopole are increased, thé€) of reviewed. In Section Ill, the fractal monopole Koch antenna is
the antenna approaches the fundamental limit for small antennas. described and its input parameters are shown. Both numerical

Index Terms—Fractals, small antennas. and experimental results show that as the number of iterations

in the monopole increase, tkig of the antenna approaches the
fundamental limit for small antennas. The current distribution
along the antenna and the possible existence of a limit in its
RACTAL-SHAPED antennas have already been proved fserformance is discussed in Section IV. Section V shows the
have some unigque characteristics that are linked to the geadiation pattern of the antenna. It is shown that as the frequency
metrical properties of fractals. As it was thoroughly discussediificreases, the asymmetry in the antenna geometry manifests in
[1]-[4], the self-similarity property of fractals makes them spethe radiation pattern. Finally, in Section VI, the possible use of
cially suitable to design multifrequency antennas. In this papéie Koch monopole as a multiband antenna is discussed.
we present and discuss another interesting property of fractal
shapes that has a large potential to increase the performance Ofll. FUNDAMENTAL LIMITATIONS ON SVMALL ANTENNAS
antennas. Some fractal shapes have complex, convoluted shapes
that can enhance radiation when used as antennas. For instancB)is section is devoted to review some aspects regarding
some fractal loops can be designed to enclose a finite surfaseeall antennas. Several authors have extensively worked upon
with an arbitrarily large perimeter. Certain monopoles can ke fundamental limits of small antennas [10]-[17], Chu’'s
designed to have an arbitrarily large length, although they cand Wheeler's work being among the ones that have most
be constrained to fit a given volume. Therefore, it is possible tofluenced further investigations on such a topic. An antenna is
design small antennas that occupy the same volume than tlsgiid to be small when it can be enclosed into a radiansphere,
Euclidean counterparts, but much longer. This interesting prage., a sphere with radius = A/2x. For such antennas, Chu
erty has been used in the design of Frequency Selective Surfaegiablished a fundamental limitation on th@igiven by [17]:
(FSS) [5]. In this case, resonant elements that occupy a small
volume were built after a fractal shape. The underlying poten- 1 1
tiality is to design small and efficient antennas that have a fractal Q= L343 - La @
shape. The implications of such designs, as well as how they re- _ o
late to some well-known antenna restrictions, is discussed in #fBich establishes the lower, fundamental limit of thdactor
following sections. that can be achieved by a linearly polarized antenna. Several

When the size of an antenna is made much smaller than gghors have reported similar results, some of them leading to
operating wavelength, it becomes highly inefficient. Its radf Slightly different expression for (1) [11]. Recently, McLean
ation resistance decreases, while, proportionally, the reacth¥é] has reviewed some of these concepts and has shown that
energy stored in the antenna neighborhood rapidly increadde fundamental limit upon cwcularly polanzed.antennas is of
Both phenomena make small antennas difficult to match to tHee order of one half of that of the linearly polarized ones.
feeding circuit, and when matched, they display a igfi.e., It is important to state that this limit is established regardless
a very narrow bandwidth. The potentiality of fractal shapes f&f the antenna current distribution inside the sphere. Actually,
improving the efficiency of common small antennas has bethe current distribution inside the sphere is not uniquely deter-
suggested by Cohen in [6]-[8]. Based on a numerical methBHned by_thg fiel_d distribution outside the sphere [17], so _several
of moments analysis, he observed that fractal Minkowski loo&/"rent distributions can lead to the sa@éactor. In practice,
presented a low resonant frequency, relative to their electric sigdch a fundamental limit has not ever been reached, being the

Goubau antenna [12] with = 1.5 - Quin One of the lowest
M . . o _ _ Cﬁ reported antennas. Achieving a l@wantenna basically de-
anuscript received September 16, 1999; revised April 6, 2000. This worl . . . . .
was supported by CICYT and the European Commission by Grant FEDE€NAS on how efficiently it uses the available volume inside the
2FD97-0135. radiansphere.
The authors are with the Department of Signal Theory and Communications,|t must be stressed that Chu’s definition of Befactor is a
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Telecommunication Engineering School, Universitat Politecnica de Catalun)éa . .
Spain. eneral concept that applies even when the antenna is not reso-
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implicitly assumed that the extra amount of unbalanced reactive
energy of a nonresonant antenna is externally compensated by
a proper inductor or capacitor at the input terminals. Therefore,
depending on the nature of the predominating energy, the out of
resonancé; factor has to be defined as [18]

K0
VAN,
Q=w 22:6 We > W, @) J\j/\Z_/L K2
JJAU% K3

Q=w 2Won Wi > W, 3)
P.

whereW,,, and W, are the stored and magnetic energies and
P, is the average radiated power. Of course, both definitions
are equivalent if the antenna is self-resonant, which is not useal 1. Different iteration stages of the Koch curve. One stage is obtained by
for small antennas. Prior to Chu’s work, Wheeler introducetpplying the affine transformation of (9) to the previous one.
the Power Factor (PF) concept to characterize small antennas
[10], [13]. He assumed that any small reactive antenna could t
reduced to an equivalent first-order network when operating

low frequencies. Such a network would be either a serial Rt
network or a parallel RL one depending on whether electric ¢
magnetic stored reactive energy predominates at low freque
cies. He defined the PF for such networks as
G G
PR=—0=— W.>W, 4
=5=0 4)
R R
PE, = X" ol Wi > W, ) h=6 cm
with B and X being the radiation susceptance and reactanc
and and R the radiation conductance and resistance, respe
tively. Actually, such definition can be reinterpreted RIS ~ -
1/@, provided that only the radiation resistance or conductanc
is taken into account, and that the contribution of only one of th y

reactive components of the antenna input impedance is signir  x
cant to the overall antenna performance. Also, he stated that t ]
lowest achievable PF is that of a spherical coil filling the volume AN
inside the radiansphere, that is

oma\ - 80 cm

Fig. 2. Five-iteration Koch monopole over the ground plane used in

which is in agreement with the limit established in (1), pror'e ,%?t?j/”g)% Of pxpermental data. The whole length of the element is

vided that the radius of the sphere enclosing the antenna is much
smaller than the operating wavelength.

.

the ideal fractal shape. These IFSs are used to construct certain
fractals. Rather than a rigorous mathematical description that
can be found elsewhere [19], only the relevant points will be
First thought of as a candidate to become a simple multibagdtlined. An IFS is defined by a set of affine transformations. An

antenna, the Koch monopole is an effective example to illugffine transformation in the plane R? — R? can be written as
trate that fractals can improve some features of common Eu-

clidean shapes. Being ideally a nonrectifiable curve, its length oy b Ty (€
grows ag4/3)" at each iteration, the Koch curve has neither a ) c dj)\ 2 f

piecewise continuous derivative. Actually, it is nowhere differ- ) )
entiable, which means that its shape is highly rough and unev¥fierez1 andz are the coordinates of point For short, and

Thus, it appears as a good candidate for becoming an eﬁicigf‘ﬁbth this paper, the affine transformations will be written as

Il. THE SMALL KOCH MONOPOLE

):Ax—H )

radiator. w=[a, b, ¢, d, e, f]. The matrixA can always be written as
A. Antenna Description A= (Treosty —rosindy ) (8)
71 S1n 91 T9 COS 92

The classical Koch curve construction algorithm is very well
known. An lIterative Function System (IFS) algorithm can be In the special case wherg = v, = r, 0 < » < 1, and
applied to generate the succession of curves that convergdtc= 8-, the transformation is a contractive similarity where
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Fig. 3. Input impedance of the different fractal Koch monopoles. Numerically simulated data are in good agreement with measurements. As the number of
iterations in the structure increases the resonant frequency diminishes.

is the scale factor and is the rotation angle. Note that a sim-the starting element is irrelevant to converge to the fractal shape
ilarity is an affine transformation where shear transformatio$9]; however, when analyzing the fractal antenna behavior, it
are not allowed, therefore in similarity, transformation angldeoks especially interesting to compare it with that of the closest
are preserved [20]. The column mattiis just a translation on Euclidean version, i.e., a straight monopole. We will name such
the plane. Following the IFS scheme, the Koch curve can be @estraight monopole as KO (the zeroth iteration of the fractal

fined from the following set of affine transformation: construction), while the remaining objects of the iterations will
be referred to as K1, K2,.., KN. The next iteration K1, is
wi =[1/3, 0, 0, 1/3, 0, 0] obtained by applying the four similarity transformations of (9)

to KO. The next elements are obtained iteratively. The fractal

wa =[1/3,cos60, —1/3sin60, 1/3 cos 60, shape is obtained as the limit element after infinite iterations. Al-

1/3 cos 60, 1/3, 0] though the fractal shape might look too convoluted to be of prac-

ws = [1/3 cos 60, 1/3sin 60, —1/3sin 60, tlca_l appll_catlon, the flrs_t iterations can_be eaglly _prmted over
a dielectric substrate using standard printed circuit techniques.

1/3cos 60, 1/2, 1/2\/3} The fabrication complexity in this case is exactly the same for

the Euclidean antennas and for almost all fractal ones. Since
one is interested in examining the low-frequency behavior, a
high-performance (low-loss) microwave dielectric substrate is
These transformations are scalings by a factor of one-thind longer required. Up to five iterations of the fractal succes-
and rotations by 0, 60,60, O, respectively. Fig. 1 shows thesion were constructed, all of them of the same overall height and
construction process of the Koch curve. The first element of thising the same substrate. The six antennas.(K&5) where
seriesis a straight segment and is called KO. It can be proved thettunted over an 8& 80-cm ground plane and measured over

Wy = [1/37 0, 0, 1/37 2/37 0] 9)
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a 0.1-2 GHz frequency range. The antennas were also hum
cally analyzed using the frequency-domain method of momet
technique. Fig. 2 shows the five-iteration version of the Koc 1400
monopole (i.e., K5), which has an overall height 6 cm, but 1200
a whole length of = A - (4/3)°> = 25.3 cm.

1600

o 1000
B. Input Parameters E 800
The input resistance and reactance of the five measul 600
Koch monopoles, together with the same parameters for 400
linear monopole (KO) are shown in Fig. 3. All antennas ha\
the same height = 6 cm, but of course a different length 200 X
0 — n L L

The method of moments data corresponding to the Euclide 0 1 5 F R "
antenna (K0) and the first three iterations of the fractal one (K iteration number (n)

K2, K3) are also shown for comparison. The copper-etchcu

wire had approximately a rectangular cross section of Wid%. 4. Input resistance (lossless) for the different fractal Koch monopoles.
w = 200 pm and thicknesg = 35 um, except for the K5 The frequency is the resonant frequency of the KO monopole.

model where the wire width was reduceduto= 150 um. To
get the best match between experimental and numerical d:
an equivalent radius af = 120 ;zm was considered following

Radiation Resistance Ohmic Resistance --~:-:-

T

the equivalent radius approach outlined in [21]. It is appare ‘, : 3 K2 |
that a good match between numerical and experimental dati -~
obtained. 1000 Small Antenna

Some interesting conclusions can be derived from the ing Limit kh<1
parameters plot. First of all, in the low-frequency region, th ‘
input resistance increases with the number of iterations wh
comparing the six characteristics at a given frequency. Wh
the linear monopole input resistance becomes very small bel 100
the first resonance (0.9 GHz), the K5 model is about its inp
resistance maximum value. Fig. 4 shows the drive resistance
crease with growing fractal iterations for a fixed frequency (tk
first monopole resonant frequency has been chosen in this ca
Analogously, the input-reactance plot evinces that resonant f
guencies are consistently shifted toward the lower frequency
gion at each fractal iteration. In particular, even though all t
Koch models can be considered small antenkéas£ 1) for
f < 0.8 GHz, they are self-resonant, i.e., they have a vanishil
input reactance without the need of an external compensat
reactive element. The longest antenna (K5) reaches its sec
resonance at about the same frequency where the linear dig
has its first resonance.

Also, an equivalent input resistance due to ohmic losses w
computed at each frequency by integrating the square of |
current distribution over the whole antenna length. The skin ¢
fect was also taken into account thereby assuming an equival
cylindrical wire cross section as described in [21]. Fig. 5 shov 06 08 10 12 14 16 18
the evolution of the drive-resistance radiation and the ohnm Jrequency (GHz)
losses considering an antenna made of copper. As expected, uic
results show an increment in the antenna ohmic resistance WBEJUS. Computed radiation and ohmic resistance. As the number of iterations
the number of iterations is increased. Fig. 6 shows that the ohrmigeases, so does the antenna length and its ohmic resistance.
efficiency of the antenna is slightly reduced at each iteration;
however, the ohmic efficiency is above 0.9 even in the small ative antenna to be resonant even below the small antenna limit.
tenna region. Such a frequency shift makes the input resistance appear consis-

) tently larger in the fractal case than in the linear monopole one.
C. The Quality Factor However, one must take into account that not only the input re-

It has been shown that the fractal Koch antenna improvsistance is raised, but also that the input reactance is increased.
some features of a classical linear monopole when operating ascaually, a figure of merit of the small antenna is {sfactor,
small antenna. Namely, resonant frequencies are shifted towastiich can be loosely estimated as the input reactaicg) to
the longer wavelengths at each fractal growth iteration, makingdiation resistancef.) ratio.

Resistance (1)

10
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quencies where fast variations on the input parameters are ob-
tained.

KO To properly evaluate the antenfih one must find a proper
way to estimate either the average stored electric or magnetic

///:/ '—‘\ Kl \ energy and apply the definitions in (2) and (3). The average

stored electric and magnetic energies of a lossless one-terminal

_\ microwave network can be related to the input reactaitg)(
and susceptance3(,,) as

|
|
| | ‘ »
2 // : \ K2 / |I|2 dX;, X |V|2 dBi, B,
: | =< \7 7)== |7 11
E - 5 \/ e 8<dw w) 8<dw+w>()
|
15} | |I|2 dX,, X |V|2 dBi, B.,
I Wrn =— | — —_— = | - _ 12
'§095 / / | , 8<dw+w> =) @
- ]
E / / / i \ / wherel andV are the input terminals current and voltage, re-
: spectively. Since the power dissipated by the antenna is
1
|
/ / / 5 \/ Pp = 3| Rin = 3|V*Gin (13)
|
|

K3 the @ factor, as defined in (2) and (3), can be computed as
« y  Small Antenna
2R, \ dw w

w dXin Xin
= Wrn We 15
Q=5 () SW.,  (15)

dw w

b Limit kh<l dX. X
// | Q= ( L ) W.>W,  (14)
]
i
i
I
I
]

L [l
02 04 06 08 10 12 14 16 18 oOrequivalently as
frequency (GHz)

0.9

Xin
W

Q

_ w dX in
o 2R, dw

Fig. 6. Efficiency of the Koch monopoles. At each new iteration there is a

) . (16)
small reduction on the efficiency due to ohmic losses. The conductivity of . .
copper has been considered in the computations. One must be reminded that (11) and (12) only strictly apply

to one-port lossless network, but they become a good approxi-

mation for low-loss high? networks, which is the case of small
The @ factor of the Koch antennas has been computed frofyiennas. Actually, the definition in (15) is the same Chu uses

both experimental and numerical data. Théactor, rather than , his paper [17] to derive the antenida fundamental limit.

the Wheeler's PF [10], has been _chosen to check the ante%aﬂon (16) has been applied to compute ¢héactor over
performance because the latter might lead to some wrong cgfls |ow-frequency range for the Euclidean and Koch fractal an-
clusions in this case. Both parameters are equivalent at the VRiynas (Fig. 7). Both experimental and numerical data have been
low-frequency range when the antenna is operated far from rggaq |n the latter case, ideal lossless Koch antennas have been
onance. Atsuch a low-frequency region, hean be computed ¢qnsidered to evaluate the anteathat is, only considering

from the input impedance data as power dissipation due to radiation. This has been done because
the experimental data includes the ohmic resistance that lowers
0~ 1 ~ Xin_ (10) the overalkl, which might lead us to the wrong conclusion that
PF R, the@ reduction was only due to an increase of the ohmic losses.

The plot in Fig. 7 clearly shows that the fractal antenna not only

In such a very low-frequency range, the Wheeler cap methptesents a lower resonant frequency and a larger radiation resis-
[10], [15], can be used to estimate the antenna ohmic resistatenece, but it also improves thg factor of the linear monopole.
and subtract it from the input resistance to evaluate the true éma loose sense, su€hcan be interpreted as the inverse of the
tenna radiation resistance. However, even though the measuradtional bandwidth, which means that the fractal antenna fea-
Koch antennas can be considered small, neither the Wheeler taps a broader bandwidth than the Euclidean one. Up to 1.6-
method can be applied, nor its PF computation is straightfdrandwidth improvement is obtained when comparing the ideal
ward. Since the fractal monopoles are resonant, the contributlossless monopole and K3 antenna, while up to a 2.25-band-
of the inductive component to the input impedance extends welidth enhancement is obtained when comparing the monopole
beyond the small antenna limit. If one directly applied (10), ongith the K5 antenna, which, however, has the contribution of
would get the wrong conclusion that a zepo(and an infinite larger ohmic losses. Anyway, it is clear that fQefactor is re-
PF) were achieved at resonance. Also, the Wheeler cap metdoded at each fractal growth iteration and that, the larger the
might lead to a wrong radiation resistance measurement simeanber of iterations, the closer tiieto the fundamental limit
the metallic cap would slightly shift the antenna resonant fréhe fundamental limit expressed in (1) is also shown for com-
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Fig. 7. @ of the fractal Koch monopoles for different levels of iteration. As the
number of iterations increases tfpeapproaches the fundamental limit of (1). Fig. 8. Current distribution on the K3 monopole.
parison). It is commonly understood that an ante@htactor 5 —
depends on how efficiently it uses the available volume insic 2> | e
the radiansphere. As stated by Hansen in [11], being the lin S 4t o
dipole a one-dimensional (1-D) objedd (= 1), it inefficiently § | -7
exploits such a radiansphere volume. Thus, it is not surprisi 3 N =1 -
that a fractal curve, featuring a fractal dimensibn> 1 (D = & iad
.. D B -
1.262 for the Koch monopole), can become a more efficier E 5 -7
small antenna. Actually, fractal dimension is commonly loose  § R . w ¢
interprete_d as a measure of the space-filling prop_erties of 1 § & —* -
fractal object. Therefore, one should conclude again that the g 1
exists a relation between the fractal geometric properties and i
electromagnetic behavior of the antenna, and that such pr 0 ; ‘ .
g b 1.5 2 2.5 3 3.5 4 4.5 5

erties can be readily employed to design useful antennas t

. . . normalized physical length (1)
might improve some features of common Euclidean ones.

Fig. 9. Performance of the fractal Koch monopole as the number of iterations
increase. The electrical length of the antenna increases at a smaller rate that the
physical length.

The peculiar behavior of the Koch monopole must be linked
to its geometrical shape. It is apparent that even though allFig. 8 shows the current distribution along the K3 monopole
models have the same height, they perform as longer antenob&ined from the method of moments analysis. The length of the
than what would be predicted from their height alone. It seer®8 monopole has been normalized to the length of the straight KO
that the electrical current propagates along the whole wingonopole{ = 6cm). Several frequencies of interest are shown
length despite its shape such that the longer the whole witepetter understand the behavior of the antenna. For comparison,
the lower the resonant frequencies, regardless of antenna $imecurrentdistributionforthe KOmonopoleis shown forthe same
(height). frequency. Atthe firstresonance of the K3 monopole, its lengthis

IV. CURRENT DISTRIBUTION
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0.5973 GHz

f=

0.7957 GHz

f

0.9052 GHz

f

1.70 GHz

f

Fig. 10. Computed radiation pattern of the K3 antenna. The dashed line shows for comparison the pattern of the KO antenna. For a reference @ft¢he coordin
system, see Fig. 2.

I/A = 0.28,andthe currentdistribution along the K3 monopolaherer is the order of the iteration. Second, we define the nor-
is very similar to the one of a quarter-wave length monopole. Atalized electrical lengtl. as the normalized physical length
the small antenna limit¢h = 1)the currentdistribution onthe that a monopole should have to have the first resonance at the
KO monopole is, as expected, triangular. At the same frequensgme frequency of a given Koch monopole, that is

the K3monopole being 2.37 timeslonger, has asinusoidal current 0

distribution. At the frequency of resonance of the KO monopole, le = (4/3)" f_’ (18)

the K3monopole hasalengthdfi3 A, andits currentdistribution fr

approaches the one of a half-wave length monopole. Finally, ififiere f° and f are the resonant frequencies of the KO and K
current distribution is shown for the case K3 monopole, Whi(&htennasi respective'y_ F|g 9 shows a p|0t of the evolution of
hasa Iength 0§.97 . Atthat frequency, as will showninthe nextthe electrical |ength as a function of the physica| |engd-jhf0r
section, the pattern ofthe monopole becomesasymmetrical. each new iteration of the Koch monopole.The current distribu-
The current distribution along the Koch antenna suggests tfjah shown for the K3 antenna might suggest that the evolution
an arbitrarily small resonant antenna could be obtained by ifould be close td, = 1, that is, the electrical length of the
creasing the number of fractal iterations as much as desiredg$fenna increases as the physical length. But, in fact, although
the length of the monopole approaches a quarter-wave leng{e electrical length of the antenna increases at each iteration, it
Nevertheless, a detailed observation of the results shows a a-kﬁ'es not grow at the same pace of the physica| |ength It m|ght
ferent picture. To gain some insight on the behavior of the Kogiyen be foreseen as a saturation point, where an increment on
monopole, the following two parameters are defined. First, WBe number of fractal iterations does not result in an increment
define the normalized physical antenna lendf}) &s the total of the electrical size of the antenna. This is probably related to
length of the antenna normalized to its height, that is the fact that small details in terms of the wavelength are not
relevant to the antenna behavior. Whether this limit value ex-
I, =(4/3)" (17) ists, and if it exists, what its value is, does not have a formal
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proof. Even the numerical or empirical determination is diffi

cult. The exponential growth of the number of segments as t O =
fractal iteration increases leads to a huge numerical problem 5 \//\\]p [\ bl KO
a relatively small number of iterations. On the other hand, di il U ! R /\ /\ /\
to a resolution limitation in the manufacturing process there Ay / v { i WT
a technical problem in obtaining Koch antennas with a hig % I'. ‘:f \ \':-' \ /\ /{ '."/\ (\ ",| : f—d
number of iterations. _ ! i H H v \: /
I L 11
v R ¢ 10 [ i i
. RADIATION PATTERN = \ U "."
12 o
The radiation pattern for the K3 monopole at the same fr XS U ‘ | '
guencies of the current distributions of Fig. 8 is shown in Fig. 1 14
The patterns have been computed as a dipole. The results s -16
that for an antenna length smaller th@87), the pattern cor-
responds to the one of a small antenna, and it is practically 1 18
same of the KO antenna. When the length of the antenna i,  -20 : 2 3 7y = c - 5 9
proached A, two interesting phenomena appear. First, the nt f (GHy)

in the z direction disappears. Probably due to the fact that the
radiation of they component of the current does not cancel ogg. 11. Measured input return loss of the K5 and KO antennas. The behavior
anymore. It is also interesting to note that the pattern ithe of th_e input return loss of the K5 antenna suggests a harmonic, rather than a
: - : Itiband, behavior.
plane is asymmetrical. It has to be noted that at this frequenty,
the overall height of the antenna/is= 0.34, and thus larger
than the small antenna limit. Therefore, the phase contribution
due to different path-length propagation becomes noticeable int has been experimentally proven that certain fractal antennas
the two abovementioned effects. can be very efficient radiators despite their small size in terms
of the wavelength. It is well known that there are certain phys-
ical constrains to the performance of electrical small antennas.
VI. THE LONG KOCH MONOPOLE It has been shown that Euclidean-shaped antennas are very far
) ) ) ) ) . fromreaching their limit performance. It has been suggested that
A final consideration on the possible multiband behavior gfis hoor hehavior is due to the inefficient way that these shapes
the Koch monopole can be made. As shown in [4], the self-sifiy 1 the volume that encloses them. On the other hand, the
ilarity properties of certain fractal shapes results in a multibagg, ot counterparts of these antennas having a larger fractal di-
behavior of the antenna. That s the case of the Sierpinski gaskg§bnsion are more efficient in filling up the space. The result is
In plain words, self-similarity can be described as the replicgntennas that approach the theoretical limits for small antennas.
tion of the geometry of the structure at a different scale withiphe practical applications can be readily seen. In a large number
the same structure. Any fractal defined with an IFS that Contaiﬂﬁappncaﬂon& and especia”y those invo|Ving mobile terminals,
only similarities is self-similar [20]. This is the case of the tranghe reduction of the antenna size is an ultimate goal. The pos-
formations of (9) that define the Koch curve. On the other hanglpility to employ antennas that fit in smaller volumes, but still
an inspection of the geometry of Fig. 2 shows that the lower thitéve an efficient behavior, is certainly appealing. The proof of
of the curve is a replica of the whole curve, but scaled down loye existence of a limit in the performance of the antenna as the
one-third. To check the possible multiband behavior of the anumber of fractal iterations increases is still a challenging re-
tenna, the input return loss of the K5 antenna was measured aseirch topic.
a wide frequency range. The results shown in Fig. 11 suggest a
harmonic behavior rather that a multiband behavior. For com- ACKNOWLEDGMENT
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