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Letters__________________________________________________________________________________________

Derivation of a Condition for the Normal Gain Behavior of
Pyramidal Horns

Krishnasamy T. Selvan

Abstract—The pyramidal horn exhibits a normal monotonically
increasing gain versus frequency characteristic, only when its axial length
is more than a certain minimum value for given aperture dimensions. In
this letter, approximate equations are derived for estimating this minimum
axial length.

Index Terms—Normal gain behavior, pyramidal horn gain,
Schelkunoff’s formula.

I. INTRODUCTION

A monotonically increasing gain with the operating frequency has
been considered to be a salient feature of aperture antennas [1] that in-
clude pyramidal horns. The practical usefulness of this feature, which
is conditional upon the aperture efficiency remaining constant with fre-
quency, is that it allows the designer to be confident of obtaining a cer-
tain minimum gain.

Optimum gain pyramidal horns [2], [3] exhibit such a “normal” gain
versus frequency pattern, if the periodic variations in the gain curve
[4], [5] are not considered. But what could be an explicit condition for
nonoptimum, or short horns, to display this behavior? It is the intent of
this letter to address this question.

Considering the geometry of the pyramidal horn shown in Fig. 1, the
E- andH-plane phase errors in wavelengths are approximately given
by

s =
b21
8�l1

t =
a21
8�l2

(1)

wherel1 = l2E � b21=4 andl2 = l2H � a21=4. Thus the phase error
depends only on the axial length for a fixed aperture. Gain depends
on phase error through the reduction factorsRE andRH [6]; and, the
larger the initial phase error, the more sensitive the gain becomes to
further variations in it [7]. Therefore, it should be expected that if the
initial phase error is more than a certain value, further increase in the
error as frequency increases will so affect the gain as to decrease it with
frequency. Thus, for a certain aperture, a minimum axial length is re-
quired for the pyramidal horn to preserve its “normal” gain behavior.
We will now derive approximate expressions for determining this min-
imum axial length.

II. A PPROXIMATION FORGAIN REDUCTION FACTORS

Schelkunoff’s horn gain equation can be written as [8]

g(f) = 113:3a1b1f
2 10�(D +D )=10 (2)
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wherea1 andb1 are inm, andf is frequency in GHz.DH andDE are
theH- andE-plane gain reduction factors in dB, with the following
polynomial approximations [8]:

DH =(0:01�)(1 + 10:19�+ 0:51�2
� 0:097�3) (3)

DE =(0:1�2)(2:31 + 0:053�) (4)

where

� =
a21f

0:3l2
� =

b21f

0:3l1
: (5)

These polynomial approximations give a fairly accurate representa-
tion of the gain reduction factors for0 < �; � < 6. This is fine in
practical considerations as most horns have0 < �; � < 4 [6]. It can
be shown that further simplification of (3) by avoiding the fourth-de-
gree term does not significantly affect its accuracy for0 < � < 6.
Therefore, we will use the following approximation forDH in our fur-
ther discussions:

DH = (0:01�)(1 + 10:19�+ 0:51�2): (6)

III. M INIMUM AXIAL LENGTH

The problem is to determine the minimum axial lengthL such that
g(f) remain a monotonically increasing function in the desired fre-
quency rangef1 � f � f2.

In terms of axial lengthL, � and� can be written as

� = y
f

L
� = z

f

L
(7)

where

y =
a1(a1 � a)

0:3
z =

b1(b1 � b)

0:3
: (8)

By using (4), (6), and (7), (2) can be written as

g(f) = 113:3a1b1f
2 10�[� (f=L)+� (f =L )+� (f =L )] (9)

where

�1 = 0:001y

�2 = 0:01019y2 + 0:0231z2

�3 = 0:00051y3 + 0:00053z3: (10)

In order to be a monotonically increasing function in the rangef1 �
f � f2, the derivative ofg(f) must be greater than zero in this range.
In mathematical terms

loge 10 �3�3
f3

L3
� 2�2

f2

L2
� �1

f

L
+ 2 > 0: (11)

By introducing the new variablex, we now make the substitution
f = xL in (11). Then, dividing the resulting equation by3�3 and
multiplying by�1, (11) becomes

x3 +
2�2

3�3
x2 +

�1

3�3
x�

2

3�3 loge 10
< 0: (12)

Equation (12) has to be satisfied in order thatg(f) monotonically in-
creases in the frequency bandf1 � f � f2. Fig. 2 illustrates the typical
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Fig. 1. Geometry of pyramidal horn.

behavior of the cubic equation (12). Thus, (12) has three real roots, of
which only one is positive for physically realizable horns. This positive
rootx1 of (12) is given by the following [9]:

x1 = (s1 + s2)�
c2

3
(13)

where

s1 = p+ q3 + p2
1=3

(14)

s2 = p� q3 + p2
1=3

(15)

c2 =
2�2
3�3

(16)

p =
1

6

2�1�2
9�2

3

+
2

�3 loge 10
�

1

27

2�2
3�3

3

(17)

q =
1

9

�1

�3
�

2�2
3�3

2

: (18)

It maybe noted thats1 ands2 form a complex conjugate pair.
If f2 is the upper frequency, then we have, with reference to Fig. 2

Lmin =
f2

x1
(19)

as the minimum axial length required for a horn with0 < �; � < 6. It
may be noted that this length will always be less than the “optimum”
length, i.e., the length of a horn designed to offer optimum gain. Subject
to the horn having a minimum axial length given by (19) for given
aperture, it will display normal gain behavior in its frequency band.

For the case of a horn with the aperture dimensionsa1 = 10:2 cm,
b1 = 8:3 cm in the frequency range 18–26.5 GHz, (19) predicts a
minimum axial lengthL of about 20 cm. If for example, an axial length
of 16 cm is chosen instead, the gain starts falling at about 23.5 GHz, as
shown in Fig. 3.

IV. SUMMARY

Approximate expressions were derived for estimating the minimum
axial length required by pyramidal horns with0 < �; � < 6 to ex-

Fig. 2. Typical behavior of cubic equation (12) for pyramidal horn.

Fig. 3. Gain pattern for aK-band horn with less than minimum required axial
length. The dimensions area = 1:1 cm,b = 0:43 cm,a = 10:2 cm,b = 8:3

cm,L = 16 cm.
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hibit normal monotonically increasing gain behavior. If more general
formulas are desired for determining the minimum axial length, then
the gain reduction factors must be employed without approximations.
This would, of course, be possible but more involved.
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A Multiresolution Method for Simulating Infinite
Periodic Arrays

Dejan S. Filipović, Lars S. Anderson, and John L. Volakis

Abstract—Hierarchical mixed-order tangential vector finite elements
(TVFEs) for tetrahedra are attractive for accurate and efficient analysis
of a wide class of electromagnetic radiation and scattering problems. They
provide versatile geometrical modeling and accurate field representation
by allowing combination of lowest and higher order TVFEs. In this letter,
the finite-element boundary-integral (FE–BI) method with hierarchical
TVFEs for tetrahedra is used for analysis of infinite, doubly periodic
antenna arrays. It is shown that accurate prediction of array scanning
properties can be obtained by using higher order TVFEs in the regions
where large fields and rapid field variations are expected and lowest order
TVFEs elsewhere. This is demonstrated in the case of a microstrip patch
array.

Index Terms—Antenna arrays, finite-element methods, periodic struc-
tures.

I. INTRODUCTION

The infinite array model accurately predicts the scanning properties
of the vast majority of antenna elements within a large finite phased
array. Applying Floquet’s theorem [1] and the appropriate boundary
conditions, the infinite array geometry can be reduced to a single peri-
odic cell, referred to as a unit cell. This significantly reduces the com-
putational domain and an appropriate full wave method can then be
used for array simulation. In the past, mode matching and the spectral
domain method of moments (MoM) have been used, but for better mod-
eling of the feed structure and/or volumetric inhomogeneities within
the unit cell, techniques such as the hybrid MoM or finite-element
methods (FEMs) are more attractive.

Pozar and Schaubert [2] applied the spectral domain MoM to sim-
ulate the scanning properties of infinite periodic arrays of microstrip
patches, whereas Tsay and Pozar [3] applied a hybrid MoM/Green’s
function method for modeling printed arrays associated with volu-
metric inhomogeneities within the grounded substrate of the unit cell.
McGrath and Pyati [4] employed the lowest order tetrahedral tangen-
tial vector finite elements (TVFEs) for expanding the electric field
within the unit cell in conjunction with a Floquet modal expansion.
Lucas and Fontana [5] used a similar approach but applied second
order tetrahedral TVFEs. Eibertet al. [6] applied the finite-element
boundary-integral (FE–BI) method with prismatic TVFEs and the
free-space infinite periodic Green’s function to simulate a wide class
of complex periodic geometries.

In this letter, we apply multiresolution field modeling within a hy-
brid FE–BI formulation for simulating infinite, doubly periodic an-
tenna arrays. We use the hierarchical mixed-order tetrahedral TVFEs
recently introduced by Andersen and Volakis [7] to obtain a computa-
tional model that accurately predicts the overall array behavior. Since
the properties of hierarchical TVFEs allow for simultaneous use of
lowest and higher order TVFEs within the same computational domain,
we use higher order TVFEs only within and near the regions associated
with highly varying field intensities. The lowest order TVFEs are em-
ployed elsewhere to achieve an accurate and efficient field modeling.
We show that combining mixed-order TVFEs allows for much coarser
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Fig. 1. Geometry of an infinite, 3-D doubly periodic antenna array.

Fig. 2. Infinite periodic microstrip patch array:(Dx;Dy; Px; Py; Fx;

Fy; d) = (5; 5; 3; 3; 0:75;1:5;0:2) cm, � = 2:55.

discretizations as compared to using only the lowest order TVFEs. As
a result, the number of unknowns and CPU time are substantially re-
duced. To demonstrate the effectiveness of the hierarchical TVFEs, we
simulate a microstrip patch array and give comparisons with more tra-
ditional implementations based on the lowest order tetrahedral and pris-
matic TVFEs.

II. FORMULATION

Consider an infinite, doubly periodic printed antenna array on a mul-
tilayered, possibly inhomogeneous substrate, as depicted in Fig. 1. We
decompose the infinite periodic array structure down to a single unit
cell and employ the FEM with the appropriate periodic boundary con-
ditions (PBCs) at the side walls to model the unit cell volume [4], [6].
To truncate the finite element mesh on the top and/or bottom of the unit
cell aperture, a BI method is applied in conjunction with the free space
infinite periodic Green’s function whose computation is accelerated by
Ewald’s transformation [6]. It is important to note that use of the FEM
for modeling the substrate material inherently provides the freedom to
analyze various inhomogeneities within the substrate.

(a)

(b)

Fig. 3. Broadside scanning input (a) resistance, and (b) reactance for the
infinite patch array whose unit cell is given in Fig. 2.

Choosing hierarchical mixed-order tetrahedral TVFEs for volume
tessellation [7], the electric field within the computational domain can
be expanded using six vector basis functions per mixed-order tetrahe-
dral TVFE of order 0.5 (H0 TVFE) and 20 vector basis functions per
mixed-order tetrahedral TVFE of order 1.5 (H1 TVFE). In this manner,
regions expected to have rapid field variations can be modeled using
higher order TVFEs, whereas regions with slowly varying fields can
be modeled using lower order TVFEs. Use of various polynomial or-
ders for field expansion within the same computational domain (unit
cell) forms the basis of our multiresolution modeling approach. Note,
however, that the term multiresolution is not associated with wavelet
type basis functions.

Since the edge-based vector basis functions for the H0 TVFE re-
duce to the Rao–Wilton–Glisson vector basis functions [8] on the unit
cell aperture, the latter elements are natural for representing the aper-
ture field in conjunction with the infinite periodic free space Green’s
function. To close the computational domain, PBCs are imposed on the
vertical side faces of the unit cell through the matrix element transfor-
mation algorithm [4]. However, this algorithm is generalized to include
the case where H1 TVFEs bound the vertical side faces of the unit cell.
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We note that when lowest and higher order TVFEs are used in a mul-
tiresolution fashion, faces and edges at any boundary between them are
treated using the lowest order expansion to preserve continuity of the
tangential component of the electric field.

III. RESULTS

Let us consider the microstrip patch array shown in Fig. 2. Our
aim is to use this geometry for demonstrating the effectiveness of the
proposed multiresolution modeling approach. The input impedance at
broadside is computed using various TVFEs and discretizations: 1)
prismatic TVFEs [9] with�0/40 sampling and 2744 unknowns; 2) tetra-
hedral H0 TVFEs with 2544 unknowns; 3) tetrahedral H0/H1 TVFEs
with 25.5% H1 TVFEs in the unit cell and 4822 unknowns; 4) tetrahe-
dral H0/H1 TVFEs with 73.4% H1 TVFEs in the unit cell and 10 360
unknowns; 5) tetrahedral H1 TVFEs and 13 127 unknowns. When em-
ploying tetrahedral tessellation, the sampling is approximately�0/28
and tetrahedral elements are obtained by splitting each prism into three
tetrahedra. H1 TVFEs are placed around the radiating edges as shown
in Fig. 2 to improve the field modeling in the vicinity of these regions
where the field is expected to be highly varying.

As seen from Fig. 3, the multiresolution expansion generates sig-
nificantly more accurate results for the input impedance as compared
to using only the lowest order TVFEs. Results associated with using
H1 TVFEs within 25.5%, 73.4%, and 100% of the unit cell region
are almost identical and agree very well with those based on pris-
matic TVFEs. From Fig. 3, we also observe that the computed input
impedance and broadside resonant frequency cannot be accurately de-
termined when nominal sampling is used unless higher order TVFEs
are employed (the broadside resonant frequency calculated using MoM
is 3 GHz [2]). Basically, when using only the lowest order TVFEs, the
mesh has to be significantly denser to give comparable accuracy. Of
importance is also that higher order TVFEs can be introduced without
retessellation and at any arbitrary location without concerns of ele-
ment to element discontinuities. However, it is important to note that
use of higher order TVFEs should be kept to a minimum, not only for
reducing the number of unknowns, but also to keep the matrix con-
dition number as small as possible. We note that the corresponding
E-plane andH-plane scanning reflection coefficients agree very well
with MoM [2] data and data based on prismatic TVFEs, provided a cer-
tain percentage of higher order TVFEs are introduced.

IV. CONCLUSION

In this letter, we introduced a multiresolution hybrid FE–BI method
for modeling infinite doubly periodic antenna arrays. We showed that
by using hierarchical mixed-order tetrahedral TVFEs and combining
lowest and higher order TVFEs within the computational domain, the
accuracy of the field modeling is dramatically improved and the array
scanning properties are therefore more accurately evaluated. Higher
order TVFEs were used only within those regions where large fields
and/or rapid field variations occurred, whereas lowest order TVFEs
were used elsewhere. This allowed for the use of coarse meshes and
led to significant CPU time and memory savings.
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