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Derivation of a Condition for the Normal Gain Behavior of
Pyramidal Horns
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wherea; andb; are inm, andf is frequency in GHzD 4 andD /. are
the H - and E-plane gain reduction factors in dB, with the following
polynomial approximations [8]:

Dy =(0.01a)(1 + 10.19a + 0.51a” — 0.0970”) (3)
_ i , Dg =(0.15%)(2.31 + 0.0533) (4)
Abstract—The pyramidal horn exhibits a normal monotonically
increasing gain versus frequency characteristic, only when its axial length where
is more than a certain minimum value for given aperture dimensions. In
this letter, approximate equations are derived for estimating this minimum a%f 5 b%f .
axial length. =03 T 0sn ®)
Index Terms—Normal gain behavior, pyramidal horn gain, Th | ial . . . fairl
Schelkunoff's formula. . ese po ypomla approxmatlons give a ,alr y accu_ratg rgprgsenta-
tion of the gain reduction factors fér < «, 3 < 6. This is fine in
practical considerations as most horns héwve «, 7 < 4 [6]. It can
I. INTRODUCTION be shown that further simplification of (3) by avoiding the fourth-de-

A monotonically increasing gain with the operating frequency hd €€ term does not significantly affect its accuracyor o < .

been considered to be a salient feature of aperture antennas [1] thaﬂ?’ﬁrefore’ we will use the following approximation Bt in our fur-

clude pyramidal horns. The practical usefulness of this feature, Whi@?r discussions:

is conditional upon the aperture efficiency remaining constant with fre-
quency, is that it allows the designer to be confident of obtaining a cer-
tain minimum gain.

Optimum gain pyramidal horns [2], [3] exhibit such a “normal” gain
versus frequency pattern, if the periodic variations in the gain curve ) ) o )
[4], [5] are not considered. But what could be an explicit condition for 1he problem is to determine the minimum axial lengtisuch that
nonoptimum, or short horns, to display this behavior? It is the intent 6f./) remain a monotonically increasing function in the desired fre-
this letter to address this question. quency rang¢; < f < fo. _

Considering the geometry of the pyramidal horn shown in Fig. 1, the In terms of axial lengti., « and/3 can be written as

D = (0.01a)(1 + 10.190 + 0.510%). (6)

Il. MINIMUM AXIAL LENGTH

E- and H -plane phase errors in wavelengths are approximately given f f
by a=yz ;32:5 (7)
2 2 where
o= = (1)
8k11 8)\12 _ dl(th - (L) S bl(bl - I)) (8)
T 03 03

wherel; = /1% — b?/4 andl; = /13, — a? /4. Thus the phase error
depends only on the axial length for a fixed aperture. Gain depend
on phase error through the reduction factBis and R;; [6]; and, the g(f) = 113.3a1b; f2
larger the initial phase error, the more sensitive the gain becomes to ’
further variations in it [7]. Therefore, it should be expected that if thgnere
initial phase error is more than a certain value, further increase in the
error as frequency increases will so affect the gain as to decrease it with
frequency. Thus, for a certain aperture, a minimum axial length is re-
quired for the pyramidal horn to preserve its “normal” gain behavior.
We will now derive approximate expressions for determining this min-
imum axial length.

SBy using (4), (6), and (7), (2) can be written as
{10—[“1(.f/7‘)+0'2(.f2/742)+0'3(f3/7/3)]} )

a1 = 00017]
az = 0.01019y% + 0.023122

as = 0.00051y" 4+ 0.000532°. (10)
In order to be a monotonically increasing function in the rafige
f < f», the derivative ofy(f) must be greater than zero in this range.

Il. APPROXIMATION FORGAIN REDUCTION FACTORS In mathematical terms

3 2
log, 10<—3013 % — 200 % — ay %

Schelkunoff’s horn gain equation can be written as [8] ) 41250 (11)

g(f) = 113.3a1b1 f° |:107(DH+UE)/10:| @

By introducing the new variable, we now make the substitution
f = «L in (11). Then, dividing the resulting equation Bws; and
multiplying by —1, (11) becomes

w1 2

3 2 2 o <
3as 3as log, 10

+ ="+

0.
3&3

@ (12)
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ISE'quation (12) has to be satisfied in order thaf) monotonically in-
creasesinthe frequency bapd< f < f.Fig. 2illustrates the typical
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Fig. 1. Geometry of pyramidal horn.

behavior of the cubic equation (12). Thus, (12) has three real roots, of 4
which only one is positive for physically realizable horns. This positive
rootz of (12) is given by the following [9]:
1?1:(81+82)—%2 (13)
(8]
where - 0
1/3
51 = [p + V¢ +p2] (14)
1/3
So = [ — V¢ —1—7)2] (15)
o = 202 (16)
3ag
1 [2aia0 2 1 (2as)° -
p= 6 |: 903 + aslog, 10:| Y <%> () -30 0 30
N X
1o [202)° (18)
= 9 [ a3 3o ) Fig. 2. Typical behavior of cubic equation (12) for pyramidal horn.
It maybe noted that; ands> form a complex conjugate pair. 20.8

If f» is the upper frequency, then we have, with reference to Fig. 2

. 22.7
Ln1in = E (19)
i)
as the minimum axial length required for a horn with. «, 3 < 6. It 2
may be noted that this length will always be less than the “optimum”

length, i.e., the length of a horn designed to offer optimum gain. Subject £ 22.5

to the horn having a minimum axial length given by (19) for given &

aperture, it will display normal gain behavior in its frequency band. 22.4
For the case of a horn with the aperture dimensions= 10.2 cm,

by = 8.3 cm in the frequency range 18-26.5 GHz, (19) predicts a 22.3

minimum axial lengthl of about 20 cm. If for example, an axial length

of 16 cm is chosen instead, the gain starts falling at about 23.5 GHz, as 22.2 L ' ! I

shown in Fig. 3. 18 20 22 24 26 28
Frequency, GHz

IV. SUMMARY

g.3. Gain pattern for & -band horn with less than minimum required axial
Approximate expressions were derived for estimating the mlnlmupghgth The dimensions are= 1.1 cm,b = 0.43 cm,a; = 10.2 cm,b, = 8.3

axial length required by pyramidal horns with< «, 3 < 6 to ex- cm,L = 16 cm.
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hibit normal monotonically increasing gain behavior. If more general A Multiresolution Method for Simulating Infinite

formulas are desired for determining the minimum axial length, then Periodic Arrays

the gain reduction factors must be employed without approximations.

This would, of course, be possible but more involved. Dejan S. Filipovi¢ Lars S. Anderson, and John L. Volakis
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Pozar and Schaubert [2] applied the spectral domain MoM to sim-
ulate the scanning properties of infinite periodic arrays of microstrip
patches, whereas Tsay and Pozar [3] applied a hybrid MoM/Green’s
function method for modeling printed arrays associated with volu-
metric inhomogeneities within the grounded substrate of the unit cell.
McGrath and Pyati [4] employed the lowest order tetrahedral tangen-
tial vector finite elements (TVFESs) for expanding the electric field
within the unit cell in conjunction with a Floquet modal expansion.
Lucas and Fontana [5] used a similar approach but applied second
order tetrahedral TVFEs. Eibeet al. [6] applied the finite-element
boundary-integral (FE-BI) method with prismatic TVFEs and the
free-space infinite periodic Green’s function to simulate a wide class
of complex periodic geometries.

In this letter, we apply multiresolution field modeling within a hy-
brid FE-BI formulation for simulating infinite, doubly periodic an-
tenna arrays. We use the hierarchical mixed-order tetrahedral TVFEs
recently introduced by Andersen and Volakis [7] to obtain a computa-
tional model that accurately predicts the overall array behavior. Since
the properties of hierarchical TVFEs allow for simultaneous use of
lowest and higher order TVFEs within the same computational domain,
we use higher order TVFEs only within and near the regions associated
with highly varying field intensities. The lowest order TVFEs are em-
ployed elsewhere to achieve an accurate and efficient field modeling.
We show that combining mixed-order TVFESs allows for much coarser
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Fig. 1. Geometry of an infinite, 3-D doubly periodic antenna array. 80
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Fig. 2. Infinite periodic microstrip patch array:Dx, Dy, Pz, Py, Fz, Fig. 3. Broadside scanning input (a) resistance, and (b) reactance for the
Fy.d) = (5,5,3,3,0.75,1.5,0.2) cm, e = 2.55. ' ~infinite patch array whose unit cell is given in Fig. 2.

discretizations as compared to using only the lowest order TVFEs. AsChOOS_ing hierarchical _mixed-orde_r tetrahedral T_VFES for vplume

a result, the number of unknowns and CPU time are substantially Fggsellatlon [7], the electric field within the computational domain can
duced. To demonstrate the effectiveness of the hierarchical TVFEs, JeeXPanded using six vector basis functions per mixed-order tetrahe-

simulate a microstrip patch array and give comparisons with more tr‘Hfil TVFE of order 0.5 (HO TVFE) and 20 vector basis fun_ctlons per

ditional implementations based on the lowest order tetrahedral and pfiiXed-order tetrahedral TVFE of order 1.5 (H1 TVFE). In this manner,
matic TVEEs. regions expected to have rapid field variations can be modeled using

igher order s, whereas regions with slowly varying fields can

high der TVFEs, wh i ith slowl ing field
Il FORMULATION be modeled using lower order TVFEs. Use of various polynomial or-

ders for field expansion within the same computational domain (unit
Consider an infinite, doubly periodic printed antenna array on a mudell) forms the basis of our multiresolution modeling approach. Note,

tilayered, possibly inhomogeneous substrate, as depicted in Fig. 1. Ndavever, that the term multiresolution is not associated with wavelet
decompose the infinite periodic array structure down to a single utype basis functions.

cell and employ the FEM with the appropriate periodic boundary con- Since the edge-based vector basis functions for the HO TVFE re-
ditions (PBCs) at the side walls to model the unit cell volume [4], [6duce to the Rao—Wilton—Glisson vector basis functions [8] on the unit
To truncate the finite element mesh on the top and/or bottom of the uoéll aperture, the latter elements are natural for representing the aper-
cell aperture, a Bl method is applied in conjunction with the free spatigre field in conjunction with the infinite periodic free space Green’s
infinite periodic Green’s function whose computation is accelerated fynction. To close the computational domain, PBCs are imposed on the
Ewald’s transformation [6]. It is important to note that use of the FEMertical side faces of the unit cell through the matrix element transfor-
for modeling the substrate material inherently provides the freedomrtation algorithm [4]. However, this algorithm is generalized to include
analyze various inhomogeneities within the substrate. the case where H1 TVFEs bound the vertical side faces of the unit cell.
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We note that when lowest and higher order TVFEs are used in a mul- IV. CONCLUSION
tiresolution fashion, faces and edges at any boundary between them are

treated using the lowest order expansion to preserve continuity of thd" this letter, we introduced a multiresolution hybrid FE-BI method
tangential component of the electric field. for modeling infinite doubly periodic antenna arrays. We showed that

by using hierarchical mixed-order tetrahedral TVFEs and combining
lowest and higher order TVFEs within the computational domain, the
accuracy of the field modeling is dramatically improved and the array
Let us consider the microstrip patch array shown in Fig. 2. O@ganning properties are therefore more accurately evaluated. Higher
aim is to use this geometry for demonstrating the effectiveness of thgier TVFEs were used only within those regions where large fields
proposed multiresolution modeling approach. The input impedances@ly/or rapid field variations occurred, whereas lowest order TVFEs

broadside is computed using various TVFEs and discretizations:\}gre used elsewhere. This allowed for the use of coarse meshes and
prismatic TVFEs [9] withho/40 sampling and 2744 unknowns; 2) tetraje to significant CPU time and memory savings.

hedral HO TVFEs with 2544 unknowns; 3) tetrahedral HO/H1 TVFEs
with 25.5% H1 TVFEs in the unit cell and 4822 unknowns; 4) tetrahe-
dral HO/H1 TVFEs with 73.4% H1 TVFEs in the unit cell and 10 360
unknowns; 5) tetrahedral H1 TVFEs and 13 127 unknowns. When em-
ploying tetrahedral tessellation, the sampling is approximatel28 [1] Theory and Analysis of Phased Array AntenBall Telephone Lab.,
and tetrahedral elements are obtained by splitting each prism into three  1972. _ o

tetrahedra. H1 TVFEs are placed around the radiating edges as showigl D- M- Pozarand D. H. Schaubert, “Analysis of an infinite array of rect-

- . . A L . angular microstrip patches with idealized probe feet=2E Trans. An-
in Fig. 2 to improve the field modeling in the vicinity of these regions tengnas Propaga,t?l(?l. AP-32, pp. 1101_11%7 Oct. géll

where the field is expected to be highly varying. [3] W-J. Tsay and D. M. Pozar, “Radiation and scattering from infinite pe-
As seen from Fig. 3, the multiresolution expansion generates Sig-  riodic printed antennas with inhomogeneous mediBFE Trans. An-
nificantly more accurate results for the input impedance as compared tennas Propagatvol. 46, pp. 1641-1650, Nov. 1998.
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are _almOSt identical "’!”d agree very well with those based On_pris'[S] E. W..Lucas and T. W. Fontana, “A 3-D hybrid finite element/boundary
matic TVFEs. From Fig. 3, we also observe that the computed input” * glement method for the unified radiation and scattering analysis of
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termined when nominal sampling is used unless higher order TVFEs  AP-43, pp. 145-153, Feb. 1995.
are employed (the broadside resonant frequency calculated using MoM#] T. F. Eibert, J. L. Volakis, D. R. Wilton, and D. R. Jackson, “Hybrid
is 3 GHz [2]). Basically, when using only the lowest order TVFEs, the FE/BI modeling of 3D doubly periodic structures utilizing triangular
mesh has to be significantly denser to give comparable accuracy. Of prismatic e!em,ems and MPIE formulation accelerated by the Ewald
. ) . . . transformation,IEEE Trans. Antennas Propaga¥ol. 47, pp. 843-850,
importance is also that higher order TVFEs can be introduced without 15y 1999.
retessellation and at any arbitrary location without concerns of ele-[7] L. S. Andersen and J. L. Volakis, “Hierarchical tangential vector finite
ment to element discontinuities. However, it is important to note that elements for tetrahedralEEE Microwave Guided Wave Lettcol. 8,
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