2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 12, December 2000

Table of Contents for this issue

Complete paper in PDF format

Extraction of Power Line Maps from Millimeter-Wave Polarimetric SAR Images

Kamal Sarabandi, Fellow, IEEE and Moonsoo Park

Page 1802.

Abstract:

Radar backscatter of power lines has lower values than those of the surrounding ground clutter when the power line is oriented at an off-normal direction with respect to the radar line of sight. For power lines, the traditional detection algorithms that are commonly based on the statistics of the backscatter power of the clutter and target result in excessive false-alarm rates due to very low signal-to-clutter ratio. In this paper, the application of a statistical polarimetric detection algorithm that significantly improves the signal-to-clutter ratio is demonstrated. The coherence between the co-and cross-polarized backscatter components is used as the detection parameter. This statistical detection parameter can be applied to any extended targets such as a suspended cable in clutter background. Detection criteria based on clutter backscattering coefficients, power line size, and aspect angle, as well as the number of independent samples are obtained. The performance of the algorithm for mapping power lines in SAR images is demonstrated using a number of low-grazing incidence polarimetric SAR images at 35 GHz.

References

  1. B. Rembold, H. G. Wippich, M. Bischoff and W. F. X. Frank, "A MM-wave collision warning sensor for helicopters", Proc. Military Microwave, pp.  344-351, 1982.
  2. H. H. Al-Khatib, "Laser and millimeter-wave backscatter of transmission cables", SPIE vol. 300 Phys. Technol. Coherent Infrared Radar , pp.  212-229, 1981.
  3. M. Savan and D. N. Barr, "Reflectance of wires and cables at 10.6 micrometer", Center for Night Vision and Electro-Optics, MSEL-NV-TR-0063, Jan. 1988.
  4. K. Sarabandi and M. Park, "A radar cross section model for power lines at millimeter-wave frequencies", IEEE Trans. Antennas Propagat., Jan.  1999.
  5. K. Sarabandi, L. Pierce, Y. Oh and F. T. Ulaby, "Power lines: Radar measurements and detection algorithm for polarimetric SAR images", IEEE Trans. Aerosp. Electron. Syst., vol. 30, pp.  632-648, Apr.  1994.
  6. K. Sarabandi and M. Park, "Millimeter-wave radar phenomenology of power lines and a polarimetric detection algorithm", IEEE Trans. Antennas Propagat., Sept.  1998.
  7. F. T. Ulaby and C. Elachi, Radar Polarimetry for Geoscience Applications, Dedham, MA: Artech House, 1990.
  8. A. Nashashibi, F. T. Ulaby and K. Sarabandi, "Measurement and modeling the millimeter-wave backscatter response of soil surfaces", IEEE Trans. Antennas Propagat., vol. 34, pp.  561-572, Mar.  1996.
  9. K. Sarabandi, E. S. Li and A. Nashashibi, "Modeling and measurements of scattering from road surfaces at millimeter-wave frequencies", IEEE Trans. Antennas Propagat., vol. 45, pp.  1679-1688, Nov.  1997.
  10. E. S. Li and K. Sarabandi, "Low grazing incidence millimeter-wave scattering models and measurements for various road surfaces", IEEE Trans. Antennas Propagat., vol. 47, May  1999.
  11. J. B. Mead, A. L. Pazmany, P. S. Chang and R. E. McIntosh, "Comparison of coherent and noncoherent polarimetric radar measurement at 95 GHz", Radio Sci., vol. 31, no.  2, pp.  325-333, 
  12. L. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, San Diego, CA: Academic, 1980.
  13. F. T. Ulaby, A. Nashashibi, A. El-Rouby, E. Li, R. Deroo, K. Sarabandi, R. Wellman and B. Wallace, "95-GHz scattering by terrain at near-grazing incidence", IEEE Trans. Antennas Propagat., vol. 46, pp.  3-13, Jan.  1998.
  14. R. Touzi and A. Lopes, "Statistics of the Stokes parameters and of the complex coherence parameters in one-look and multi-look speckle field", IEEE Trans. Geosci. Remote Sensing, vol. 34, pp.  519-532, Mar.  1996.
  15. J. C. Henry, "The Lincoln Laboratory 35 GHz airborne polarimetric SAR imaging radar system", in IEEE Nat. Telesyst. Conf., Atlanta, GA, Mar. 1991.