2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
IEEE Transactions on Antennas and Propagation
Volume 48 Number 12, December 2000
Page 1862.
Abstract:
We present a new high-order integral algorithm for the solution of scattering problems by heterogeneous bodies under TE radiation. Here, a scatterer is represented by a (continuously or discontinuously) varying refractive index n(x) within a two-dimensional (2-D) bounded region; solutions of the associated Helmholtz equation under given incident fields are then obtained by high-order inversion of the Lippmann-Schwinger integral equation. The algorithm runs in O(N log(N)) operations, where N is the number of discretization points. Our method provides highly accurate solutions in short computing times, even for problems in which the scattering bodies contain complex geometric singularities.
References