2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 12, December 2000

Table of Contents for this issue

Complete paper in PDF format

A Coupled Surface-Volume Integral Equation Approach for the Calculation of Electromagnetic Scattering from Composite Metallic and Material Targets

C. C. Lu and W. C. Chew

Page 1866.

Abstract:

A coupled surface-volume integral equation approach is presented for the calculation of electromagnetic scattering from conducting objects coated with materials. Free-space Green's function is used in the formulation of both integral equations. In the method of moments (MoM) solution to the integral equations, the target is discretized using triangular patches for conducting surfaces and tetrahedral cells for dielectric volume. General roof-top basis functions are used to expand the surface and volume currents, respectively. This approach is applicable to inhomogeneous material coating, and, because of the use of free-space Green's function, it can be easily accelerated using fast solvers such as the multilevel fast multipole algorithm.

References

  1. T. Vaupel and V. Hansen, "Electrodynamic analysis of combined microstrip and coplanar/slotline structure with 3-D components based on a surface/volume integral equation approach", IEEE Trans. Microwave Theory Tech., vol. 47, pp.  1788-1800, Sept.  1999.
  2. B. M. Kolundzuja, "Electromagnetic modeling of composite metallic and dielectric structures", IEEE Trans. Microwave Theory Tech., vol. 47, pp.  1021-1032, July  1999.
  3. S. M. Rao, C. C. Cha, R. L. Cravey and D. L. Wilkes, "Electromagnetic scattering from arbitrary shaped conducting bodies coated with lossy materials of arbitrary thickness", IEEE Trans. Antennas Propagat., vol. 39, pp.  627-631, May  1991.
  4. L. N. Medgyesi-Mitschang, J. M. Putnam and M. B. Gedera, "Generalized method of moments for three-dimensional penetrable scatterers", J. Opt. Soc. Amer. A, vol. 11, pp.  1383-1398, Apr.  1994.
  5. T. K. Sarkar, S. M. Rao and A. R. Djordjevic, "Electromagnetic scattering and radiation form finite microstrip structures", IEEE Trans. Microwave Theory Tech., vol. 38, pp.  1568-1575, Nov.  1990.
  6. D. E. Livesay and K. M. Chen, "Electromagnetic fields induced inside arbitrary shaped biological bodies", IEEE Trans. Microwave Theory Tech., vol. 22, pp.  1273-1280, Dec.  1974.
  7. D. H. Schaubert, D. R. Wilton and A. W. Glisson, "A tetrahedral modeling method for electro-magnetic scattering by arbitrary shaped inhomogeneous dielectric bodies", IEEE Trans. Antennas Propagat., vol. 32, pp.  77-85, Jan.  1984.
  8. R. D. Graglia, "The use of parametric elements in the moment method solution of static and dynamic volume integral equations", IEEE Trans. Antennas Propagat., vol. 36, pp.  636-646, May  1996.
  9. R. F. Harrington, Field Computation by Moment Methods, New York: MacMillan, 1968.
  10. S. M. Rao, D. R. Wilton and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape", IEEE Trans. Antennas Propagat., vol. 30, pp.  409-418,  May  1982.