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An Effective Approach for the Optimal Focusing of
Array Fields Subject to Arbitrary Upper Bounds

Tommaso Isernia, Paolo Di lorio, and Francesco Soldovieri

Abstract—A new approach to the optimal focusing of array by means of geometrical arguments and suitable deterministic
fields subject to arbitrary upper bounds is presented. The ap- algorithms, the local optima occurrence. This approach can syn-
proach formulates the problem as the minimization of a linear thesize, for given mask constrained power patterns, array an-
function in a convex set. Unlike other approaches, this one L - N
guarantees the achievement of the global optimum by using tennas having a n_urlulmum. nu.mber of elemgn-ts, and app_llcatlon
local Optimization techniques and can, moreover, deal with any Of the abOVe feaSIbI|Ity criteria ShOWS that It IS not pOSSIble to
convex constraint on the unknowns, such as near field constraints. further decrease this number.

Optimization is performed by two ad hoc developed solution A more widely used approach entailing the use of global op-
algorithms, which exploit the geometrical characteristics of the timization procedures has been proposed in order to guarantee

problem at hand, thus leading to extremely effective and computa- “ . o . .
tionally efficient numerical codes. An extensive numerical analysis the “global optimality” of the design. In particular, the use of

has been performed in all cases of linear, planar, and circular arc genetic algorithms has become very popular [3], [4]. However,
arrays. The enhanced performance of the proposed technique optimization procedures based on genetic or other global op-
with respect to the solution algorithms available in the literature timization algorithms are very cumbersome from the compu-
fully confirms the effectiveness of the approach. tational point of view, thus making them very difficult to use

Index Terms—Antenna synthesis, arrays, near-field constraints, (or unreliable) for solving problems with more than a couple of

optimal focusing, optimal synthesis. dozen unknowns [4].
Rather than being in contrast, the two approaches can be con-
I. INTRODUCTION sidered complementary to each other as a better understanding

. ) of the causes and the number of local optima can also help to rec-
I T is well known that antenna power synthesis allowggnize the actual need, performance, and ultimate limitations of
designers to deal with a greater number of “degree§|0ba| optimization” approaches.
of freedom” than is possible with more conventional field | contrast to the shaped beam case, some important synthesis
synthe3|_s problems, as it is not necessary to f|x_|n adva“ﬁﬂ)blems, such as “optimal synthesis” [5], can be solved in a
the far-field phase distribution [1]. Power synthesis has thiggobally optimal fashion, although only in a limited set of cases.
become a classic problem in electromagnetics. In the case of linear uniformly spaced arrays with constant
_ Inits wider sense, power pattern synthesis is a nonconvex @gselobe levels, for example, globally optimal solutions to the
regarded as the search for the global optimum of a nonquadrafig chebyshev polynomials [6]. A recent advance in this field
function of the parameters defining antenna excitations apdpresented in [7], which introduces a nonexplicit exploitation
structure. Consequently, design procedures based on gradigfhe Chebyshev polynomials. The approach also makes it pos-
or Newton-like minimization techniques can be “trapped” intgjple to determine the minimum number of elements required to
yielding a local optimum (rather than converging to the globglchieve the desired beamwidth and sidelobe level (SLL) without
optimum), thus providing a suboptimal (i.e., nonoptimalesorting to an iterative process.
solution to the problem at hand. In an array synthesis problemthe classical Dolph—Chebyshev approach has also been ex-
for instance, such a “suboptimal” design would either imphended to uniformly spaced planar arrays, with the same limita-
the constraints by using a redundant number of antennas. (9] transformations, which reduce the two-dimensional (2-D)
A great deal of effort has recently been channeled into solviRgoplem to a one-dimensional one. However, such transforma-
this problem. In [2], the properties of squared amplitude distiipns introduce a symmetry in the synthesized excitation coef-
in order toa priori establish the feasibility of a given shapedyyajlable to the designer.
beam power pattern synthesis problem for a fixed geometrya new class of linear arrays having equal sidelobe levels in
array. These properties are then used to understand and tagkigir radiation patterns has recently been introduced [11]. Once
the number of elements, (the uniform) spacing, and the SLL
Manuscript received February 5, 1999; revised June 8, 2000. have bgen fixed, these arrays exhibit.a larger directivity than
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However, all the above approaches are unable to deal with &tmaximum subject to

uations wher@onuniformbehavior of the sidelobes is required, )

as happens when we want to reduce the array response over a y N
range of angles where an undesired interference is present. |E@)? =) ai(r)| <SLL(r) (2b)
A second important limitation in all the above approaches is i=1

that th_ey can only deal with arrays having a uniform SpaCi_rWhere SLI(r) is a nonnegative function of the coordinate
on a line or on a plane and whose identical elements rad'@ﬁ'anning the observation space. Note that @il be fixed
the same identical field. Therefore, nonuniform or Conform%rbitrarily large in the pencil beam region surroundigg

arrays, as well aks) a(rjrayls Whhere the elements radiate differénfy;s formylation makes it possible to consider pencil beam
patterns, cannot be dealt with. synthesis problems relative to arrays with arbitrary but fixed

Inthis paper, we tackle the problem of determining the exc't'é’“iructures and is therefore also recommended for the conformal

tions of a given set of arbitrarily positioned sources so as to prgr'ray cases. Furthermore, the formulation also makes it possible

duce a far-field intensity that is maximum in a prescribed dwegé solve synthesis problems with constraints on the near field,

tion and subject to completely arbitrary upper bounds elsewher ich is of interest when the array is located in complex elec-

Note that the formulation includes any kind of fixed geometrﬁ . . . . .
: A omagnetic scenarios such as satellites, airplanes, or ships.
arrays and can be naturally applied to considering mutual cou-

. . . . ; . : The bandlimitedness properties of radiated fields [26],
pling (see Section V). This problem is of primary interestinthe " . . . ) .
. . nsidering a sufficiently dense grid of sampling points over
antenna and propagation community [12] and has more rece

attracted attention in biomedical engineering applications [1 fgfrggzgxat:ggagot?gth:ndrovg:;hrﬁuéa?]n%elc;zfmoljl;Zgrz(f o
[14]. After quoting some of the existing solution procedures, th L P ) L
convex nature of this problem is demonstrated. Consequerf?,termme the real and the imaginary parts of the excitations
provided that the proper formulation is adopted, it does not admftt” = » *N 2 Y1+ -+ yn) such that

local optima. Effectivead hocsolution schemes are then pre-
sented. Finally, numerical evidence of the effectiveness, power,
and flexibility of the approach is furnished in the cases of lineafii, the constraints

planar, and conformal arrays. By virtue of the chosen formula-

Re (E(rgy)) is minimum (3a)

tion and the developed codes, the performance of the achieved Im (E(ry)) =0 (3b)

designs is equal to or better than the relative published results in |E(; 2 < SLL(r,)

all the examples we have examined. -t = -1 30)
c

Il. THE PROPOSEDAPPROACH ANDITS PROPERTIES |E(ry)? < SLL(ry)

Although many efforts have been performed in order t@here A is the total number of points in the grid. Note that
remove the above limitations [13], [15]-{23], all existing3a) and (3b) correspond to maximizing the original objective
approaches share the common properties that global optimaligaction | E(r,)|2 by fixing the (arbitrary) reference phase in
in the sense defined in Section I, is not guaranteed. Therefo§eh a way that the field hasraphase in the direction,. Also
a step in the right direction is certainly constituted by thgote that (1)~(3c) naturally extend to the optimal focusing of a
rgcognltlop of the fact that the optimal focusing of Sca|6§ing|e component of the field subject to arbitrary upper bounds
fields subject to arbitrary upper bounds can be formulated §g the total field. In fact, it suffices to consider the given field
a convex optimization problem, i.e., the minimization of &,mponent in (3a) and (3b) while enforcing constraints (3c) on
convex function (in particular a linear function) over a convey, total field so that the proposed approach may be conveniently

set [24]. In fact, such a formulation implies that in this casgy|sited in applications where polarization and/or space reuse
any local minimum of the objective function is also a globaére required

minimum [25]. Obviously, effective and computationally

efficient solution codes are also_needed. . __afunction ofzy,...,zn,41,- -, YN, €ach constraint (3c) de-
The adopted formulation is briefly recalled in the followmgfines a hypercylinder, i.e., a convex set, in the space of the un-

I;S;IZFS f?eolgslset as?)etthg?thseogi/ceerz"?iif dhisrac;l:/ae'[rl]ng a knowr](nowns. Moreover, the constraint of (3b) is linear in terms of
i(2), 9 y T1,...,TN,Y1,- .-, YN, SO that it also defines a convex set (a

N hyperplane) in the space of the unknowns. As the intersection
E(r) =" aihi(r) (1) of convex sets is still convex, (3b) and (3c) define a convex set.
=1 Finally, the objective function (3a) is a linear function of the
whereina; = x; + jy; is the excitation coefficient of théth  nknowns, so that the whole problem is equivalent to the mini-
element. The problem is to determine the set of excitafans  mization of a linear function in a convex set, say,

i =1,...,N such that Such a problem has been extensively analyzed in operations
2

Since |E(r;)|? is a positive semidefinite quadratic form as

N research, and it can be shown that it admits a unique minimum
|E(ro)|? = Z a; i (ro) (2a) value, which is therefore the global optimum, that is achieved
i=1 in a single point or in a connected (convex) subset {#5].

1For the sake of simplicity, we refer herein to scalar fields. This hypothesis It_fOHOWS that a_ny operations r_esearc_h _pr_oce_dure able to
will be removed in the following. achieve a local optimum of constrained minimization problems
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provides excitation coefficients such as to produce the max-In order to simplify the description of the two proposed algo-

imum field compatible with constraints, i.e., excitations thaithms, let us suppose that the space of the unknowns is bidimen-

are globally optimal. sionat and spanned by the usualy coordinates. Moreover, let
Nevertheless, the use of standard operations research pi®suppose that the feasible set is given by

cedures deserves some comment. Their use is relatively new

in electromagnetic applications, and their apparent difficulty f(@,y) = az® +by” <c ()

means that they tend to be used as black box routines without » ) ]

the features, mechanics, and limitations of the adopted meth§fi€rea; b, c are positive real constants. Equation (5) defines a

being properly understood. Consequently, the solution pro&@NVex se'a with an eII|p_50|daI boundary. Nofce that_the normal

dures, which are not necessarily well tailored to the problem @it vectors, to this set in each boundary point, defined as the

hand, may turn out to be very cumbersome from the compufliréction in whichf(z, y) varies at the maximum rate, can be

tional point of view or even not effective at all. Moreover, th&2sily evaluated as

causes and countermeasures regarding possible procedure con- A

vergence failures are not easily ?jealt v?/lt% This is the case of tn =V @)/ IV ()] ©)

[24], where the present approach was numerically implemen%ﬂerevf denotes the gradient ¢f(, )

by resorting to a "general purpose” procedure available frOmAIso note that (3b) does not need to be expressly enforced be-

the NAG !|brary [2.7]' Becguse of S'OV.V convergence pmbleméause it will be induced in any case by requirement (3a) through
the resulting solution algorithm made it possible only to mana%ephase shift of excitations

problems with up to a few dozen unknowns.
The need thus arises to develop new ad hoc solution 30" The
proaches capable of overcoming the limitations of the previous
approach through a full understanding of each single step of thel he first proposed algorithm entails the iteration of two dif-
procedure and exploiting the particular nature of the problemfgfent steps until a suitable stopping rule, defined in the fol-
hand, i.e., a linear objective function and convex (analyticallpwing, is satisfied. Le®i,; be a point inside the feasible set
known) quadratic constraints. These two circumstances wift can be the null vector at the very first step of the iterative
match the idea to let the optimization evolve inside the convéxocedure. _ o
set, which renders the proposed point of view to synthesis!n every “hit” step, the boundary of the feasible set is hit at
profoundly different from other, more well-known projecthe pointP, by moving fromP;y, in the direction opposite to
tion-based approaches [28], [29]. In actual fact, the analytidal [Fi9- 1(2)]. The step amounts to moving along the steepest
knowledge of the boundary of the set in each violation poif€scent directiof—i, ), which is an obvious preferential direc-
makes it possible to develop two different and somehdiien. Because of the linearity of the objective functionneeds
original optimization strategies. Moreover, the proposed poift be computed only once at the beginning of the whole mini-
of view also makes it possible to identify and overcome tH8ization procedure. If we denote I#" the distance between
causes of possible slow convergence (or lack of convergen&ey: and the boundary of the convex set in the, direction,
to the actual solution. Finally, the approach naturally lendge step is also described by
itself to the use of numerically efficient computer codes [which
are in fact based on fast Fourier transform (FFT) routines for
standard arrays] for the computation of the quantities at han%

“Hit and Set” Approach

Pb = Pint - /3+'2g (7)

nd the computation ofT is easily achieved (see the Ap-
pendix).

In every “set” step, an optimal setting fB., inside the set
is identified in order to (hopefully) get the maximum gain in the
subsequent “hit” step. A possible criterion that can be used to

Two new algorithms for solving the optimization problemachieve this s to move as far away as possible from the boundary

named “Hit and Set” and “Hit and Get,” respectively, are hereff the set. However, in doing that, the value of the objective

described. Both of them are based essentially on the observafi$tion achieved in the previous hit step must not be increased.
that One way of satisfying these two requirements is to move along

the projection of the normﬂ'n) to the boundary (evaluated in
P,) onto the current equilevel set. In faet;,, is the direction
that (locally) maximizes the distance from the boundary, and its

. . - rojection onto the equilevel set guarantees that the objective
wherew is a real constant, identifies parallel hyperplanes th

: o o nction does not increase in a set step. This direction can be
are orthogonal to the gradient of the objective function in theeasily computed by subtracting fro(mfl‘ ) its projection along
space of the unknowr(®1, ..., 2N, 41, - -, Yn). Lete, be the "

. c e o EN clo ] 2,4, SO that
unit vector identifying the direction of the gradient in such &

space. It follows that the problem can be formulated as finding
the hyperplane with a nonempty intersection with the feasible = — —
set and characterized by a minimum value of the real constant [[=tn + (- 10)14]

w, i.e., the hyperplane “tangent” to the €&t 2This hypothesis will be removed in the following.

I1l. NEW ALGORITHMS

Re(E(rg)) = w )

it G

®)
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Jeasible
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f _________ B+ Constraint 2 ~ -~ 7

LT ‘{ Constraint 3

@

feasible
set

(b)

(b) Fig. 2. (a) Pictorial view of a section of the feasible set, defined as the
intersection of hypercylinders. (b) About the definition of “pseudonormal.”

Fig. 1. Representation of the “hit” and “set” steps. (a) In the hit step, t . ; :
Wo constraints are simultaneously violated.

boundary point?,, is found by moving in the direction-2,. (b) In the “set”
step, one ties to find the optimal setting in order to get the maximum gain in the
subsequent step.

is the moving direction in a set step. ThPrilth is set halfway resembles the strategy of “interior points” methods for convex
betweenP, and the other boundary point t) direction [see programming, which try to solve the optimization problem by

Fig. 1(b)]. So moving along “central paths” of the feasible set [30].
B+, In an actual synthesis problem, the feasible set has a
P, =P, + 7Lu (9) nonregular boundary as is defined by the intersection of hyper-

cylindrical sets [see Fig. 2(a)]. This circumstance introduces an
whereingt is the distance betwed®, and the other violation additional difficulty since no “normal” vector can be defined
point along:,.. This choice agrees with the need to be as far as the nonregular point of the boundary. On the other hand, all
possible from the boundary in order to get the maximum gainthat is needed is a vector directed as far as possible “outside”
the subsequent hit step. the convex set at hand. This consideration suggests introducing
Then the procedure continues by iterating the hit and set step&pseudonormal” vector, defined as the sumSofE(r;)|?,

until z,, becomes parallel tq, which means that the hyperplane/vherev|E(r_i)|2 are the normal vectors to each hypercylinder
tangent to the convex set has been reached. This approadtose boundary is being violated and evaluated in the violation
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Cytlinder 1

Cylinder 2

Feasible Set

Fig. 3. Pictorial view (inR?) of the feasible set when the cylinders are nearly parallel.

point [see Fig. 2(b)]. IV is the number of violation points, thethat the overall feasible set extends greatly along a few direc-
pseudonormal unity vectar, is therefore given by tions, while being relatively narrow along all of the many other
coordinates (see Fig. 3). Now, whenever the boundary of the fea-
N sible set and the equilevel set are nearly parallel to one another
Z VIE(r:)? while the feasible set is very narrow along the normal direction,
_ =1 (10) only a negligible lowering of the objective function is possible in
the two consecutive steps (see Fig. 4). Moreover, the same rea-
soning may be applied to the following pair of iterations, and so
on, thus leading to an overall slow convergence (or even prema-

AL ture stopping) of the procedure.
and plays almost the same exact role,ag all the set steps. e way of avoiding this problem is to try to move along

The only significant difference is in the stopping rule, whiche poundary of the feasible set in a descent direction. Unfortu-

needs to be r_edeﬂryed_. _A S|mple ch0|ce_ consists of iterating Fﬁgteh/, the projection af—i,) on the tangent plane is generally

two steps until no significant difference is observed on the poigfrected outsid€ because of the fact that the boundary is not a

P, in two consecutive hit steps. _ linear manifold. A viable alternative is the directigngiven by
The two iterated steps (7) and (9) imply that the successiy§inear combination of the (every time) descent directid

values of the objective function do not increase. As SUlis 44 the direction,, pointing inside the convex set, i.e.,
bounded (provided SL{z) in the pencil beam region is enforced

to a fixed although very large value), the feasible Gét also . .

compact. As, in a compact set, a convergent succession can al- by = g + K‘u (11)
ways be extracted from a non increasing one [31], convergence =24 + K|

of the proposed procedure is demonstrated.

A

tn =

=
> VIE@)
i=1

) wherein K is a positive real constant. IK is large enough,

B. The "Hit and Get” Approach theni, is directed insideC, so that such a choice simultane-

The “hit and set” algorithm gives much better optimizatiolmusly matches both the requirement of moving in the objective
results than our previous approach [24], allowing us to deal sdanction descent direction and far away from the violated con-
cessfully with problems having hundreds of unknowns. In sonséraints. In addition, a proper choice &f may provide a di-
cases, however, slow-convergence problems could still keep thetionz, nearly parallel to the boundary of the feasible set.
optimization procedure far from the actual solution. In this réFhis new strategy and its capability of successfully tackling the
spect, the “geometrical” point of view we use makes it possibébove-discussed problem is pictorially represented in Fig. 5.
to identify the possible causes of the slow convergence and helpslote that the higher the value &f, the lower the objective
to develop suitable countermeasures. function decreases at each step, while the lower the valég of

It may happen, for example, that the hypercylinders (whosiee morez,, is directed along the boundary of the feasible set,
intersection constituteS) are nearly parallel to one another, savith beneficial effects on convergence rate. Thereféfehas
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* Equilevel sets

Fig. 4. Two steps of the “hit and set” strategy in a case where the bounddramd the equilevel set are nearly parallel.

e

s _ |
Coveorme -
\ | Pt

\ Equilevel sets

/-’\ i ls.

Fig. 5. A step of the “hit and get” algorithm in a case where boundacy afd equilevel set are nearly parallel.

to be selected from several trials by making a tradeoff betweton and the array line. The gradient of the objective function is

accuracy and convergence rate.

As moving along the successivg directions gives rise to
a nonincreasing behavior of the objective function, the same

convergence proof as in Section IlI-A applies here.

IV. NUMERICAL RESULTS

In this section, numerical results showing the effectivenes
of the proposed approaches are reported. This section is divi(ie
into three parts, each one regarding a different geometrical ¢
figuration. The first concerns linear arrays, the second plangr
arrays, and the third conformal (circular arc) arrays. For plan
arrays, both constraints in near zone and in far zone are ¢
sidered. All the results have been obtained with a Pentium,Jj.

350-MHz processor.

A. Linear Arrays

The radiation patter#(«) of a linear array withV isotropic
elements uniformly spaced lkican be written as [12]

N—-1

E(u) = Z ane’™ (12)
n=0

therefore the vector

ig =[1,...,cos(nug), ..., cos((N — 1)ug),0,

.ysin(nug), . . ., sin((V — Dug)] (13)

whereuy is the desired direction of maximum field intensity.

SThe first example is concerned with the synthesis of a broad-
ide linear array of 16 isotropic elements uniformly spaced by
alf-wavelength with equal-level sidelobes and a beam width
EW) of 19°. This sidelobe configuration is useful for the val-
|aration of the algorithms, since an analytical solution can be
eﬁl_s”y calculated by Dolph—Chebyshev methods. The result, ob-
ned by the hit-and-set algorithm in less than 1 s, agrees per-
fectly with the analytical result. The relative difference be-
tween excitations, defined §da; — I'n;)/Ia;|—whereln; and
La, are the excitations of thith element evaluated numerically
and analytically, respectively—is on the order of£Cfor alll
the elements in the array.

When a beam width of 20or greater is required for this
array, the hit-and-set algorithm is no longer able to find the op-
timal solution due to slow-convergence problems and prema-
ture stoppind. This is consistent with the very rapid growth of

3In order to perform the comparison accurately, the analytical solution is eval-
uated by imposing the maximum value of the array factor as in the numerical
synthesis. Then, beamwidths and excitation coefficients are compared.

with v = kOdCOS.(SO): whereink; is the propagation constantin “sthe critical value of the beamwidth decreases when the number of elements
free space and is the angle between the direction of observan the array increases.
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Fig. 6. Radiation pattern of the broadside linear array with 16 elemen Excitations
uniformly spaced of half-wavelength. 107 e — — g .
T
the maximum for increasing BW, which rapidly makes the fee g o / \\
sible set an elongated one, and the problem becomes ill cor =
tioned. However, the synthesis is carried out successfully by t

hit-and-get approach, as shown in Fig. 6, wherein the synthe W% ¢ 92 14 16 18 20
result for a BW= 25° is reported.
In the performed examples with linear arrays, it has been ob-

served that a value of the constdiitequal to 20 furnishes the 10

best compromise in terms of convergence time and accuras T 5 A )i

However, the algorithm is not very sensitive to this value. £ & | /\ , e N
. . . = / e ’ /

large number of examples on linear arrays with equal sidelob 3 s / Vv \/

level have been performed using different valuegkofn the = ~ /

range from ten to 100, and for all of them the numerical and at NS¢ % 16 12 14 16 18 20
alytical results are in agreement, with a relative difference b
tween excitations of about 18.

In order to show the flexibility and the effectiveness of the ©
proposed approaches in overcoming limitations of the analyl‘—llc. 7. (a) Radiation pattern of a linear array with 20 isotropic elements

methods, the synthesis of beams with a nonuniform Sidelohﬁ%ormly spaced half-wavelength, synthesized with an asymmetric mask

topography has been considered by using the hit-and-get @petion (dashed line). (b) Normalized amplitude. (c) Phase of the evaluated
proach. excitation coefficients.

The results of a shaped sidelobes synthesis are shown in
Fig. 7. The linear array is made up of 20 isotropic elemengsay. synthesis algorithms can deal with several hundreds or
uniformly spaced by half a wavelength. The design constrairfi¥en thousands of unknown excitations.
prescribe an asymmetrical pattern with a beamwidth of about™he radiation patterit'(u, v) of a planar array withV x M
20° and maximum field intensity in the broadside directioriSOtropic elements placed on thg plane and uniformly spaced
The sidelobes are enforced to be equally leveled on one siighe - andy-directions byd.. andd,, respectively, can be
of the main lobe and further reduced by abet20 dB for Written as
f20|(1j <y <272 (;)n tr:jebotherdsid?. Note that althougr? the Nl M1
ield intensity is reduced by 20 dB f&@.01 < u < 2.72, the . i(nutm
maximum value is reduced by only 1 dB with respect to the B, v) = Z Z ") (14)
case of uniform sidelobes, thus confirming the effectiveness of
the procedure. _ _ wherea,, .., is the excitation coefficient of the, mth element,
In allthe examples performed on linear arrays, the hit-and-get 1. q. sin(4) cos(p), v = kod, sin(6) sin(e).
approach has revealed itself to be from five to 100 times fasteras g first test case, let us consider an array of 3131

Element

n=0 m=0

than the general purpose optimization tool of MATLAB. isotropic elements uniformly spaced by half a wavelength
in both thex andy directions. The beam is constrained to
B. Planar Arrays have a circular shape in the-v plane with a beamwidth

The hit-and-get algorithm preserves its effectiveness ever(iifieasured at 0-dB level) of about 13.8long the two main
the array consists of a large number of elements. For a placats(x = 0,v = 0) (Fig. 8). The numerical solution is equal
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Fig. 8. “Mask” function with circular shape fixing the constraints for ‘
the planar array. The prescribed beam width at the two principal sectior 50
(u = 0,v = 0) is about 13.5. a0 )
A
30 / \
to the expected Tseng—Cheng (Chesbyshev) one along t 20 /( \
principal cuts [Fig. 9(a)], but it appears to be much better alon __ x
thew = v cut [Fig. 9(b)], wherein sidelobes decay much faster 3 '
without any visible enlargement of the main beam. Also not¢ g IS I R P
that this optimal solution for the considered mask constraine = .45 '« | i} e ‘ﬁ;ﬁﬁ{ P‘W\ ; LJ‘ o v
problem does not exhibit equal sidelobes. o b H Vi L‘lf \,'L! W‘H‘;'l Lot A Lo
In all these casedy = 12 has been used, and the same com ' \1‘]31 '1 [\\ ,/‘g f‘i[‘ ! F W{f" '/“\ Mw o
ments as for the linear array case apply. A i LR MJ‘ M” ‘\, IIM “Jt' \p .
In order to show the flexibility of the approach, near-field 40 AMH U i ’wrj ” HJ T ;J“g J iﬁf\”‘m .
constraints have been added to the synthesis problem. In p: PUiL - L o L B ! A,
U

ticular, a reduction of the near-field intensity has been enforce
outside the square (centered on thaxis) of 9\ side located ®)
over a plane at a distance ok from the array.

Evaluation of the near field, which is herein a scalar functioft'd: 9 Radiation pattern at the section aj= 0 and (b)u = v of a planar

’ . . affay with 31x 31 isotropic elements uniformly spaced of half-wavelength.

and enforcement of the constraints are efficiently performemerical result (solid line) obtained by hit-and-get method is compared with
thanks to 2-D FFT codes. In particular, a (256256) grid has analytical one (dotted line) obtained by Tseng and Cheng method.
been assumed to evaluate both the far and near field and to en-
force the corresponding constraints. The results of the synthesis
(by the hit-and-get approach) show a reduction of the maximum
ofthe f_ar-field intensity equalto 1 dB. (Fig. .10)_’ as compareo_l 0@ the plane of the antenngs= 90°), the radiation pattern is
reduction of 10 dB of the near-field intensity in the constrameg\ven by
zone (Fig. 11), thus confirming also in this case the effective-
ness of the developed procedures.

The required computation time for these examples, involving E(p) = Z anh(p — an)ejkoRcos(sc—an) (15)
the solution of a nonlinear programming problem with almost
2000 real unknowns and from 65536 to 131072 constraints,
varies from 13 min for the former cases to about 2 h for the casterec,, is the angular position of theth radiator,x(¢) is the
including near-field constraints. It has to be noted that becauseliation pattern on the plafe= 90° of the generic element
of the large number of unknowns and constraints, it has not bdenated aty = 0, and R is the radius of the circle [12]. In
at all possible to perform the synthesis using standard generzider to provide a comparison with [18], a circular array with 25

purpose optimization tools. elements angularly spaced by 5.8628o0ng a circular arc with
radiusR = 6.72X has been considered, with an element pattern
C. Conformal Arrays h{¢) given by

In order to show the effectiveness of the approach for con-
formal arrays, let us consider the case of a circular arc array. h{p) = max(cos(p),0). (16)
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Fig. 10. Radiation pattern synthesized with near-field constraints (solid line) and without near-field constraints (dashed line) at the=séction

Near field intensity [dB]

20

Nlw ol

Fig. 11. Near-field intensity without near-field constraints (dashed line) and with near-field constraints (solid line) at the cut=plan&he dash and dotted
line represent the near-field constraints.

Design specifications require a beamwidth of about 20rhe results of the synthesis (Fig. 12) show that a reduction of
around the maximum ip = 0°, and the constraining maskabout 5 dB on the sidelobe level with respect to the solution
has also been fixed in order to make a comparison with [1§Jresented in [18] is possible by using this approach, thus



1846 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 48, NO. 12, DECEMBER 2000

, ; w T — T —  introduced point of view also allows one to understand and

30 g = gg° \ ‘ somehow tackle possible slow-convergence problems, which
/\\ are indeed neglected in all previous approaches.

20 ; / The effectiveness of the proposed approaches is discussed
/ through a series of examples in all cases of linear, planar, and

10- \ conformal arrays. Even if the first presented solution procedure

(hit and set) shares some similarity to the “central path” algo-
i rithms often adopted in convex optimization problems [30], the
second proposed procedure (hit and get) has been shown to per-

Power [dB]
o

\ o ‘/N\ i form better.
\ A It is worth noting that the approach naturally lends itself to
ﬁ \ . the consideration of other convex constraints without impairing
i | J global optimality. Such constraints may include specifications
/ \) \ I such as upper bounds on the invisible part of the spectrum (in
/ | order to control superdirectivity), the maximum value of the ex-
citation coefficients, and the maximum absolute variation be-
¢ N tween the coefficients of adjacent elements in an array.
@ The presented form of the approach does not take mutual cou-
pling into account, but this can be easily achieved in two dif-
Excitations / ferent ways: first, voltage excitations may be computed using
. o ; the mutual admittance matrix, and, secondly, the active element
: patterns of [33] can be directly used in the synthesis so that no
approximation is required on mutual coupling. Comparison be-
tween the two approaches shows advantages of the second pro-
posed procedure [34].
As a final remark, we would like to note that the approach

o . . R . ]
-150 -100 -50 0 50 100 150

14

10%

n/l,.)

10° t s s is also a natural candidate to perform as a powerful elemen-
5 10 15 20 25 o . )
Element tary brick in other more complicated focusing problems, such
as optimal focusing of vectorial fields, synthesis of multibeam
(b) antennas, and synthesis of uniformly (or even nonuniformly)

spaced arrays with unknown spacing.

APPENDIX

Phase [degrees]

The distanceBJf(P,ka) along the generic directiof), be-
tween the feasible poif® and the boundary of the feasible set
can be easily evaluated in this way

10 15 20 25
Element
© B (P, u) =

Fig. 12. (a) Synthesised radiation pattern (solid line) of a circular arc array of
25 elements, radius 6.X2and interelement angular distance 5.62he mask

function is depicted by a dashed line. (b) and (c) Normalized amplitude aﬂﬂwereinN,, is the total number of constraints am (P, Zk)
phase of the evaluated excitation coefficients. denotes the distance alongbetween the boundary of the set
defined by theith constraint andP. Let S;(P) be the linear
confirming once again its validity and that of the developedperator which relates set of excitations givenibyo the field
solution procedures. inr,.
The distances dP from the boundary defined by thith con-
straint can be determined by solution of the equations

nin (3F(P,ix)) (A1)

I
=

V. CONCLUSION

+,3\[2 — .
In this paper, a new solution approach to optimal focusing [S:(P + 7)1 = SLL(z;). (A-2)
of scalar fields subject to arbitrary upper bounds is presented.
The approach recognizes that the problem pertains to the clasg
discussed in [32], thus ensuring global optimality by “local”
methods. Then a conceptually simple geometrical point of view
to the problem is introduced, which leads to two different easily a; =[Si(ix)]?, b = 2 Real(S;(P)S} (ix))
implementable “interior point” methods for its solution. The ¢ =|S:;(P)|* — SLL(r,)
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thenﬁj can be evaluated solving the following quadratic equa{23] W. A. Swart and J. C. Olver, “Numerical synthesis of arbitrary array,”
tion: IEEE Trans. Antennas Propagatol. 41, pp. 1171-1174, Aug. 1993.
[24] T. Isernia and G. Panariello, “Optimal focusing of scalar field subject
2 to arbitrary upper boundsElectron. Lett, vol. 34, no. 2, pp. 162—-164,
aiﬁ;" + biﬁ;" 4+ =0. (A.3) Jan. 1998,
[25] R.FletcherPractical Methods of OptimizatioNew York: Wiley, 1990.

; ; ; i~k [26] O. M. Bucciand G. Franceschetti, “On the spatial bandwidth of scattered
Itis worth noting thatin order to tackle roundoff errors, which field.” IEEE Trans. Antennas Propagatol. 37, pp. 918926, 1989,

may lead outsid€, it proves convenient to use a value@f [27] Numerical Algorithms Group (NAG) Fortran Library Manual, Oxford,
slightly smaller (let us say one for each thousand) than (A.1). UK., sec. E04.

[28] O. M. Bucci, G. D’Elia, G. Mazzarella, and G. Panariello, “Antenna

pattern synthesis: a new general approaéhgdc. IEEE vol. 82, pp.
ACKNOWLEDGMENT 358-371, Mar. 1994.
. . . . . [29] G. T. Poulton, “Antenna power synthesis using method of successive
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REFERENCES [31] A. E. Taylor, Introduction to Functional Analysis London, U.K.:
[1] R. R. Kurth, “Optimization of array performance subject to multiple Wiley, 1958. ) o
power pattern constraints[JEEE Trans. Antennas Propagatvol.  [32] H.Lebretand S. Boyd, “Antenna array pattern synthesis via convex op-
AP-22, pp. 103-105, Jan. 1974. timization’,” IEEE Trans. Signal Processingol. 45, pp. 526-532, Mar.

[2] T.lIsernia, O. M. Bucci, and N. Fiorentino, “Shaped beam antenna syn- 1997. . .
thesis problems: feasibility criteria and new strategidsElectromagn.  [33] D. F. Kelley and W. L. Stutzman, “Array antenna pattern modeling

Waves Applicatvol. 12, pp. 103-138, 1998. methods that include mutual coupling effectifEE Trans. Antennas
[3] R. L. Haupt, “Thinned arrays using genetic algorithmEEE Trans. Propagat, vol. 41, pp. 1625-1632, Dec. 1993. ' _

Antennas Propagatvol. 42, pp. 993-999, Dec. 1994. [34] L. Caccavale, T. Isernia, and F. Soldovieri, “Optimal focusing of mi-
[4] D.Weile and E. Michielsen, “Genetic algorithm optimization applied to crostrip array antennas including mutual couplingroc. Inst. Elect.

electromagnetics: A review/EEE Trans. Antennas Propagatol. 45, Eng. Microwave Antennas Propagatol. 147, pp. 199-202, June 2000.

pp. 343-353, 1997.
[5] R. E. Collins, Antennas and Radiowave PropagatiorNew York:
MGraw-Hill, 1985.
[6] C. L. Dolph, “A current distribution for braodside arrays which opti-r‘. e

mizes the relationship between beamwidth and sidelobe leRebg. Tommaso Iserniareceived the Lauregsumma cum

laude)and Ph.D. degrees in electronic engineering
from the University of Napoli, Italy, in 1988 and
1992, respectively.

In 1988, he joined the Electromagnetics Research
Group, University of Napoli, where in 1992 he be-

IRE, vol. 34, pp. 335-348, 1946. ‘
[7] A.Safaazi-Jazi, “A new formulation for the design of Chebyshev array.
IEEE Trans. Antennas Propagatol. 42, pp. 439-443, Mar. 1994.
[8] Y. V. Baklanov, “Chebyshev distribution of currents for a plane array o
radiators,”"Radio Eng. Electron. Physvol. 11, pp. 640-642, Apr. 1966. came an Associate Researcher in apolied electromag-
(9] J. H. McClellan and T. W. Parks, “An unified approach to the design qRT NS netics. Since 1998, he has been grﬁ) Associate Prg-
optimum FIR linear phase digital filters|EEE Trans. Circuit Theory v '

fessor of electromagnetic fields and presently teaches
vol. CT-20, pp. 697-701, 1973. h - h
[10] F. I. Tseng and D. K. Cheng, “Optimum scannable planar arrays wi... ﬁ antennas on the engineering Faculty of the Federico

Il University of Napoli. His main scientific interests
include inverse problems in electromagnetics, subsurface sensing, radiating sys-
tems measurements and diagnostics, and antenna synthesis.

Prof. Isernia received the G. Barzilai Award form the Italian Electromagnetic
Society in 1994. He has been a member of the Electromagnetics Academy since
1996.

an invariant sidelobe levelProc. IEEE vol. 56, pp. 1771-1778, Nov.
1968.

[11] A. Safaazi-Jazi, “Modified Chebyshev array®foc. Inst. Elect. Eng.
Microwave Antennas Propagatiol. 145, no. 1, pp. 45-48, Feb. 1998.

[12] C. BalanisAntennas Theory Analysis and DesigrNew York: Wiley,
1997.

[13] F. Bardati, A. Borrani, A. Gerardino, and G. A. Lovisolo, “SAR opti-
mization in a phased array radio frequency hyperthermia syst&BE
Trans. Biomed. Engvol. 42, pp. 1-8, Dec. 1995.

[14] K. S. Nikita, N. G. Maratos, and N. K. Uzunoglu, “Optimization of the
deposited power distribution inside a layered medium irradiated by
coupled system of concentrically placed waveguide applicattfE&E
Trans. Biomed. Engvol. 45, pp. 909-919, July 1998.

[15] M. H. Er, “Linear antenna array pattern synthesis with prescribed broi
nulls,” IEEE Trans. Antennas Propagavol. 38, pp. 1496-1498, Sept.
1990.

[16] M. H. Er, S. L. Sim, and S. N. Koh, “Application of constrained opti-
mization techniques to array pattern synthessghal Processingvol.
34, no. 3, pp. 323-334, Dec. 1993.

[17] C.Y. Tseng and L. J. Griffiths, “A simple algorithm to achieve desired
patterns for arbitrary arrays|EEE Trans. Signal Processingol. 40,
pp. 2737-2746, Nov. 1992.

[18] S. R. Naghesh and T. S. Vedavathy, “A procedure for synthesizing a
specified sidelobe topography using an arbitrary ari®EE Trans. An- Francesco Soldovierireceived the Laurea degree in electronic engineering
tennas Propagatvol. 43, pp. 742-745, July 1995. from the University of Salerno, ltaly, in 1992 and the Ph.D. in electronic

[19] Y.C.Jiao, W. Y. Wei, L. W. Huang, and H. S. Wu, “A new low-side-lobeengineering from the University of Napoli, Italy, in 1996.
pattern synthesis technigue for conformal arraysEE Trans. Antennas  In 1993, he joined the Electromagnetic Research Group of the University

Paolo Di lorio was born in Napoli, Italy, in 1972. He
graduated from the Federico Il University of Napoli
in 1998.

He has cooperated for some time with the Applied
Electromagnetics group of the same university on an-
tenna synthesis and ground penetrating radar appli-
cations. After being with Alenia Marconi Systems
S.pA, he is now working with Incard SpA on con-
tactless smart card systems.

Propagat vol. 41, pp. 824-831, June 1993. of Napoli, where he held a Postdoctoral Fellowship during 1998-1999. After
[20] S. P. Applebaum, “Adaptive arraydEEE Trans. Antennas Propagat. being with the Electromagnetic Research Group, Second University of Naples,
vol. AP-24, pp. 584-598, Sept. 1976. he is currently with IRECE/CNR. His main scientific interests include inverse
[21] E. C. Dufort, “Pattern synthesis based on adaptive array theliiti, =  scattering, electromagnetic diagnostics, antenna measurements, near-field tech-
Trans. Antennas Propagatol. 37, pp. 1011-1018, Aug. 1989. niques, phase retrieval, and antenna synthesis.

[22] C.A.OlenandR. T. Compton, “A numerical pattern synthesis algorithm Dr. Soldovieri was a Corecipient of an honorable mention for the IEEE
for arrays,”IEEE Trans. Antennas Propagatol. 38, pp. 1666—1676, TRANSACTIONS ONANTENNAS AND PROPAGATIONH. A. Wheeler Applications
Oct. 1990. Paper Award in 2000.



