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An Effective Approach for the Optimal Focusing of
Array Fields Subject to Arbitrary Upper Bounds

Tommaso Isernia, Paolo Di Iorio, and Francesco Soldovieri

Abstract—A new approach to the optimal focusing of array
fields subject to arbitrary upper bounds is presented. The ap-
proach formulates the problem as the minimization of a linear
function in a convex set. Unlike other approaches, this one
guarantees the achievement of the global optimum by using
local optimization techniques and can, moreover, deal with any
convex constraint on the unknowns, such as near field constraints.
Optimization is performed by two ad hoc developed solution
algorithms, which exploit the geometrical characteristics of the
problem at hand, thus leading to extremely effective and computa-
tionally efficient numerical codes. An extensive numerical analysis
has been performed in all cases of linear, planar, and circular arc
arrays. The enhanced performance of the proposed technique
with respect to the solution algorithms available in the literature
fully confirms the effectiveness of the approach.

Index Terms—Antenna synthesis, arrays, near-field constraints,
optimal focusing, optimal synthesis.

I. INTRODUCTION

I T is well known that antenna power synthesis allows
designers to deal with a greater number of “degrees

of freedom” than is possible with more conventional field
synthesis problems, as it is not necessary to fix in advance
the far-field phase distribution [1]. Power synthesis has thus
become a classic problem in electromagnetics.

In its wider sense, power pattern synthesis is a nonconvex op-
timization problem [2]. All solution techniques can therefore be
regarded as the search for the global optimum of a nonquadratic
function of the parameters defining antenna excitations and
structure. Consequently, design procedures based on gradient
or Newton-like minimization techniques can be “trapped” into
yielding a local optimum (rather than converging to the global
optimum), thus providing a suboptimal (i.e., nonoptimal)
solution to the problem at hand. In an array synthesis problem,
for instance, such a “suboptimal” design would either imply
excitations that do not fulfill the constraints or arrays that fulfill
the constraints by using a redundant number of antennas.

A great deal of effort has recently been channeled into solving
this problem. In [2], the properties of squared amplitude distri-
butions of the fields are exploited to obtain the criteria needed
in order toa priori establish the feasibility of a given shaped
beam power pattern synthesis problem for a fixed geometry
array. These properties are then used to understand and tackle,
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by means of geometrical arguments and suitable deterministic
algorithms, the local optima occurrence. This approach can syn-
thesize, for given mask constrained power patterns, array an-
tennas having a minimum number of elements, and application
of the above feasibility criteria shows that it is not possible to
further decrease this number.

A more widely used approach entailing the use of global op-
timization procedures has been proposed in order to guarantee
the “global optimality” of the design. In particular, the use of
genetic algorithms has become very popular [3], [4]. However,
optimization procedures based on genetic or other global op-
timization algorithms are very cumbersome from the compu-
tational point of view, thus making them very difficult to use
(or unreliable) for solving problems with more than a couple of
dozen unknowns [4].

Rather than being in contrast, the two approaches can be con-
sidered complementary to each other as a better understanding
of the causes and the number of local optima can also help to rec-
ognize the actual need, performance, and ultimate limitations of
“global optimization” approaches.

In contrast to the shaped beam case, some important synthesis
problems, such as “optimal synthesis” [5], can be solved in a
globally optimal fashion, although only in a limited set of cases.

In the case of linear uniformly spaced arrays with constant
sidelobe levels, for example, globally optimal solutions to the
focusing problem are obtained by resorting to the properties of
the Chebyshev polynomials [6]. A recent advance in this field
is presented in [7], which introduces a nonexplicit exploitation
of the Chebyshev polynomials. The approach also makes it pos-
sible to determine the minimum number of elements required to
achieve the desired beamwidth and sidelobe level (SLL) without
resorting to an iterative process.

The classical Dolph–Chebyshev approach has also been ex-
tended to uniformly spaced planar arrays, with the same limita-
tions as in the linear case, thanks to Baklanov [8] or McClellan
[9] transformations, which reduce the two-dimensional (2-D)
problem to a one-dimensional one. However, such transforma-
tions introduce a symmetry in the synthesized excitation coef-
ficients [10], which reduces the number of degrees of freedom
available to the designer.

A new class of linear arrays having equal sidelobe levels in
their radiation patterns has recently been introduced [11]. Once
the number of elements, (the uniform) spacing, and the SLL
have been fixed, these arrays exhibit a larger directivity than
conventional Chebyshev arrays, provided the number of ele-
ments exceeds a minimum value depending on the SLL and el-
ement spacing. However, these “modified” Chebyshev polyno-
mials also exhibit a larger beamwidth.
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However, all the above approaches are unable to deal with sit-
uations wherenonuniformbehavior of the sidelobes is required,
as happens when we want to reduce the array response over a
range of angles where an undesired interference is present.

A second important limitation in all the above approaches is
that they can only deal with arrays having a uniform spacing
on a line or on a plane and whose identical elements radiate
the same identical field. Therefore, nonuniform or conformal
arrays, as well as arrays where the elements radiate different
patterns, cannot be dealt with.

In this paper, we tackle the problem of determining the excita-
tions of a given set of arbitrarily positioned sources so as to pro-
duce a far-field intensity that is maximum in a prescribed direc-
tion and subject to completely arbitrary upper bounds elsewhere.
Note that the formulation includes any kind of fixed geometry
arrays and can be naturally applied to considering mutual cou-
pling (see Section V). This problem is of primary interest in the
antenna and propagation community [12] and has more recently
attracted attention in biomedical engineering applications [13],
[14]. After quoting some of the existing solution procedures, the
convex nature of this problem is demonstrated. Consequently,
provided that the proper formulation is adopted, it does not admit
local optima. Effectivead hocsolution schemes are then pre-
sented. Finally, numerical evidence of the effectiveness, power,
and flexibility of the approach is furnished in the cases of linear,
planar, and conformal arrays. By virtue of the chosen formula-
tion and the developed codes, the performance of the achieved
designs is equal to or better than the relative published results in
all the examples we have examined.

II. THE PROPOSEDAPPROACH ANDITS PROPERTIES

Although many efforts have been performed in order to
remove the above limitations [13], [15]–[23], all existing
approaches share the common properties that global optimality,
in the sense defined in Section I, is not guaranteed. Therefore,
a step in the right direction is certainly constituted by the
recognition of the fact that the optimal focusing of scalar
fields subject to arbitrary upper bounds can be formulated as
a convex optimization problem, i.e., the minimization of a
convex function (in particular a linear function) over a convex
set [24]. In fact, such a formulation implies that in this case
any local minimum of the objective function is also a global
minimum [25]. Obviously, effective and computationally
efficient solution codes are also needed.

The adopted formulation is briefly recalled in the following.
Let us consider a set of sources, each radiating a known
scalar1 field , so that the overall field is given by

(1)

wherein is the excitation coefficient of theth
element. The problem is to determine the set of excitations

such that

(2a)

1For the sake of simplicity, we refer herein to scalar fields. This hypothesis
will be removed in the following.

is maximum subject to

SLL (2b)

where SLL is a nonnegative function of the coordinate
spanning the observation space. Note that SLLwill be fixed
arbitrarily large in the pencil beam region surrounding.

This formulation makes it possible to consider pencil beam
synthesis problems relative to arrays with arbitrary but fixed
structures and is therefore also recommended for the conformal
array cases. Furthermore, the formulation also makes it possible
to solve synthesis problems with constraints on the near field,
which is of interest when the array is located in complex elec-
tromagnetic scenarios such as satellites, airplanes, or ships.

The bandlimitedness properties of radiated fields [26],
considering a sufficiently dense grid of sampling points over
the observation domain and without any loss of degrees
of freedom, mean that the problem can be formulated as: to
determine the real and the imaginary parts of the excitations

such that

Re is minimum (3a)

with the constraints

Im (3b)
SLL

...
SLL

(3c)

where is the total number of points in the grid. Note that
(3a) and (3b) correspond to maximizing the original objective
function by fixing the (arbitrary) reference phase in
such a way that the field has aphase in the direction . Also
note that (1)–(3c) naturally extend to the optimal focusing of a
single component of the field subject to arbitrary upper bounds
on the total field. In fact, it suffices to consider the given field
component in (3a) and (3b) while enforcing constraints (3c) on
the total field so that the proposed approach may be conveniently
exploited in applications where polarization and/or space reuse
are required.

Since is a positive semidefinite quadratic form as
a function of , each constraint (3c) de-
fines a hypercylinder, i.e., a convex set, in the space of the un-
knowns. Moreover, the constraint of (3b) is linear in terms of

, so that it also defines a convex set (a
hyperplane) in the space of the unknowns. As the intersection
of convex sets is still convex, (3b) and (3c) define a convex set.
Finally, the objective function (3a) is a linear function of the
unknowns, so that the whole problem is equivalent to the mini-
mization of a linear function in a convex set, say,C.

Such a problem has been extensively analyzed in operations
research, and it can be shown that it admits a unique minimum
value, which is therefore the global optimum, that is achieved
in a single point or in a connected (convex) subset ofC [25].

It follows that any operations research procedure able to
achieve a local optimum of constrained minimization problems
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provides excitation coefficients such as to produce the max-
imum field compatible with constraints, i.e., excitations that
are globally optimal.

Nevertheless, the use of standard operations research pro-
cedures deserves some comment. Their use is relatively new
in electromagnetic applications, and their apparent difficulty
means that they tend to be used as black box routines without
the features, mechanics, and limitations of the adopted methods
being properly understood. Consequently, the solution proce-
dures, which are not necessarily well tailored to the problem at
hand, may turn out to be very cumbersome from the computa-
tional point of view or even not effective at all. Moreover, the
causes and countermeasures regarding possible procedure con-
vergence failures are not easily dealt with. This is the case of
[24], where the present approach was numerically implemented
by resorting to a “general purpose” procedure available from
the NAG library [27]. Because of slow convergence problems,
the resulting solution algorithm made it possible only to manage
problems with up to a few dozen unknowns.

The need thus arises to develop new ad hoc solution ap-
proaches capable of overcoming the limitations of the previous
approach through a full understanding of each single step of the
procedure and exploiting the particular nature of the problem at
hand, i.e., a linear objective function and convex (analytically
known) quadratic constraints. These two circumstances well
match the idea to let the optimization evolve inside the convex
set, which renders the proposed point of view to synthesis
profoundly different from other, more well-known projec-
tion-based approaches [28], [29]. In actual fact, the analytical
knowledge of the boundary of the set in each violation point
makes it possible to develop two different and somehow
original optimization strategies. Moreover, the proposed point
of view also makes it possible to identify and overcome the
causes of possible slow convergence (or lack of convergence)
to the actual solution. Finally, the approach naturally lends
itself to the use of numerically efficient computer codes [which
are in fact based on fast Fourier transform (FFT) routines for
standard arrays] for the computation of the quantities at hand.

III. N EW ALGORITHMS

Two new algorithms for solving the optimization problem,
named “Hit and Set” and “Hit and Get,” respectively, are herein
described. Both of them are based essentially on the observation
that

Re (4)

where is a real constant, identifies parallel hyperplanes that
are orthogonal to the gradient of the objective function in the
space of the unknowns . Let be the
unit vector identifying the direction of the gradient in such a
space. It follows that the problem can be formulated as finding
the hyperplane with a nonempty intersection with the feasible
set and characterized by a minimum value of the real constant

, i.e., the hyperplane “tangent” to the setC.

In order to simplify the description of the two proposed algo-
rithms, let us suppose that the space of the unknowns is bidimen-
sional2 and spanned by the usual coordinates. Moreover, let
us suppose that the feasible set is given by

(5)

where are positive real constants. Equation (5) defines a
convex set with an ellipsoidal boundary. Note that the normal
unit vector to this set in each boundary point, defined as the
direction in which varies at the maximum rate, can be
easily evaluated as

(6)

where denotes the gradient of .
Also note that (3b) does not need to be expressly enforced be-

cause it will be induced in any case by requirement (3a) through
a phase shift of excitations.

A. The “Hit and Set” Approach

The first proposed algorithm entails the iteration of two dif-
ferent steps until a suitable stopping rule, defined in the fol-
lowing, is satisfied. Let be a point inside the feasible set
that can be the null vector at the very first step of the iterative
procedure.

In every “hit” step, the boundary of the feasible set is hit at
the point by moving from in the direction opposite to

[Fig. 1(a)]. The step amounts to moving along the steepest
descent direction , which is an obvious preferential direc-
tion. Because of the linearity of the objective function,needs
to be computed only once at the beginning of the whole mini-
mization procedure. If we denote by the distance between

and the boundary of the convex set in the direction,
the step is also described by

(7)

and the computation of is easily achieved (see the Ap-
pendix).

In every “set” step, an optimal setting for inside the set
is identified in order to (hopefully) get the maximum gain in the
subsequent “hit” step. A possible criterion that can be used to
achieve this is to move as far away as possible from the boundary
of the set. However, in doing that, the value of the objective
function achieved in the previous hit step must not be increased.
One way of satisfying these two requirements is to move along
the projection of the normal to the boundary (evaluated in

onto the current equilevel set. In fact, is the direction
that (locally) maximizes the distance from the boundary, and its
projection onto the equilevel set guarantees that the objective
function does not increase in a set step. This direction can be
easily computed by subtracting from its projection along

, so that

(8)

2This hypothesis will be removed in the following.



1840 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 48, NO. 12, DECEMBER 2000

(a)

(b)

Fig. 1. Representation of the “hit” and “set” steps. (a) In the hit step, the
boundary pointP is found by moving in the direction�^i . (b) In the “set”
step, one ties to find the optimal setting in order to get the maximum gain in the
subsequent step.

is the moving direction in a set step. Then is set halfway
between and the other boundary point in direction [see
Fig. 1(b)]. So

(9)

wherein is the distance between and the other violation
point along . This choice agrees with the need to be as far as
possible from the boundary in order to get the maximum gain in
the subsequent hit step.

Then the procedure continues by iterating the hit and set steps
until becomes parallel to , which means that the hyperplane
tangent to the convex set has been reached. This approach

(a)

(b)

Fig. 2. (a) Pictorial view of a section of the feasible set, defined as the
intersection of hypercylinders. (b) About the definition of “pseudonormal.”
Two constraints are simultaneously violated.

resembles the strategy of “interior points” methods for convex
programming, which try to solve the optimization problem by
moving along “central paths” of the feasible set [30].

In an actual synthesis problem, the feasible set has a
nonregular boundary as is defined by the intersection of hyper-
cylindrical sets [see Fig. 2(a)]. This circumstance introduces an
additional difficulty since no “normal” vector can be defined
at the nonregular point of the boundary. On the other hand, all
that is needed is a vector directed as far as possible “outside”
the convex set at hand. This consideration suggests introducing
a “pseudonormal” vector, defined as the sum of ,
where are the normal vectors to each hypercylinder
whose boundary is being violated and evaluated in the violation
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Fig. 3. Pictorial view (inR ) of the feasible set when the cylinders are nearly parallel.

point [see Fig. 2(b)]. If is the number of violation points, the
pseudonormal unity vector is therefore given by

(10)

and plays almost the same exact role asin all the set steps.
The only significant difference is in the stopping rule, which
needs to be redefined. A simple choice consists of iterating the
two steps until no significant difference is observed on the point

in two consecutive hit steps.
The two iterated steps (7) and (9) imply that the successive

values of the objective function do not increase. As SLLis
bounded (provided SLL in the pencil beam region is enforced
to a fixed although very large value), the feasible setC is also
compact. As, in a compact set, a convergent succession can al-
ways be extracted from a non increasing one [31], convergence
of the proposed procedure is demonstrated.

B. The “Hit and Get” Approach

The “hit and set” algorithm gives much better optimization
results than our previous approach [24], allowing us to deal suc-
cessfully with problems having hundreds of unknowns. In some
cases, however, slow-convergence problems could still keep the
optimization procedure far from the actual solution. In this re-
spect, the “geometrical” point of view we use makes it possible
to identify the possible causes of the slow convergence and helps
to develop suitable countermeasures.

It may happen, for example, that the hypercylinders (whose
intersection constitutesC) are nearly parallel to one another, so

that the overall feasible set extends greatly along a few direc-
tions, while being relatively narrow along all of the many other
coordinates (see Fig. 3). Now, whenever the boundary of the fea-
sible set and the equilevel set are nearly parallel to one another
while the feasible set is very narrow along the normal direction,
only a negligible lowering of the objective function is possible in
the two consecutive steps (see Fig. 4). Moreover, the same rea-
soning may be applied to the following pair of iterations, and so
on, thus leading to an overall slow convergence (or even prema-
ture stopping) of the procedure.

One way of avoiding this problem is to try to move along
the boundary of the feasible set in a descent direction. Unfortu-
nately, the projection of on the tangent plane is generally
directed outsideCbecause of the fact that the boundary is not a
linear manifold. A viable alternative is the directiongiven by
a linear combination of the (every time) descent direction
and the direction pointing inside the convex set, i.e.,

(11)

wherein is a positive real constant. If is large enough,
then is directed insideC, so that such a choice simultane-
ously matches both the requirement of moving in the objective
function descent direction and far away from the violated con-
straints. In addition, a proper choice of may provide a di-
rection nearly parallel to the boundary of the feasible set.
This new strategy and its capability of successfully tackling the
above-discussed problem is pictorially represented in Fig. 5.

Note that the higher the value of , the lower the objective
function decreases at each step, while the lower the value of,
the more is directed along the boundary of the feasible set,
with beneficial effects on convergence rate. Therefore,has
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Fig. 4. Two steps of the “hit and set” strategy in a case where the boundary ofC and the equilevel set are nearly parallel.

Fig. 5. A step of the “hit and get” algorithm in a case where boundary ofC and equilevel set are nearly parallel.

to be selected from several trials by making a tradeoff between
accuracy and convergence rate.

As moving along the successive directions gives rise to
a nonincreasing behavior of the objective function, the same
convergence proof as in Section III-A applies here.

IV. NUMERICAL RESULTS

In this section, numerical results showing the effectiveness
of the proposed approaches are reported. This section is divided
into three parts, each one regarding a different geometrical con-
figuration. The first concerns linear arrays, the second planar
arrays, and the third conformal (circular arc) arrays. For planar
arrays, both constraints in near zone and in far zone are con-
sidered. All the results have been obtained with a Pentium II
350-MHz processor.

A. Linear Arrays

The radiation pattern of a linear array with isotropic
elements uniformly spaced bycan be written as [12]

(12)

with , wherein is the propagation constant in
free space and is the angle between the direction of observa-

tion and the array line. The gradient of the objective function is
therefore the vector

(13)

where is the desired direction of maximum field intensity.
The first example is concerned with the synthesis of a broad-

side linear array of 16 isotropic elements uniformly spaced by
half-wavelength with equal-level sidelobes and a beam width
(BW) of 19 . This sidelobe configuration is useful for the val-
idation of the algorithms, since an analytical solution can be
easily calculated by Dolph–Chebyshev methods. The result, ob-
tained by the hit-and-set algorithm in less than 1 s, agrees per-
fectly with the analytical result.3 The relative difference be-
tween excitations, defined as —where and

are the excitations of theth element evaluated numerically
and analytically, respectively—is on the order of 10for all
the elements in the array.

When a beam width of 20or greater is required for this
array, the hit-and-set algorithm is no longer able to find the op-
timal solution due to slow-convergence problems and prema-
ture stopping.4 This is consistent with the very rapid growth of

3In order to perform the comparison accurately, the analytical solution is eval-
uated by imposing the maximum value of the array factor as in the numerical
synthesis. Then, beamwidths and excitation coefficients are compared.

4The critical value of the beamwidth decreases when the number of elements
in the array increases.
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Fig. 6. Radiation pattern of the broadside linear array with 16 elements
uniformly spaced of half-wavelength.

the maximum for increasing BW, which rapidly makes the fea-
sible set an elongated one, and the problem becomes ill condi-
tioned. However, the synthesis is carried out successfully by the
hit-and-get approach, as shown in Fig. 6, wherein the synthesis
result for a BW is reported.

In the performed examples with linear arrays, it has been ob-
served that a value of the constantequal to 20 furnishes the
best compromise in terms of convergence time and accuracy.
However, the algorithm is not very sensitive to this value. A
large number of examples on linear arrays with equal sidelobes
level have been performed using different values ofin the
range from ten to 100, and for all of them the numerical and an-
alytical results are in agreement, with a relative difference be-
tween excitations of about 10.

In order to show the flexibility and the effectiveness of the
proposed approaches in overcoming limitations of the analytic
methods, the synthesis of beams with a nonuniform sidelobes
topography has been considered by using the hit-and-get ap-
proach.

The results of a shaped sidelobes synthesis are shown in
Fig. 7. The linear array is made up of 20 isotropic elements
uniformly spaced by half a wavelength. The design constraints
prescribe an asymmetrical pattern with a beamwidth of about
20 and maximum field intensity in the broadside direction.
The sidelobes are enforced to be equally leveled on one side
of the main lobe and further reduced by about20 dB for

on the other side. Note that although the
field intensity is reduced by 20 dB for , the
maximum value is reduced by only 1 dB with respect to the
case of uniform sidelobes, thus confirming the effectiveness of
the procedure.

In all the examples performed on linear arrays, the hit-and-get
approach has revealed itself to be from five to 100 times faster
than the general purpose optimization tool of MATLAB.

B. Planar Arrays

The hit-and-get algorithm preserves its effectiveness even if
the array consists of a large number of elements. For a planar

(a)

(b)

(c)

Fig. 7. (a) Radiation pattern of a linear array with 20 isotropic elements
uniformly spaced half-wavelength, synthesized with an asymmetric mask
function (dashed line). (b) Normalized amplitude. (c) Phase of the evaluated
excitation coefficients.

array, synthesis algorithms can deal with several hundreds or
even thousands of unknown excitations.

The radiation pattern of a planar array with
isotropic elements placed on the plane and uniformly spaced
in the - and -directions by and , respectively, can be
written as

(14)

where is the excitation coefficient of the th element,
, .

As a first test case, let us consider an array of 3131
isotropic elements uniformly spaced by half a wavelength
in both the and directions. The beam is constrained to
have a circular shape in the- plane with a beamwidth
(measured at 0-dB level) of about 13.5along the two main
cuts (Fig. 8). The numerical solution is equal
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Fig. 8. “Mask” function with circular shape fixing the constraints for
the planar array. The prescribed beam width at the two principal sections
(u = 0; v = 0) is about 13.5.

to the expected Tseng–Cheng (Chesbyshev) one along the
principal cuts [Fig. 9(a)], but it appears to be much better along
the cut [Fig. 9(b)], wherein sidelobes decay much faster
without any visible enlargement of the main beam. Also note
that this optimal solution for the considered mask constrained
problem does not exhibit equal sidelobes.

In all these cases, has been used, and the same com-
ments as for the linear array case apply.

In order to show the flexibility of the approach, near-field
constraints have been added to the synthesis problem. In par-
ticular, a reduction of the near-field intensity has been enforced
outside the square (centered on the-axis) of 9 side located
over a plane at a distance of 5from the array.

Evaluation of the near field, which is herein a scalar function,
and enforcement of the constraints are efficiently performed
thanks to 2-D FFT codes. In particular, a (256256) grid has
been assumed to evaluate both the far and near field and to en-
force the corresponding constraints. The results of the synthesis
(by the hit-and-get approach) show a reduction of the maximum
of the far-field intensity equal to 1 dB (Fig. 10), as compared to a
reduction of 10 dB of the near-field intensity in the constrained
zone (Fig. 11), thus confirming also in this case the effective-
ness of the developed procedures.

The required computation time for these examples, involving
the solution of a nonlinear programming problem with almost
2000 real unknowns and from 65 536 to 131 072 constraints,
varies from 13 min for the former cases to about 2 h for the case
including near-field constraints. It has to be noted that because
of the large number of unknowns and constraints, it has not been
at all possible to perform the synthesis using standard general-
purpose optimization tools.

C. Conformal Arrays

In order to show the effectiveness of the approach for con-
formal arrays, let us consider the case of a circular arc array.

(a)

(b)

Fig. 9. Radiation pattern at the section (a)v = 0 and (b)u = v of a planar
array with 31� 31 isotropic elements uniformly spaced of half-wavelength.
Numerical result (solid line) obtained by hit-and-get method is compared with
analytical one (dotted line) obtained by Tseng and Cheng method.

On the plane of the antennas , the radiation pattern is
given by

(15)

where is the angular position of theth radiator, is the
radiation pattern on the plane of the generic element
located at , and is the radius of the circle [12]. In
order to provide a comparison with [18], a circular array with 25
elements angularly spaced by 5.625along a circular arc with
radius has been considered, with an element pattern

given by

(16)
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Fig. 10. Radiation pattern synthesized with near-field constraints (solid line) and without near-field constraints (dashed line) at the sectionv = 0.

Fig. 11. Near-field intensity without near-field constraints (dashed line) and with near-field constraints (solid line) at the cut planey = 0. The dash and dotted
line represent the near-field constraints.

Design specifications require a beamwidth of about 20
around the maximum in , and the constraining mask
has also been fixed in order to make a comparison with [18].

The results of the synthesis (Fig. 12) show that a reduction of
about 5 dB on the sidelobe level with respect to the solution
presented in [18] is possible by using this approach, thus
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(a)

(b)

(c)

Fig. 12. (a) Synthesised radiation pattern (solid line) of a circular arc array of
25 elements, radius 6.72� and interelement angular distance 5.625; the mask
function is depicted by a dashed line. (b) and (c) Normalized amplitude and
phase of the evaluated excitation coefficients.

confirming once again its validity and that of the developed
solution procedures.

V. CONCLUSION

In this paper, a new solution approach to optimal focusing
of scalar fields subject to arbitrary upper bounds is presented.
The approach recognizes that the problem pertains to the class
discussed in [32], thus ensuring global optimality by “local”
methods. Then a conceptually simple geometrical point of view
to the problem is introduced, which leads to two different easily
implementable “interior point” methods for its solution. The

introduced point of view also allows one to understand and
somehow tackle possible slow-convergence problems, which
are indeed neglected in all previous approaches.

The effectiveness of the proposed approaches is discussed
through a series of examples in all cases of linear, planar, and
conformal arrays. Even if the first presented solution procedure
(hit and set) shares some similarity to the “central path” algo-
rithms often adopted in convex optimization problems [30], the
second proposed procedure (hit and get) has been shown to per-
form better.

It is worth noting that the approach naturally lends itself to
the consideration of other convex constraints without impairing
global optimality. Such constraints may include specifications
such as upper bounds on the invisible part of the spectrum (in
order to control superdirectivity), the maximum value of the ex-
citation coefficients, and the maximum absolute variation be-
tween the coefficients of adjacent elements in an array.

The presented form of the approach does not take mutual cou-
pling into account, but this can be easily achieved in two dif-
ferent ways: first, voltage excitations may be computed using
the mutual admittance matrix, and, secondly, the active element
patterns of [33] can be directly used in the synthesis so that no
approximation is required on mutual coupling. Comparison be-
tween the two approaches shows advantages of the second pro-
posed procedure [34].

As a final remark, we would like to note that the approach
is also a natural candidate to perform as a powerful elemen-
tary brick in other more complicated focusing problems, such
as optimal focusing of vectorial fields, synthesis of multibeam
antennas, and synthesis of uniformly (or even nonuniformly)
spaced arrays with unknown spacing.

APPENDIX

The distance along the generic direction be-
tween the feasible point and the boundary of the feasible set
can be easily evaluated in this way

(A.1)

wherein is the total number of constraints and
denotes the distance alongbetween the boundary of the set
defined by the th constraint and . Let be the linear
operator which relates set of excitations given byto the field
in .

The distances of from the boundary defined by theth con-
straint can be determined by solution of the equations

SLL (A.2)

If

Real

SLL
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then can be evaluated solving the following quadratic equa-
tion:

(A.3)

It is worth noting that in order to tackle roundoff errors, which
may lead outsideC, it proves convenient to use a value of
slightly smaller (let us say one for each thousand) than (A.1).
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