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Efficient Radar Target Classification Using Adaptive
Joint Time-Frequency Processing

Kyung-Tae Kim, In-Sik Choi, and Hyo-Tae Kim

Abstract—This paper presents a new target recognition scheme
via adaptive Gaussian representation, which uses adaptive joint
time-frequency processing techniques. The feature extraction stage
of the proposed scheme utilizes the geometrical moments of the
adaptive spectrogram. For this purpose, we have derived exact and
closed form expressions of geometrical moments of the adaptive
spectrogram in the time, frequency, and joint time-frequency do-
mains. Features obtained by this method can provide substantial
savings of computational resources, preserving as much essential
information for classifying targets as possible. Next, a principal
component analysis is used to further reduce the dimension of fea-
ture space, and the resulting feature vectors are passed to the clas-
sifier stage based on the multilayer perceptron neural network.
To demonstrate the performance of the proposed scheme, various
thin-wire targets are identified. The results show that the proposed
technique has a significant potential for use in target recognition.

I. INTRODUCTION

T ARGET recognition problems from the backscattered
fields of radar targets have long been very difficult to

solve because scattering mechanisms are very complicated,
even for a geometrically simple target, and also because they
have strong frequency and angle dependencies. Therefore, it is
necessary to represent these complex scattering mechanisms in
an efficient manner. Consequently, inverse synthetic aperture
radar (ISAR) images and complex natural resonance (CNR)
frequencies have been utilized for this purpose.

An ISAR image, which is a type of time-domain repre-
sentation of a backscattered field for a target, can display the
two-dimensional (2-D) spatial distribution of nondispersive
scattering centers in a 2-D image plane [1], and they have been
used as features for target recognition [2]. Unlike ISAR images,
CNR frequencies from the late-time portion of the backscat-
tered signal are a kind of frequency-domain representation,
which have also been applied to radar target recognition in
conjunction with E-pulse, S-pulse, and generalized likelihood
ratio test (GLRT) techniques [3]–[5]. On the other hand,
time-frequency (T-F) analysis has many advantages over
conventional ISAR images and CNR frequencies, since it can
display both time-domain scattering phenomena, like scattering
centers, and frequency-domain scattering phenomena, such
as local resonances and dispersive mechanisms, in a 2-D T-F
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axis. This can lead to more abundant scattering information
about a target than that from either time or frequency domain
representation alone, and therefore the T-F features are very
useful for target recognition applications.

T-F analysis techniques have long been used in the area of
diagnostic investigation to reveal the complicated scattering
mechanisms of certain structures such as an open-ended
circular waveguide cavity, uniform plasma cylinder, and
slotted waveguide, etc. [6]–[8]. In these studies, the short-time
Fourier transform (STFT), Wigner–Ville distribution (WVD),
and wavelet transform have been employed as main signal
processing tools for investigating target diagnostics. However,
recently developed adaptive joint T-F processing techniques,
such as adaptive Gaussian representation (AGR), adaptive
chirplet-based signal approximation, and a matching pursuit
algorithm [9]–[11] have many advantages over the conventional
T-F processing methods mentioned above. In contrast to the
conventional nonparametric T-F analysis such as STFT, WVD,
and wavelet transform, the adaptive joint T-F processing
technique is a type of parametric T-F analysis, and therefore
it can provide very high T-F resolution. Moreover, since AGR
can decompose the backscattered signal into T-F centers corre-
sponding to scattering centers and local resonances, it has been
used in the application of ISAR image enhancement and data
compression [12], [13]. Also, the adaptive chirplet-based signal
approximation has been applied to ISAR motion compensation
[14].

In terms of target recognition, it has been found that T-F sig-
natures from a target change in a well-behaved manner with the
aspect angles throughout the entire angular range of the target.
This suggests that the identification of complex-shaped targets
can be based upon a small set of templates for each given target
[15]. The most critical issue when using T-F features for target
recognition is the prohibitive memory space problem for the
construction of a database containing T-F signatures with the
change of target type and aspect angle. Therefore, what is most
important is to reduce the dimension of the T-F signature while
preserving as much essential information as possible.

In this paper, we propose a new target-recognition strategy
based on AGR processing. AGR assumes that the backscattered
field from a target consists of adaptive normalized Gaussian
basis functions with adjustable T-F centers and associated
variances. These elementary Gaussian modes contained in the
backscattered signal can be found by the iterative procedure
described in [9]. With these extracted T-F centers of Gaussian
modes, the geometrical moments of the adaptive spectrogram
(ADS) are computed using the derived expressions in this
paper without time-consuming ADS generation. The small
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dimensional geometrical moments obtained are further trans-
formed into feature vectors of much smaller dimension via the
use of principal component analysis (PCA). Next, the feature
vectors finally obtained from several targets are identified
using a classifier based on the multilayer perceptron neural
network. Classification results using several thin-wire targets
will demonstrate the effectiveness of the proposed procedure.

II. AGR THEORY

AGR expands a backscattered field in time-domain in
terms of normalized Gaussian elementary functions with
an adjustable T-F center , and a variance

(1)

where

The adjustable parameters, , and for Gaussian basis
functions, and for the coefficient can be obtained such that

is most similar to

(2)

where . is the remainder after the orthog-
onal projection of onto and this iterative procedure
is described as

(3)

Since the projection integral in (2) is the Fourier transform
of with the Gaussian window,

, the adjustable T-F center ,
and associated variance can be obtained using the com-
putationally efficient fast Fourier transform (FFT) and the
specific search procedure in [9]. That is, beginning with large
scale (variance) , which determines the time and frequency
widths of a Gaussian basis function, the T-F center having the
maximum is selected. Then, the scale is halved and
another T-F center of the maximum is found. This process
continues until the maximum no longer increases. The

, , , and finally obtained give the solution of (2)
and these four parameters completely describe one Gaussian
T-F basis function at theth iteration. A detailed graphical
illustration of this search procedure in the T-F domain can be
found in [12].

In the actual implementation of the above AGR algorithm, the
upper limit of the summation in (1) is limited to since the
iteration halts after the extracted Gaussian basis functions faith-
fully approximate the time-domain signal with sufficiently

high accuracy. After stages of AGR decomposition, the
following relationships hold:

(4)

and

(5)

Therefore, the AGR iteration in (3) continues until the recon-
struction error is sufficiently small, i.e.,

, the ratio between the energy of
the reconstructed signal and the energy of the orig-
inal signal , is close to unity and, hence, the upper limit

is determined [9].
After , , , and , are obtained

via AGR processing, the ADS, which is a signal energy distri-
bution in the joint T-F plane, is given by

(6)

It is well known that this ADS can give a joint T-F distribution
that is nonnegative, cross-term interference free, and of high
resolution [9].

Note that the Gaussian elementary functions used in (1) does
not constitute a complete set (orthonormal basis), while those of
the wavelet decomposition and the modified Gabor expansion
developed by Bastiaans form a complete set [16], [17]. Unless
the elementary functions form a complete set, such representa-
tion may be redundant and its uniqueness may not be guaran-
teed. However, the time and frequency resolutions of the ele-
mentary functions in both the wavelet decomposition and Bas-
tiaans’ method are restricted to a regular sampling grid [9], and
in addition, they are subject to the number of data samples [18].
In radar signal processing applications, the scattering mecha-
nisms are usually too complicated, and consequently, for accu-
rate representation of a radar signature, it is desirable to have the
elementary functions on a flexible sampling grid as in AGR pro-
cessing rather than the elementary functions on a regular grid as
in the two methods mentioned above. The effectiveness of AGR
processing for radar applications has been well discussed in [13]
and [19].

III. FEATURE EXTRACTION FROM ADAPTIVE SPECTROGRAM

In order to apply the T-F distribution for radar target recog-
nition, attention should be focused on the reduction of the fea-
ture space dimension. Because the T-F distribution itself is a
2-D image in the T-F plane, a large amount of memory storage
is required to store recognition features for many target classes
and aspect angles. In terms of visual pattern recognition, the
moments invariants derived from the geometrical moments of
a 2-D image have been utilized to reduce the dimension of the
2-D image feature [20], [21] since they have small dimensions
and are invariant features under translation, scale, and rotation.
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In this paper, the geometrical moments of the T-F distribution
are directly used as features for target recognition.

Given a 2-D density distribution function , the 2-D
geometrical moments ofth order in the -domain, those of
th order in the -domain, and those of th order in the

-domain are defined as follows [20]:

(7)

(8)

(9)

If is assumed to be a piecewise continuous and bounded
function, the moments sequences, , , and are
uniquely determined by and conversely, are
uniquely determined by , , and .

For a 2-D image , ,
, (7)–(9) can be approximated as [2], [22]

(10)

(11)

(12)

It is noted that , , and in (10)–(12) can provide
geometrical moments of an image only in an approxi-
mate sense. That is, if the geometrical moments of an image are
obtained using (10)–(12), the accuracy of the estimated values
is dependent on the image size , i.e., resolution of the
given image. If the resolution of an image is low, the accuracy
decreases, and vice versa.

To overcome this limitation in the computation of 2-D geo-
metrical moments for ADS, we first define the time- and fre-
quency-domain standard deviations, and

, respectively. Then the ADS in (6) becomes

(13)

where

Note that each of and is in the form of a 1-D
Gaussian probability density function with and

, respectively.
Combining (6), (7), and (13), the 2-D time-domain geomet-

rical moments of th-order for ADS can be expressed as

(14)

In (14), are 1-D moments with . On the
other hand, can be expanded in terms of 1-Dth-order
central moments and its mean as follows [23]:

(15)

where

odd

even.
(16)

Therefore, using (14)–(16), the exact and closed form of time-
domain 2-D geometrical moments for ADS, are finally
given by

(17)

Similarly, the 2-D geometrical moments ofth-order in the fre-
quency-domain and those of th-order in the joint T-F
domain can be expressed as

(18)
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Fig. 1. Comparison of the number of operations needed to compute a time-domain geometrical moment between the conventional method and proposed method.

(19)

So far, the exact and closed forms of 2-D geometrical mo-
ments for ADS have been derived. This implies that the mo-
ments can be calculated by merely using, , , and ,

without time-consuming ADS genera-
tion. According to (6), operations are needed
to generate an ADS image. Moreover, if we follow
the conventional moments computation procedure in (10), ad-
ditional operations are required to provide a single geo-
metrical moment in the time-domain. Therefore, when using the
conventional method, all operations
are necessary to compute a time-domain geometrical moment if
the four parameters, , , , and ,
are given after the AGR processing. However, if the proposed
method in (17) is utilized, approximately
operations are needed to provide ath-order time-domain ge-
ometrical moment of ADS. The computational saving becomes
more significant as the image size, , increases in order to
increase the T-F resolution for the improvement of recognition
accuracy. This is illustrated in Fig. 1 in the case of ,

, and . In addition, as previously described,
the proposed schemes in (17)–(19) can provide accurate geo-
metrical moments of ADS in comparison with those obtained
by the conventional methods in (10)–(12). This improvement of
accuracy is important because we showed that the accuracy of
a feature vector greatly affects the overall classification perfor-
mance in the target recognition system [24].

In [24], the hybrid techniques combining FFT-based CLEAN
algorithm and model-based algorithm have been developed to
obtain robust and accurate estimates of 1-D scattering centers
on the target. The performance of the developed hybrid tech-
niques has been verified through the three-target classification
experiment, which employs three different feature extraction
stages based on the 1-D TLS (total least squares)-Prony
algorithm, the hybrid technique (Hybrid-1) combining the
modified CLEAN and LS (least squares)-Prony, and another
hybrid technique (Hybrid-2) combining the modified CLEAN
and modified LS-Prony, respectively. Next, the radial basis
function (RBF) network was utilized to classify the test features
involving 1-D scattering centers obtained by the above three
different feature extraction techniques. The results show that
the feature extraction stage based on the Hybrid-2 is the most
suitable for radar target recognition. This is because the esti-
mated parameter accuracy of the modified LS-Prony is better
than that of the LS-Prony, and robustness is guaranteed through
the FFT-based CLEAN algorithm. This implies that both the
accuracy and robustness of the extracted feature vectors have
an important role in the design of target recognition system. As
a result, the exact and close forms of geometrical moments in
(17)–(19) have two distinct advantages over the conventional
methods in (10)–(12) in terms of computational efficiency and
accuracy, resulting in an efficient target recognition system.
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Finally, the feature vector for target recognition can be
formed by concatenating the obtained geometrical moments
from the first and th-order as follows:

(20)

where . While other combinations of orders are possible
to form a feature vector, many computer simulations suggest
that they have nearly no effect on the final classification result
as long as the maximum orderis sufficiently large.

IV. FEATURE SPACE REDUCTION VIA PRINCIPAL

COMPONENTANALYSIS (PCA)

In (20), the feature vector for target recognition is obtained
by combining the 2-D geometrical moments of ADS, and its di-
mensionality is reasonably small if the maximum orderis not
too large. In general, the geometrical moments of a 2-D com-
plex image such as an optical photograph contain useful infor-
mation up to a high order of magnitude. However, in the case
of 2-D T-F image, the amount of information contained in its
image plane is much smaller than that of an optical photograph.
For example, the scattering center response of a target would
be displayed as a vertical line parallel to the frequency axis in a
T-F plane, and resonance response as a horizontal line parallel to
the time axis. Of course, dispersive scattering mechanisms from
cavities or duct-type structures would be seen as inclined lines
in a T-F plane. Therefore, the essential information included in
a T-F image plane can be represented by geometrical moments
of relatively low orders. It is known from many computer simu-
lations that the selection of less than 10 shows sufficient clas-
sification accuracy, and the increase oflarger than 10 adds
computational burden to the classifier without improving clas-
sification accuracy.

Usually, the geometrical moments incontain redundant in-
formation and this redundancy can be effectively decreased by
applying a decorrelation transform known as principal compo-
nent analysis (PCA) [25]. After the application of PCA to the
feature vectors in (20), the dimensionality of the original fea-
ture space, i.e., , can be substantially reduced and the
transformed feature vector in the new feature space has nearly
no high-order components while still preserving low-order com-
ponents.

Let be the number of target classes andbe the number
of aspect angles for the construction of a database, i.e., the
training data set. Then, the overall training data sethas

feature vectors of dimension as follows:

(21)

where

th training feature vector

Then, the sample mean vector and the sample covariance
matrix can be given by

(22)

(23)

The above is a -dimensional vector and is a
matrix.

Let the eigenvalues of the be denoted by ,
and the associated eigenvectors be

denoted by . Then, matrix can be decom-
posed as follows:

(24)

where

If we select the largest eigenvalues and associated eigen-
vectors of , then the transformation matrix can be
obtained by truncating , of . If the training
data set has redundant information,eigenvalues of are rel-
atively large and the remaining eigenvalues are negligibly
small. The number of largest eigenvaluesis dependent on the
redundancy of the training data set. If the training data set has
much redundant information,increases, and vice versa. Since

and is the maximum order used in (20), the large
value of implies the training data set of high redundancy. In
this paper, we have been always able to identifyvalue less than

for the case of , resulting in a compression factor
larger than 3.

With the use of , we can reduce the feature space dimension
from to without significant loss of information as follows:

(25)

where

and is a feature vector at an arbitrary aspect angle from
any target class among target classes. As a result, the
resulting feature vector has the dimension of, and therefore,
through the combined use of geometrical moments and PCA,
the dimension of ADS, can be reduced to, which is
a very small value. For the computation of, the singular
value decomposition (SVD) can be directly applied to the
normalized training data matrix

instead of eigen-decomposition
of since SVD has many computational advantages over
eigen-decomposition in terms of computation accuracy and
speed [25].
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Fig. 2. The architecture of the MLPNN classifier.

V. MULTILAYER PERCEPTRONNEURAL NETWORK CLASSIFIER

After training feature vectors are transformed
into by PCA, we need to design a classifier to identify
the target type. Although many classical pattern recognition
algorithms are available for this purpose, neural networks
are very promising due to their advantages over conventional
pattern classification. The advantages of neural networks as
pattern classifiers have been well investigated, and a detailed
description of the architecture and training of neural networks
can be found in [25]. The main reason for the feasibility of
neural networks is their ability to generalize after learning from
training data. That is, they can identify a test pattern even when
that particular pattern is not used for training.

In this paper, a three-layer perceptron network, which is a
kind of multilayer perceptron neural network (MLPNN), is used
for designing a classifier. Fig. 2 shows a fully connected three-
layer perceptron network with one hidden layer havingneu-
rons. The number of neurons in the input layer is equal to the
feature vector dimension, and the number of neurons in the
output layer is equal to the number of target classes. The
neurons in the MLPNN give a nonlinear transform between their
inputs and outputs by the use of sigmoidal activation functions.

With the training data at aspects for target classes, the
MLPNN in Fig. 2 is trained until its mean squared error (MSE)
between the desired outputs and its actual outputs is less than
a certain threshold level. The training strategy is based on the
well-known back-propagation learning rule, which is an itera-
tive algorithm updating each neuron’s weight by searching
the local gradient of the error surface. A detailed discussion for
this MLPNN training algorithm can be found in [25]. After a
sufficient number of training iterations using training pat-
terns, a classifier having the ability to discriminate target
types can be formed, and it can identify a test feature vector at
any aspect of any target among targets. If a test feature vector

comes from the first target class, the above classifier will
produce the largest output at the first neuron in the output layer.

In order to train the MLPNN to achieve the best classification
accuracy, a large number of training iterations (i.e., a low MSE)
are required in general. However, a simply low MSE value does

Fig. 3. Target geometry and backscattered field computation.

not guarantee the best performance of the MLPNN. When the
MLPNN is trained using too many training patterns, it may
memorize the training data and therefore be less able to gen-
eralize test data, yielding degradation in classification perfor-
mance [25]. To prevent the MLPNN from overtraining, the max-
imum number of iterations is usually defined to stop the training
of the MLPNN. Therefore, the MLPNN should be stopped when
the MSE is less than a certain threshold level, or the maximum
number of iterations is reached.

VI. CLASSIFICATION RESULTS

To demonstrate the performance of the proposed target recog-
nition scheme, five targets in Fig. 3 and Table I are considered in
this paper. All five targets are modeled as a combination of thin
wires, and their physical dimensions are selected as 1/100 scale
of the actual dimensions of the real aircrafts: Airbus, Boeing
747, Caravelle, P 7, and Tu 154. To obtain the radar return sig-
nals for these targets, the method of moments (MM) is used to
calculate the backscattered fields in the frequency-domain. At
an aspect of and , the selected frequency range
for backscattered field computation is GHz with a
4 MHz step, yielding 127 frequency points. This band covers
the region of dominant resonant frequencies of the five targets.
The frequency-domain backscattered field data for the five tar-
gets are converted into time-domain data by inverse FFT (IFFT).
Then, after applying AGR processing to these time-domain data,
the ADS results of the five targets are shown in Figs. 4–8. During
AGR processing to estimate, , , and , the AGR iter-
ations continue until the ratio
reaches 0.9 for each target. Finally, five 127127 ADS im-
ages, shown in Figs. 4–8, are produced using (6) and the esti-
mated values for , , , and . Of course, the number of
Gaussian modes are different from one target to another.

By comparing Figs. 4–8, one can see that the general shapes
of the T-F distributions for the five targets are similar. Although
each figure shows both the specular reflections and resonances
corresponding to each target, the differences between the res-
onance responses of the five targets are clearer than those of
the specular returns. This is due to the fact that all five targets
have the same geometries, but have different dimensions, re-
sulting in different resonant frequencies. Note that the resonance
responses are more important than specular returns in view of
target recognition because they are aspect independent. With the
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TABLE I
DIMENSIONS OF THEFIVE THIN WIRE TARGETS

Fig. 4. ADS result of Target-1 (the AGR iteration continues until the
 exceeds at least 0.9, resulting inp = 20).

proposed scheme, the ADS image is not computed since it re-
quires too much memory storage and computation time.

An important parameter in any target recognition problem is
the estimate of the correct classification rateas a function
of signal-to-noise ratio (SNR). To this end, some classification
experiments have been carried out using the experimental setup
in Fig. 9. As in the previous example, the backscattered fields
of the five targets are computed using the MM in the frequency
region of 0 0.508 GHz with a 4 MHz step, but in this case the
azimuth angle varies from to with intervals
at the fixed elevation angle of , which is illustrated in
Fig. 3. Therefore, 5 (number of target classes)91 (number of
azimuth angle settings) 455 data files are generated for the
experiment in Fig. 9.

To investigate the performance of the proposed technique
in a noisy environment, an additive white Gaussian noise
(AWGN) model is assumed and the desired SNR is achieved
as follows:

(26)

where is the noise-corrupted data sequence,is the original
and complex data sequence in the frequency-domain, andis
given by

(27)

where and are the white Gaussian noise sequences with
zero mean values and each variance is equal to . is the
noise power needed to achieve the desired SNR[dB], and it is
given by

(28)

where is the power of the original data sequencefrom any
target at any azimuth angle.

To compute , the available 455 data files must be divided
into two sets: one for training and one for testing. In this experi-
ment, the training data set is obtained by processing the data files
from the even azimuth angles, . Thus,
we have 5 (number of target classes)46 (number of even az-
imuth angle settings) 230 data files to design a classifier. After
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Fig. 5. ADS result of Target-2 (the AGR iteration continues until the
 exceeds at least 0.9, resulting inp = 16).

Fig. 6. ADS result of Target-3 (the AGR iteration continues until the
 exceeds at least 0.9, resulting inp = 11).

the noise addition process in (26) at the desired SNR level, the
noise-corrupted 230 data files are transformed into time-domain
data files using IFFT. Following AGR processing to obtain,

, , and , , the 2-D geometrical
moments of these data files are computed using (17)–(19). The

AGR processing is adjusted such that the iteration is stopped
when the ratio exceeds at least 0.9 as in the previous case, re-
sulting in for most aspect angles of the five targets.

To obtain feature vectors consisting of the computed geomet-
rical moments, the maximum order is used, yielding
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Fig. 7. ADS result of Target-4 (the AGR iteration continues until the
 exceeds at least 0.9, resulting inp = 13).

Fig. 8. ADS result of Target-5 (the AGR iteration continues until the
 exceeds at least 0.9, resulting inp = 10).

, which is the dimension of in (20). Al-
though the dimension is reasonably small, we applied
the PCA to further reduce in order to reduce the com-
putation burden of the classifier. Since and ,

in (21) is a matrix. Instead of the eigen-decompo-

sition of , the SVD is directly applied to for estimating
the eigenvalues and eigenvectors of .

The distribution of the 30 eigenvalues of the covariance ma-
trix , which is a matrix in this case, is shown in
Fig. 10. It shows a rapid decrease of the eigenvalues and the
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Fig. 9. The experimental setup for demonstrating the proposed technique.

eigenvalues larger than 7 are negligibly small. Therefore, the re-
maining 23 eigenvalues can be ignored to produce transforma-
tion matrix , yielding the final feature vectorof dimension 7.
If the ADS image is directly used for classification,
the amount of memory storage for one feature vector is equal
to . Hence, in terms of the amount of memory
storage, a very large compression ratio of
has been achieved through the combined use of geometrical mo-
ments and PCA in this study.

To understand the behavior of the feature vectorin the re-
duced feature space, the trajectories offor the five targets
are plotted in Fig. 11. For convenience, this figure shows the
first three components of. The axes correspond to the three
dominant eigenvectors of the covariance matrix , and the
first component of is equivalent to the projection value of
onto the first dominant eigenvector direction, etc. As shown in
Fig. 11, different targets produce different trajectories as the as-
pect angle varies. For full aspect data, the trajectory of
each target would be closed. In Fig. 11, one can observe that the

two trajectories of Target-3 and Target-4 are quite closer during
all 46 aspects than other trajectories. In Table I, the physical di-
mensions of Target-3 and Target-4 are very similar in compar-
ison with those of the other targets. This similarity causes the
above closeness between the two trajectories.

With the obtained 230 training data, the MLPNN classifier
in Fig. 2 is trained with the back propagation learning algo-
rithm, and its weights connecting between neurons are deter-
mined. To obtain the best classification accuracy, the training
iteration of the MLPNN is terminated when the MSE is less
than or the maximum epoch of 2000 is reached. Note that
one complete presentation of the entire training set during the
training process is called an epoch [25]. For testing this clas-
sifier, the data files from all azimuth angles at

are used, resulting in 5 (number of target classes)
91 (number of azimuth angle settings)455 test data files.

Note that the given test data set includes data files at odd aspect
angles, which were not used for training, in addition to those
at even aspect angles, which were used for training. Therefore,
approximately half of the test data set was not used to design
the classifier. Next, each data file is contaminated by indepen-
dent AWGN to achieve the desired SNR. In this experiment,
the SNR is varied from 0 dB to 40 dB with 5 dB steps for
both training and testing. After the noise addition, 455 feature
vectors of dimension 7 are generated using the same proce-
dure as for the training case. Note that the test feature vector,
which consists of geometrical moments, is transformed into the
lower dimensional feature vectorby the same transformation
matrix from the training data.

Finally, we have a test database containing 455 feature vec-
tors for investigating the performance of the designed MLPNN
classifier. From it, we randomly select one test feature vector
at a time. Thus, in this five-target classification experiment, each
target has a 1/5 probability of being selected. The selected test
feature vector is classified as one of the five target classes using
the designed classifier. This selection and classification process
is repeated 1000 times, and the correct classification rateis
estimated as

Number of correct classifications
(29)

To obtain more reliable results, 50 Monte Carlo simulations of
the above 1000 test feature selection and classification exper-
iment were performed to provide the estimates of the resultant
sample averaged correct classification rate , along with the
sample standard deviation of the probability of correct estimate.

In addition to the five-target classification experiments, we
also have performed a three-target classification experiment in-
volving Target-1, Target-2, and Target-3. Since only three tar-
gets are used for classification, the number of data files for
training is given by 3 (number of target classes)46 (number of
even azimuth angle settings)138, and the number of test data
files is 3 (number of target classes)91 (number of azimuth
angle settings) 273. We have followed the same procedure
as in the previous five-target classification experiment, i.e., 50
Monte Carlo simulations were performed to estimate .
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Fig. 10. The distribution of 30 eigenvalues of the covariance matrix.

Fig. 11. Feature space trajectories for the five targets.

The results of classifications for the five-target and three-
target experiments are shown in Figs. 12 and 13. These fig-
ures show how probability of correct classification varies as
the SNR varies from 0 dB to 40 dB. The error bars around es-
timated values mark one (estimated) standard deviation

above and below the estimated values. From Fig. 12,
one can identify that the value for the five-target case
achieves approximately 93% accuracy in the high SNR range
between 25–40 dB, and it decreases rapidly at the SNR levels
below 15 dB. For the three-target case in Fig. 13, the
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Fig. 12. The average values of correct estimatesP against SNR for the five-target classification experiments, 50 Monte Carlo simulations.

Fig. 13. The average values of correct estimatesP against SNR for the three-target classification experiments, 50 Monte Carlo simulations.

shows similar behavior in the SNR range between 15–40 dB,
but as expected, it is higher in the low SNR range than that of
the five-target case. From the results in Figs. 12 and 13, it can
be seen that the proposed procedure for radar target recogni-
tion can provide successful classification performance even at
SNR levels as low as 15 dB.

VII. CONCLUSION

In this paper, we have developed a new target recognition pro-
cedure based on AGR processing, which is an adaptive joint
time-frequency processing technique. In order to efficiently ob-
tain feature vectors for target recognition, the closed-form ex-
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pressions of geometrical moments for ADS have been derived to
provide efficient and accurate computation. After applying PCA
to the computed geometrical moments, their dimensionality can
be further reduced to a much smaller dimension, yielding a very
large compression ratio. The resulting small dimensional feature
vectors are identified using the well-known MLPNN classifier.
The results show that the target recognition system based on the
proposed scheme can give successful correct classification rates
in the low SNR range with low computational costs.
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