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Efficient Radar Target Classification Using Adaptive
Joint Time-Frequency Processing

Kyung-Tae Kim, In-Sik Choi, and Hyo-Tae Kim

Abstract—This paper presents a new target recognition scheme axis. This can lead to more abundant scattering information
via adaptive Gaussian representation, which uses adaptive joint ahout a target than that from either time or frequency domain

time-frequency processing techniques. The feature extraction stage ey esentation alone, and therefore the T-F features are very
of the proposed scheme utilizes the geometrical moments of the " L
useful for target recognition applications.

adaptive spectrogram. For this purpose, we have derived exact and ) : .
closed form expressions of geometrical moments of the adaptive .T'F a"!a|¥3|3 te_ChnllqueS have long been U_Sed in the area of
spectrogram in the time, frequency, and joint time-frequency do- diagnostic investigation to reveal the complicated scattering
mains. Features obtained by this method can provide substantial mechanisms of certain structures such as an open-ended
savings of computational resources, preserving as much essem'alcircular waveguide cavity, uniform plasma cylinder, and

information for classifying targets as possible. Next, a principal - . .
component analysis is used to further reduce the dimension of fea- slotted waveguide, etc. [6]-{8]. In these studies, the short-time

ture space, and the resulting feature vectors are passed to the clas-Fourier transform (STFT), Wigner-Ville distribution (WVD),
sifier stage based on the multilayer perceptron neural network. and wavelet transform have been employed as main signal

To demonstrate the performance of the proposed scheme, various processing tools for investigating target diagnostics. However,
:Qtnﬁm'rﬁéagggtz z;r en'ﬁi%gtr']ft'ed':ht‘? I’lefSu|tS Sho"t" thattthe propt‘?sed recently developed adaptive joint T-F processing techniques,
a g potentiatforuse in farget recognition- gych as adaptive Gaussian representation (AGR), adaptive
chirplet-based signal approximation, and a matching pursuit
algorithm [9]-[11] have many advantages over the conventional
ARGET recognition problems from the backscattere@l-F processing methods mentioned above. In contrast to the
fields of radar targets have long been very difficult t¢onventional nonparametric T-F analysis such as STFT, WVD,
solve because scattering mechanisms are very complica®a wavelet transform, the adaptive joint T-F processing
even for a geometrically simple target, and also because theghnique is a type of parametric T-F analysis, and therefore
have strong frequency and angle dependencies. Therefore, it @an provide very high T-F resolution. Moreover, since AGR
necessary to represent these complex scattering mechanisnegiindecompose the backscattered signal into T-F centers corre-
an efficient manner. Consequently, inverse synthetic apert@gonding to scattering centers and local resonances, it has been
radar (ISAR) images and complex natural resonance (CN®Jed in the application of ISAR image enhancement and data
frequencies have been utilized for this purpose. compression [12], [13]. Also, the adaptive chirplet-based signal
An ISAR image, which is a type of time-domain repreapproximation has been applied to ISAR motion compensation
sentation of a backscattered field for a target, can display tHé].
two-dimensional (2-D) spatial distribution of nondispersive Interms of target recognition, it has been found that T-F sig-
scattering centers in a 2-D image plane [1], and they have bewiures from a target change in a well-behaved manner with the
used as features for target recognition [2]. Unlike ISAR imageaspect angles throughout the entire angular range of the target.
CNR frequencies from the late-time portion of the backscathis suggests that the identification of complex-shaped targets
tered signal are a kind of frequency-domain representati®@®n be based upon a small set of templates for each given target
which have also been applied to radar target recognition [i5]. The most critical issue when using T-F features for target
conjunction with E-pulse, S-pulse, and generalized likelihogécognition is the prohibitive memory space problem for the
ratio test (GLRT) techniques [3]-[5]. On the other hand;onstruction of a database containing T-F signatures with the
time-frequency (T-F) analysis has many advantages owrange of target type and aspect angle. Therefore, what is most
conventional ISAR images and CNR frequencies, since it cémportant is to reduce the dimension of the T-F signature while
display both time-domain scattering phenomena, like scatteriptgserving as much essential information as possible.
centers, and frequency-domain scattering phenomena, suchn this paper, we propose a new target-recognition strategy
as local resonances and dispersive mechanisms, in a 2-D Pased on AGR processing. AGR assumes that the backscattered
field from a target consists of adaptive normalized Gaussian
basis functions with adjustable T-F centers and associated
. . . . _ variances. These elementary Gaussian modes contained in the
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dimensional geometrical moments obtained are further tramsgh accuracy. Aftep,,.,. stages of AGR decomposition, the
formed into feature vectors of much smaller dimension via tHellowing relationships hold:

use of principal component analysis (PCA). Next, the feature P

vectors fmally .obtalned from severa] targets are identified r(t) = Z Bphp(t) + 711 (£) @)
using a classifier based on the multilayer perceptron neural o

network. Classification results using several thin-wire targefs 4

will demonstrate the effectiveness of the proposed procedure. Pmax
eI = D7 1B + Irpuae 1 (DI ()
Il. AGR THEORY =0

Therefore, the AGR iteration in (3) continues until the recon-
struction error||r,, .. +1(¢)||? is sufficiently small, i.e.,y =

(rms 1B,/ NI (#)]17)(<1), the ratio between the energy of

the reconstructed sign ]’j“:‘*;;‘ | B,|* and the energy of the orig-

inal signal||=(#)||?, is close to unity and, hence, the upper limit

AGR expands a backscattered field in time-dom(t) in
terms of normalized Gaussian elementary functibng) with
an adjustable T-F centét,,, f,,) and a variancey,

ey - Pmax 1S determined [9].
) = z_:o Byhy () (1) After t,, fp, ap, andB,, p = 0, 1, 2, ..., pmax are obtained
= via AGR processing, the ADS, which is a signal energy distri-
where bution in the joint T-F planes(t, f) is given by
Pmax
2 _ 2
hy(t) = (7r04p)70'25 exp [— L —tp) } exp(j2m fpt). s(t, ) = Z: 21 Byl
2ay, p=0
. . . _ (t - tp)2 _ 2 _ 2
The adjustable parametets, f,, and«, for Gaussian basis X exp | == — (2m) ap(f — fp)"| - (6)
functions, andB,, for the coefficient can be obtained such that P
h,(t) is most similar tor,(t) It is well known that this ADS can give a joint T-F distribution
that is nonnegative, cross-term interference free, and of high
9 resolution [9].
|B,|> = max /rp(t)h;(t) dt| | Note that the Gaussian elementary functions used in (1) does
tpr Jos p not constitute a complete set (orthonormal basis), while those of

ap € R, ty, fr €ER (2) the wavelet decomposition and the modified Gabor expansion

developed by Bastiaans form a complete set [16], [17]. Unless
wherero(t) = r(t). rp,41(t) is the remainder after the orthog-the elementary functions form a complete set, such representa-
onal projection of-,(¢) ontoh,,(¢) and this iterative proceduretion may be redundant and its uniqgueness may not be guaran-
is described as teed. However, the time and frequency resolutions of the ele-
mentary functions in both the wavelet decomposition and Bas-
tiaans’ method are restricted to a regular sampling grid [9], and
in addition, they are subject to the number of data samples [18].

Since the projection integral in (2) is the Fourier transforrw radar signal processing gpphcauons, the scattering mecha-
of r,(f) with the Gaussian windoww(t) = (ma,)=025 nisms are usually too complicated, and consequently, for accu-
p - P

exp[—((t — £,)2/2a,)], the adjustable T-F centdf,,, f,) rate representation of a radar signature, it is desirable to have the
and associatIéd varf)an’eq, can be obtained using tph’e gom_elem_entaryfunctions on aflexible sampling grid as in AGR pro-
putationally efficient fast Fourier transform (FFT) and th&essing rather than the elementary functions on a regular grid as

specific search procedure in [9]. That is, beginning with Iardg? the two methods mentioned above. The effectiveness of AGR

rin () = rp(t) — Byhy(t). 3)

scale (variance)y,, which determines the time and frequenc rocessing for radar applications has been well discussed in [13]

widths of a Gaussian basis function, the T-F center having t gd [19].
maximum B,, is selected. Then, the scalg, is halved and
another T-F center of the maximumy, is found. This process
continues until the maximunB, no longer increases. The In order to apply the T-F distribution for radar target recog-
ty fp «p, and B, finally obtained give the solution of (2) nition, attention should be focused on the reduction of the fea-
and these four parameters completely describe one Gaussiae space dimension. Because the T-F distribution itself is a
T-F basis function at theth iteration. A detailed graphical 2-D image in the T-F plane, a large amount of memory storage
illustration of this search procedure in the T-F domain can lerequired to store recognition features for many target classes
found in [12]. and aspect angles. In terms of visual pattern recognition, the
In the actual implementation of the above AGR algorithm, thmoments invariants derived from the geometrical moments of
upper limit of the summation in (1) is limited {@,..x Since the a 2-D image have been utilized to reduce the dimension of the
iteration halts after the extracted Gaussian basis functions faifhb image feature [20], [21] since they have small dimensions
fully approximate the time-domain signalt) with sufficiently and are invariant features under translation, scale, and rotation.

Ill. FEATURE EXTRACTION FROM ADAPTIVE SPECTROGRAM
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In this paper, the geometrical moments of the T-F distributiddote that each ofy,(¢t) and g;,(f) is in the form of a 1-D

are directly used as features for target recognition. Gaussian probability density function with~ A/(t,, o4,) and
Given a 2-D density distribution functiofi(z, ), the 2-D  f ~ N(f,, o5,), respectively.

geometrical moments afth order in thez-domain, those of  Combining (6), (7), and (13), the 2-D time-domain geomet-

rth order in they-domain, and those df; + r)th order in the rical moments ofjth-orderm; ® for ADS can be expressed as

zy-domain are defined as follows [20]:

:/_Z/_quf(x, y) dx dy, / / s(t, f)dtdf

Pmax

mi? = / / y" f(z, y)dz dy, Pmax
oo —oo = 47 01,0 | Bpl? / g, (t
r=0,1,2, ... (8) Z P o
Pmax
TJ’ / / " f(, y) dx dy, = Z 47ratpafp|Bp| /
= Utp
g, r=0,1,2 .. .. 9) =0
. . . . p 2
If f(x, y)is assumed to be a piecewise continuous and bounded 204,
function, the moments sequences; 2, m¥-?, andmZ¥-* are Pmax -
uniquely determined byf(z, v) and converselyf(z, v) are =Y dwonop|BlPmit, g=0,1,2,.... (14)
uniquely determined byn2>2, m¥:2, andm?¥:2. p=0

Fora2-DM x N imagef(z;, y;), (¢t =1,2,...,M,j =

1 ~~
1,2, ..., N), (7)—(9) can be approximated as [2], [22] In (14), mg * are 1-D moments with ~ N(t,, o). On the

other hand,mt ! can be expanded in terms of 1/Bh-order
central momentﬂk ' and its meatrt,, as follows [23]:

NZZa:fa:“yj ¢=0,1,2 ... (10

q
=1 j=1 q 1
= N myt =Bt =" <k> T (15)
k=0
NZZUJ (i, y5), r=20,1,2,... (11)
=1 ot where
N t,1 k
C=F|(t-t
TJ7 szxyj ‘/EZ?yJ (.Z7T:071727"" uk [( p)]
==t = p_ 1 (t— tp)Q}
= t—1t exp|— dt
(12) [m( 2 TV 2T p[ 207,
Itis noted thain?>?, m¥:?, andm?¥- * in (10)-(12) can provide _ /OO 1« exp<_ 72 )dz
geometrical moments of ai¥ x N image only in an approxi- oo TipV 2T 207,
mate sense. That is, if the geometrical moments of an image are 0, Lk = odd
obtained using (10)—(12), the accuracy of the estimated values = (k—1)ok, k=even (16)
is dependent on the image sizé x N, i.e., resolution of the Otpr BT '

given image. If the resolution of an image is low, the accuracy
decreases, and vice versa.
To overcome this limitation in the computation of 2-D geo

Therefore, using (14)—(16), the exact and closed form of time-
domain 2-D geometrical moments for ADS;? are finally

b

metrical moments for ADS, we first define the time- and fre g|ven y

guency-domain standard deviations, = \/a;,/2 ando s, = Ponae

1/(2n\/2c,,), respectively. Then the ADS in (6) becomes Z 47010 1| Bp|? Z < ) t;])—k7

p=0
Romox even
S(t’ f) = Z 47r0tpafp|Bp|2.gtp(t)gfp(f) (13) q= 07 17 27 ree (17)

p=0

Similarly, the 2-D geometrical momentsah-order in the fre-
where guency-domain and those ¢f + »)th-order in the joint T-F
domain can be expressed as

1 —tp)° =
)= o] [0 -3 >
tp p - 47rafpafP|BP| < ) afPf’ k
. 1 _ (f — fp)Q e _ even
95p(f) = oo eXp[ Ta0? ] ; /_Oogfp(f) df =1. r=0,1,2, ... (18)
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Fig. 1. Comparison of the number of operations needed to compute a time-domain geometrical moment between the conventional method and prdposed metho

Pmax

2 4 B2 g = 10, and M = N. In addition, as previously described,

Mer’ ™ = Z 101 fp| Byl the proposed schemes in (17)—(19) can provide accurate geo-
P=0 metrical moments of ADS in comparison with those obtained
Iy by the conventional methods in (10)—(12). This improvement of

X Z <k> (k — 1)05}%}1,7’“ accuracy is important because we showed that the accuracy of
h=C a feature vector greatly affects the overall classification perfor-

_ mance in the target recognition system [24].

L In [24], the hybrid techniques combining FFT-based CLEAN
X Z < )(k — Dok ik algorithm and model-based algorithm have been developed to
k=0 obtain robust and accurate estimates of 1-D scattering centers
'q’ r=0,1,2,.... (19) ©n the target. The performance of the developed hybrid tech-

nigues has been verified through the three-target classification
§xperiment, which employs three different feature extraction
. s tages based on the 1-D TLS (total least squares)-Prony
ments for ADS have been derived. Th!s implies that the mgigorithm, the hybrid technique (Hybrid-1) combining the
ments can be calculated by merely ustpg f, o, and By, odified CLEAN and LS (least squares)-Prony, and another
p =012, ..., pmax Without time-consuming ADS genera-p g technique (Hybrid-2) combining the modified CLEAN
tion. According to (6)[M N X (pmax+1)] operations are needed, g mogified LS-Prony, respectively. Next, the radial basis
to generate a/ x N ADS image. Moreover, if we follow ¢,n¢tion (RBF) network was utilized to classify the test features
the conventional moments computation procedure in (10), afyolving 1-D scattering centers obtained by the above three
ditional MV operations are required to provide a single gegjifferent feature extraction techniques. The results show that
metrical moment in the time-domain. Therefore, when using thge feature extraction stage based on the Hybrid-2 is the most
conventional method, &l V X (pmax+1)+MN] operations  gyjtable for radar target recognition. This is because the esti-
are necessary to compute a time-domain geometrical momeniited parameter accuracy of the modified LS-Prony is better
the four parameters,,, f,, c,, andB,,, p =0, 1, 2, ..., pmax  than that of the LS-Prony, and robustness is guaranteed through
are given after the AGR processing. However, if the propose@ge FFT-based CLEAN algorithm. This implies that both the
method in (17) is utilized, approximate]{pmax + 1) x (¢/2)] accuracy and robustness of the extracted feature vectors have
operations are needed to providgth-order time-domain ge- an important role in the design of target recognition system. As
ometrical moment of ADS. The computational saving becomesresult, the exact and close forms of geometrical moments in
more significant as the image size, x IV, increases in order to (17)—(19) have two distinct advantages over the conventional
increase the T-F resolution for the improvement of recognitianethods in (10)—(12) in terms of computational efficiency and
accuracy. This is illustrated in Fig. 1 in the casepgf.x = 30, accuracy, resulting in an efficient target recognition system.

So far, the exact and closed forms of 2-D geometrical m
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Finally, the feature vector for target recognition can b&hen, the sample mean vecter, and the sample covariance
formed by concatenating the obtained geometrical momemisitrix Ry can be given by

from the first andLth-order as follows:
N.N,

1
m, = Z X; (22)
XI[$1,$2,$3, ...,.QZK]T NCNU« =1
t,2 ,2 0 tf,2 1,2 ,2 tf,2 N.N.,
:[ml ,m{ ,ml{ , My ,mg mQJ; e 1 T
R,y = NN 1 (x; —my) (x; —my)” . (23)
L2 £2  tf2 etta ™ &

T
mpo, my ", mpL } (20)
The abovamy is a K-dimensional vector anB, is aK x K
whereK = 3L. While other combinations of orders are possiblg,atrix.
to form a feature vector, many computer simulations suggesi et the eigenvalues of iR, be denoted by, Mo, ..., Ax
that they have near_ly no effect_on th_e _final classification reSL{I/t\1 > A2 > --- > Ax) and the associated eigenvectors be
as long as the maximum ordéris sufficiently large. denoted byy1, qo, - . ., qi. Then, matrixR. can be decom-
posed as follows:

IV. FEATURE SPACE REDUCTION VIA PRINCIPAL .
COMPONENTANALYSIS (PCA) Rux = QAQ (24)

In (20), the feature vectox for target recognition is obtained where
by combining the 2-D geometrical moments of ADS, and its di-

mensionality is reasonably small if_the maximum ordes not A =diag[\i, A2, -, Ax]
too large. In general, the geometrical moments of a 2-D com- B
plex image such as an optical photograph contain useful infor- Q=la1, 92, -, ax].

mation up to a high order of magnitude. However, in the ca . . .
P g g i[ewe select the largedt< K') eigenvalues and associated eigen-

of 2-D T-F image, the amount of information contained in it ; R then thelc x 11 ¢ i i b
image plane is much smaller than that of an optical photograﬁl‘i“.C OrS Oscx, then x ¢ transiormation matrix” can be
ained by truncating; 11, qi+2, - - ., qx 0f Q. Ifthe training

For example, the scattering center response of a target wo ' oo
P g P 9 ta set has redundant informatibaigenvalues oR . are rel-

be displayed as a vertical line parallel to the frequency axis i Vi dth . lei | licibl
T-F plane, and resonance response as a horizontal line parall@t%e y large and the remaining — eigenvalues are negligibly

the time axis. Of course, dispersive scattering mechanisms fréma"' The number of_Igrgest eigenvaliés depe.ndent on the
réeéiundancy of the training data set. If the training data set has

cavities or duct-type structures would be seen as inclined lin h redundant inf tioMi dvi Si

in a T-F plane. Therefore, the essential information included ui ;i undin_ |r;horma 10 ,mcrea;es, and chez\(l)er?r?. Imce
a T-F image plane can be represented by geometrical mom t]s_ and. 1s the maximum order usea in (20), the large
of relatively low orders. It is known from many computer simuYaue of L implies the training data set of high redundancy. In

lations that the selection df less than 10 shows sufficient clas—thls paper, we have been always able to ideritiiglue less than

sification accuracy, and the increaselofarger than 10 adds (1/3)K for the case of. = 10, resultingin a compression factor

computational burden to the classifier without improving Claégrge.r than 3. : .
sification accuracy. With the use ofP, we can reduce the_ feature space dimension
Usually, the geometrical momentssncontain redundant in- from K to ! without significant loss of information as follows:

formation and this redundancy can be effectively decreased by

applying a decorrelation transform known as principal compo- y =P'x (25)
nent analysis (PCA) [25]. After the application of PCA to the

feature vectors in (20), the dimensionality of the original feavhere

ture space, i.e{ = 3L, can be substantially reduced and the

transformed feature vector in the new feature space has nearly P=I[q1,q...,q]
no high-order components while still preserving low-order com- _ .
ponents. and x is a feature vector at an arbitrary aspect angle from

Let V.. be the number of target classes avigbe the number @ny target class among/. target classes. As a result, the

of aspect angles for the construction of a database, i.e., fRgulting feature vectqr has the dimension gf and therefore,
training data set. Then, the overall training data Xethas through the combined use of geometrical moments and PCA,

NcNa feature vectors of dimensiald as follows: the dimension of ADSMN can be reduced tb, which is
a very small value. For the computation B, the singular
value decomposition (SVD) can be directly applied to the
X = [x1, X2, X3, ..., XN, N, | (21) normalized training data matriX’ = [x; — my, X2 — my,
X3 — My, ..., XN, N, — M| instead of eigen-decomposition
where of Ry« since SVD has many computational advantages over
eigen-decomposition in terms of computation accuracy and
x; = ith training feature vector speed [25].
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Field calculation

Wing trajectory
Body <<I:=_ y
e

9=0

X

j-th neuron

i-th nevron Fig. 3. Target geometry and backscattered field computation.

Input Hidden Output
Layer Layer Layer not guarantee the best performance of the MLPNN. When the
MLPNN is trained using too many training patterns, it may
memorize the training data and therefore be less able to gen-
eralize test data, yielding degradation in classification perfor-
V. MULTILAYER PERCEPTRONNEURAL NETWORK CLASSIFIER ~ Mance [25]. To prevent the MLPNN from overtraining, the max-
- imum number of iterations is usually defined to stop the training
After N.N, training feature vectorsc are transformed of the MLPNN. Therefore, the MLPNN should be stopped when

into y by PCA, we need to design a classifier o |denF|_ he MSE is less than a certain threshold level, or the maximum
the target type. Although many classical pattern recan't'%mber of iterations is reached
algorithms are available for this purpose, neural networks '

are very promising due to their advantages over conventional
pattern classification. The advantages of neural networks as
pattern classifiers have been well investigated, and a detailedo demonstrate the performance of the proposed target recog-
description of the architecture and training of neural networkstion scheme, five targets in Fig. 3 and Table | are considered in
can be found in [25]. The main reason for the feasibility ahis paper. All five targets are modeled as a combination of thin
neural networks is their ability to generalize after learning fromires, and their physical dimensions are selected as 1/100 scale
training data. That is, they can identify a test pattern even whehthe actual dimensions of the real aircrafts: Airbus, Boeing
that particular pattern is not used for training. 747, Caravelle, P 7, and Tu 154. To obtain the radar return sig-
In this paper, a three-layer perceptron network, which israls for these targets, the method of moments (MM) is used to
kind of multilayer perceptron neural network (MLPNN), is usedalculate the backscattered fields in the frequency-domain. At
for designing a classifier. Fig. 2 shows a fully connected threan aspect of = 60° and¢ = 45°, the selected frequency range
layer perceptron network with one hidden layer haviigneu- for backscattered field computationls~ 0.508 GHz with a
rons. The number of neurons in the input layer is equal to tAeMHz step, yielding 127 frequency points. This band covers
feature vector dimensioh and the number of neurons in thethe region of dominant resonant frequencies of the five targets.
output layer is equal to the number of target clasdesThe The frequency-domain backscattered field data for the five tar-
neurons in the MLPNN give a nonlinear transform between thejets are converted into time-domain data by inverse FFT (IFFT).
inputs and outputs by the use of sigmoidal activation functionBhen, after applying AGR processing to these time-domain data,
With the training data al, aspects foV, target classes, the the ADS results of the five targets are shown in Figs. 4-8. During
MLPNN in Fig. 2 is trained until its mean squared error (MSEAGR processing to estimatg, f,, o, and B, the AGR iter-
between the desired outputs and its actual outputs is less tagions continue until the ratiq = ((302% [B,[?)/I7()[1?)
a certain threshold level. The training strategy is based on tteaches 0.9 for each target. Finally, five 127127 ADS im-
well-known back-propagation learning rule, which is an iterages, shown in Figs. 4-8, are produced using (6) and the esti-
tive algorithm updating each neuron’s weight; by searching mated values fot,, f,, a;,, andB,. Of course, the number of
the local gradient of the error surface. A detailed discussion f@aussian modes,,. are different from one target to another.
this MLPNN training algorithm can be found in [25]. After a By comparing Figs. 4-8, one can see that the general shapes
sufficient number of training iterations usifg. V, training pat- of the T-F distributions for the five targets are similar. Although
terns, a classifier having the ability to discriminatg target each figure shows both the specular reflections and resonances
types can be formed, and it can identify a test feature vectorcatrresponding to each target, the differences between the res-
any aspect of any target amonyg targets. If a test feature vectoronance responses of the five targets are clearer than those of
Yiest COMeS from the first target class, the above classifier withe specular returns. This is due to the fact that all five targets
produce the largest output at the first neuron in the output laybave the same geometries, but have different dimensions, re-
In order to train the MLPNN to achieve the best classificatiosulting in different resonant frequencies. Note that the resonance
accuracy, a large number of training iterations (i.e., a low MSEgsponses are more important than specular returns in view of
are required in general. However, a simply low MSE value do&arget recognition because they are aspect independent. With the

Fig. 2. The architecture of the MLPNN classifier.

VI. CLASSIFICATION RESULTS
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TABLE |
DIMENSIONS OF THEFIVE THIN WIRE TARGETS

Substructures | Target-1 Target-2 Target-3 | Target-4 | Target-5
(Airbus) | (Boeing 747) | (Caravelle) | (P 7) | (Tu 154)

Body span [m] | 0.5408 0.7066 0.3200 0.3435 0.4790
Wing span [m] | 0.4484 0.5964 0.3440 0.3250 0.3755
Tail span [m] 0.1626 0.2217 0.1092 0.1573 0.1340

0.5

0.45

(=] o
i o p o
& @ & =

Frequency [GHz]

o
N

0.15

0.1

0.05

0 50 100 150 200
Time [ns]

Fig. 4. ADS result of Target-1 (the AGR iteration continues untilthexceeds at least 0.9, resultingrif.x = 20).

proposed scheme, the ADS image is not computed since it véherez; is the noise-corrupted data sequengas the original
quires too much memory storage and computation time. and complex data sequence in the frequency-domainyaisd

An important parameter in any target recognition problem given by
the estimate of the correct classification r&teas a function P .
of signal-to-noise ratio (SNR). To this end, some classification vi =y vy, i=1,2,...,127 (27)
experiments have been carried out using the experimental setup R ; ) ) ) )
in Fig. 9. As in the previous example, the backscattered fielddierev;* andy; are the white Gaussian noise sequences with
of the five targets are computed using the MM in the frequen&§'® mean values and each variance is equaf j@. o, is the

region of O~ 0.508 GHz with a 4 MHz step, but in this case th&0iS€ power needed to achieve the desired SNR[dB], and it is
azimuth angle varies from = 0° to ¢ = 90° with 1° intervals 9Vén by
at the fixed elevation angle & = 60°, which is illustrated in o2 = P, 10~ (SNRI4B]/10) (28)

Fig. 3. Therefore, 5 (humber of target classe91 (number of

azimqth angle s_etting&} 455 data files are generated for th“?/vherePS is the power of the original data sequengérom any
experiment in Fig. 9. _target at any azimuth angle.
~ To investigate the performance of the proposed techniquery computer,, the available 455 data files must be divided
in & noisy environment, an additive white Gaussian noig two sets: one for training and one for testing. In this experi-
(AWGN) model is assumed and the desired SNR is achievaghnt the training data set is obtained by processing the data files
as follows: from the even azimuth angleg,= 0°, 2°,4°, ..., 90°. Thus,
we have 5 (number of target classes}#6 (number of even az-
2z = 8; + 14, i=1,2,...,127 (26) imuth angle settings} 230 data files to design a classifier. After
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Fig. 5. ADS result of Target-2 (the AGR iteration continues untilthexceeds at least 0.9, resultingzif.x = 16).
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Fig. 6. ADS result of Target-3 (the AGR iteration continues untilthexceeds at least 0.9, resultinggif.. = 11).

the noise addition process in (26) at the desired SNR level, tAR€R processing is adjusted such that the iteration is stopped
noise-corrupted 230 data files are transformed into time-domaitnen the ratioy exceeds at least 0.9 as in the previous case, re-
data files using IFFT. Following AGR processing to obtgin sulting inp...x < 30 for most aspect angles of the five targets.

fprap,andB,, p = 0,1, 2, ..., pmax, the 2-D geometrical  To obtain feature vectors consisting of the computed geomet-
moments of these data files are computed using (17)—(19). Tieal moments, the maximum ordér = 10 is used, yielding
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Fig. 7. ADS result of Target-4 (the AGR iteration continues untilthexceeds at least 0.9, resultingrif.x = 13).
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Fig. 8. ADS result of Target-5 (the AGR iteration continues untilthexceeds at least 0.9, resultingsin., = 10).

K = L x 3 = 30, which is the dimension ok in (20). Al- sition of R, the SVD is directly applied t&’ for estimating
though the dimensio&™ = 30 is reasonably small, we appliedthe eigenvalues and eigenvectorsRaf,.

the PCA to further reduc& = 30 in order to reduce the com- The distribution of the 30 eigenvalues of the covariance ma-
putation burden of the classifier. Sindé = 5 andN, = 46, trix Ry, which is a30 x 30 matrix in this case, is shown in

X in (21) is a30 x 230 matrix. Instead of the eigen-decompo+ig. 10. It shows a rapid decrease of the eigenvalues and the
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Fig. 9. The experimental setup for demonstrating the proposed technique.
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Backscattered field
computation by MM

two trajectories of Target-3 and Target-4 are quite closer during
all 46 aspects than other trajectories. In Table I, the physical di-
mensions of Target-3 and Target-4 are very similar in compar-

TEST DATA * ¢=0.1.2...90 TRAINING DATA ison with those of the other targets. This similarity causes the
GENERATION GENERATION above closeness between the two trajectories.
AWGN addition ¢ AWGN addition With the obtained 230 training daga the MLPNN classifier
tothe data files at [P (o the data files at in Fig. 2 is trained with the back propagation learning algo-
Z’:‘:’;‘c}";{;ﬁm with f:gi;_;;;?m with rithm, and its weights connecting between neurons are deter-
mined. To obtain the best classification accuracy, the training
iteration of the MLPNN is terminated when the MSE is less
than10~—2 or the maximum epoch of 2000 is reached. Note that
one complete presentation of the entire training set during the
training process is called an epoch [25]. For testing this clas-
AGR processing AGR processing sifier, the data files from all azimuth angles at= 0°, 1°,
012,90 o 0=024...90 2°. ..., 90° are used, resulting in 5 (number of target classes)
@ ¢ x 91 (number of azimuth angle settings)455 test data files.
. ‘ Note that the given test data set includes data files at odd aspect
i:x‘;fnm"mm > i‘:::;:i:m“‘s angles, which were not used for training, in addition to those
at even aspect angles, which were used for training. Therefore,
l approximately half of the test data set was not used to design
PCA the classifier. Next, each data file is contaminated by indepen-

All training and test data are transformed into
low dimensional space by the same transformation
matrix from the training data

i

Select one test data

at random

1000 trials

Training database

Classifier design with
MLPNN and back-
propagation learning

Recognition

dent AWGN to achieve the desired SNR. In this experiment,
the SNR is varied from 0 dB to 40 dB with 5 dB steps for
both training and testing. After the noise addition, 455 feature
vectorsy of dimension 7 are generated using the same proce-
dure as for the training case. Note that the test feature vector
which consists of geometrical moments, is transformed into the
lower dimensional feature vectgrby the same transformation
matrix P from the training data.

Finally, we have a test database containing 455 feature vec-
tors for investigating the performance of the designed MLPNN
classifier. From it, we randomly select one test feature vegctor
atatime. Thus, in this five-target classification experiment, each
target has a 1/5 probability of being selected. The selected test
feature vector is classified as one of the five target classes using
the designed classifier. This selection and classification process
is repeated 1000 times, and the correct classificationifaie
estimated as

eigenvalues larger than 7 are negligibly small. Therefore, the re-
maining 23 eigenvalues can be ignored to produce transforma-
tion matrixP, yielding the final feature vectgr of dimension 7. P.
If the 127 x 127 ADS image is directly used for classification,
the amount of memory storage for one feature vector is equa obtain more reliable results, 50 Monte Carlo simulations of
to 1272 = 16 129. Hence, in terms of the amount of memorythe above 1000 test feature selection and classification exper-
storage, a very large compression ratiol 6f129/7 = 2304.1 iment were performed to provide the estimates of the resultant
has been achieved through the combined use of geometrical sample averaged correct classification idte,.,, along with the
ments and PCA in this study. sample standard deviation of the probability of correct estimate.
To understand the behavior of the feature vegtam the re- In addition to the five-target classification experiments, we
duced feature space, the trajectoriesyofor the five targets also have performed a three-target classification experiment in-
are plotted in Fig. 11. For convenience, this figure shows tlelving Target-1, Target-2, and Target-3. Since only three tar-
first three components gf. The axes correspond to the thregets are used for classification, the number of data files for
dominant eigenvectors of the covariance malfix., and the trainingis given by 3 (number of target classes}6 (number of
first component ofy is equivalent to the projection value &f even azimuth angle settings)138, and the number of test data
onto the first dominant eigenvector direction, etc. As shown files is 3 (number of target classes)91 (number of azimuth
Fig. 11, different targets produce different trajectories as the asgle settingsy= 273. We have followed the same procedure
pect angle varies. For fuB60° aspect data, the trajectory ofas in the previous five-target classification experiment, i.e., 50
each target would be closed. In Fig. 11, one can observe thatkhente Carlo simulations were performed to estimBte, .

_ Number of correct classifications
o 1000 )

(29)
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Fig. 11. Feature space trajectories for the five targets.

The results of classifications for the five-target and thre@bove and below the estimatéd ,, values. From Fig. 12,
target experiments are shown in Figs. 12 and 13. These figie can identify that thé’. .., value for the five-target case
ures show how probability of correct classification varies achieves approximately 93% accuracy in the high SNR range
the SNR varies from 0 dB to 40 dB. The error bars around dsetween 25-40 dB, and it decreases rapidly at the SNR levels
timated . ,, values mark one (estimated) standard deviatidrelow 15 dB. For the three-target case in Fig. 13, ihe,,
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Fig. 12. The average values of correct estimdtes,, against SNR for the five-target classification experiments, 50 Monte Carlo simulations.

Pc,av [%]

Probability of correct classification vs. SNR : 3 targets

100 T | T T T T T T T
90
80
70
60
SO - eeteens P S _
T ) O O SO S i
B0 e R S SR SIERIEEE _
S T S ............................................................................... |
oL PSS T SN SIS S S S ]
0 1 | I I I I I I I
-5 0 5 10 15 20 25 30 35 40 45
SNR [dB]

Fig. 13. The average values of correct estimdles,., against SNR for the three-target classification experiments, 50 Monte Carlo simulations.

shows similar behavior in the SNR range between 15-40 dB, VII. CONCLUSION

but as expected, it is higher in the low SNR range than that of

the five-target case. From the results in Figs. 12 and 13, it canin this paper, we have developed a hew target recognition pro-
be seen that the proposed procedure for radar target recogedure based on AGR processing, which is an adaptive joint
tion can provide successful classification performance eventiate-frequency processing technique. In order to efficiently ob-
SNR levels as low as 15 dB.

tain feature vectors for target recognition, the closed-form ex-
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