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On the Homogenization of Thin Isotropic Layers
Sergei A. Tretyakov and Ari Henrik Sihvola

Abstract—Homogenization of extremely thin dielectric or com-
posite layers is considered. Special attention is focused on the fact
that the permittivity near the surface of the slab is affected by the
presence of the boundary. This makes the effective permittivity in-
homogeneous, and the slab becomes effectively anisotropic. The
anisotropy effect cannot be neglected for slabs whose thickness is
on the order of the depth of one molecular or inclusion layer. The
analysis results in approximate second-order boundary conditions,
which describe electromagnetic properties of the layer. Numerical
examples show that the effect in reflection coefficient cannot be ne-
glected if the depth of the boundary layer is a quarter of the slab
thickness. Also, the magnitude of the boundary effect increases for
higher slab permittivities.

Index Terms—Material modeling, surface effect, thin layers.

I. INTRODUCTION

COMPOSITE materials carry an important role in
present-day high-technology applications. By mixing

different materials in a clever manner, one may be able to man-
ufacture synthetic materials with desired electric, magnetic, and
even magnetoelectric properties. Mixing rules to homogenize
bulk materials are available, and the literature is extremely
rich in papers that discuss effective medium properties of
heterogeneous materials.

In many practical applications, however, a composite cannot
be treated as a sample of uniform bulk medium. For example, in
thin-film technology, the material samples have extremely large
surface area and the surface effect has to be given attention. In
solid-state studies, surface phenomena have been studied: for
example, analyses of the polariton modes show the surface ef-
fect on the dispersion of the polarization [1]. Although surface
science is a large discipline in its own right, not much discussion
on the surface effects appears in the literature of mixing models.
Two-dimensional mixtures, i.e., thin layers as result from the
homogenization in the plane, have been analyzed [2]; however,
there the surface-to-bulk transition is not considered. Numerical
simulations of this transition based on summation of quasi-static
dipole fields [1] and on the planar percolation model [3] are
available in the literature.

Our aim in this paper is to give a simple analytical model for
the surface effect for thin-layer composites. The fact that the
layer to be analyzed is thin means that it is considerably smaller
than the wavelength of the incident electromagnetic field, and
in the extreme case the thickness of the slab to be treated can be
only a few layers of molecules or other inclusions that are the
building blocks of the composite. The transverse plane is con-
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sidered infinite, and the composite is homogeneous along the
transverse directions. Inclusions or molecules are assumed to
be randomly distributed. For consideration of the surface effect
in regular lattices, we refer to [4] and the references therein.

II. THEORY

When considering interaction of electromagnetic fields with
thin composite layers, two distinct length scales should be taken
into account. One of them is the inclusion or molecular size as
compared to the layer thickness. We assume that the layer isthin
in the sense that its thickness is comparable with the molecular
size. As will be shown in Section II-B, this means that the per-
mittivity and permeability are inhomogeneous across the slab
although the inclusion concentration is uniform. The other scale
is the wavelength as compared to the layer thickness. Here we
study thin layers also in the sense that the thickness is small
compared to the wavelength. This means that in calculations
of reflection and transmission coefficients, effectively inhomo-
geneous permittivity and permeability can be averaged across
the slab, as is done in Section II-A. For thin (in the first sense)
layers, the surface effect is important and can be seen even from
the reflection and transmission of waves of large wavelength.

A. Averaging the Field Equations

Assume that a thin slab can be modeled as a layer whose per-
mittivity and permeability depend on the distance to the layer
boundary. The reason for this model of a homogeneous slab is
that the local field needed in the homogenization process inside
the layer is different from that close to the layer boundary. Fur-
thermore, the way the surface polarizability affects the overall
permittivity is different for field excitation parallel and perpen-
dicular to the plane of the slab. Thus, the effective material pa-
rameters of the slab are symmetric uniaxial dyadics whose axis
is normal to the interfaces.

The averaging can be done extending the approach of [5, Sec-
tion 6.2] to uniaxial slabs. That method is based on the assump-
tion that for thin slabs1 the distribution of the tangential com-
ponents of the fields inside the slab can be approximately found
from the quasi-static equations; see details in [6] and [8]. For
that purpose

(1)

for the scalar potential is solved; see [5]. Here the coordinate
is normal to the slab boundaries. This determines the tangen-

tial field distribution in the slab and the relation between the
averaged field values and that just on the slab boundaries. Wave
propagation along the slab (that is, dependence on theand

1More precisely, for slabs whose thicknessd satisfiesj�jd � 1, where� is
the normal component of the wavevectors in the slab.
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coordinates) is governed by the usual time-dependent Maxwell
equations.

The final result can be expressed in terms of generalized
second-order boundary conditions for the slab [5], [7], [8].
Simple generalization for the case when the material is uniaxial
with the axis normal to the interfaces leads to the following
conditions:

(2)

(3)

where is the unit vector normal to the interfaces and and
are the tangential fields on the interfaces between the layer

and the surrounding space. Indexesrefer to the opposite sides
of the layer. is the two-dimensional unit dyadic defined in
the interface plane, and is the two-dimensional gradient op-
erator. The averaged material parameters that appear in these
equations can be interpreted as the normal and transversal com-
ponents of permittivity and permeability,2 which read

(4)

(5)

(6)

(7)

Here, is the thickness of the slab and the subindexesand
refer to the tangential (parallel to the interface) and normal

(perpendicular to the interface) components of the permittivity
and permeability dyadics.

There is a simple physical interpretation for the averaging
rules (4)–(7). Indeed, because of the stratified one-dimensional
geometry of the slab, the averaging is equal to calculating the
effective permittivity and permeability of a stack of disks. This
is tantamount to solving the problem of the total capacitance of
capacitors in series (for the field direction normal to the inter-
face) and in parallel (for tangential field). In the first case the
capacitances are additive, and in the latter case their inverses
are additive.

The next step is to calculate the averaged parameters in (2)
and (3). We consider nonmagnetic slabs for simplicity; hence
there is no magnetic polarization and both the normal and tan-
gential averaged components of the permeability are equal to
that of free space: . The permittivity averaging,
on the other hand, needs a more careful treatment.

2This interpretation is based on the fact that these averaged quantities ap-
pear in the boundary conditions on place of the constant parameters of uniform
layers. The averaged fields and displacements are connected in a more compli-
cated manner [5].

B. Local Fields and Local Permittivity

Consider a thin dielectric layer with electric field incident on
it. If the permittivity of the layer is modeled as a homogenized
medium property along the lines as is done in ordinary material
homogenization [9, pp. 366–368], the effective permittivity is
different in the part close to the surface from that inside the
medium. This is due to the fact that if the layer is so thin that
there are only a few layers of molecules across it, we have to take
into account that the local field that acts on a given molecule is
different for molecules inside the layer and just on its surface.

Consider first the case of an inclusion, or a molecule that is
located well inside the layer, such that the surface effects can be
ignored. As is well known, the local field that is responsible
for the dipole moment induced in the particle is the external
field amplified by the “Lorentzian” contribution from the
surrounding polarization [10]

(8)

where the factor of one-third comes from the symmetric as-
sumption for the shape of the inclusion [11]. The permittivity
of free space is denoted by.

However, for the molecules just on the surface of the layer, the
situation is different. The polarizationsurrounds the inclusion
only on one side, and therefore the Lorentzian contribution must
be halved

(9)

Thus, assuming that the molecules are evenly distributed in
the medium with inclusion concentration, their dipole mo-
ments add up to the average electric polarization

(10)

Here, is the single molecule polarizability, the relation be-
tween the exciting field and the dipole moment. Using all these
relations, we can write for the permittivity of the layer, de-
pending on the position

(11)

Here, for molecules inside the layer and
for the molecules located near the layer surfaces.

It is to be noted that with the molecules near the surface, we
mean particles that are very close to the surface but just in-
side the boundary. Then the effect of the surface polarization
is included in the effective field on the same basis as for the
molecules well inside the bulk layer.

Regarding the depth of the boundary layer, we assume that
it is equal to the width of one layer of molecules. For a cubic
lattice, the boundary layer thickness is around the character-
istic distance between the particles: . This assumption
is supported by the numerical results of [1], where it has been
found that only a few nearest to the surface molecule layers see
a different local field from that in the bulk.
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Fig. 1. The averaged transverse permittivity�̂ of the slab as a function of the
relative fraction of the surface layer within the slab.

C. Averaged Permittivity

Now that the permittivity dependence is known as a function
of the position within the slab, the normal and tangential compo-
nents of the permittivity dyadic can be calculated. The boundary
layers occupy a volume fraction 2 of the layer, and the frac-
tion of the internal volume is 12 . Evaluation of the inte-
grals in (4)–(7) gives

(12)

(13)

The latter relation can be approximated for small values of

(14)

Using the relation between the relative bulk permittivityand
inclusion polarizability

(15)

we can express the above result in another form

(16)

(17)

Fig. 2. Averaged normal permittivity�� of the slab as a function of the relative
fraction of the surface layer within the slab.

Fig. 3. Absolute values of the reflection coefficient from a thin slab in air. The
relative bulk permittivity value is 5. One surface layer occupies a quarter of the
slab thickness.

III. N UMERICAL EXAMPLES

Figs. 1 and 2 show the dependence of the effective aver-
aged permittivities (transverse and normal components) as func-
tions of the relative thickness of the boundary layer. The natural
limit case is when the layer becomes thick enough: both com-
ponents tend to the bulk values of the permittivity because the
boundary effect loses its significance. The surface effect is more
pronounced for media with high permittivity values. These the-
oretical results are in qualitative agreement with the numerical
simulations for the effective conductivity of thin films that are
reported in [3]. Unfortunately, the quantitative comparison is
not possible because polarizabilities of single inclusions are not
specified in [3]. It is interesting to note that when the slab gets
extremely thin (zero value of 12 ), both the transverse and
normal components take equal values and the slab is effectively
isotropic. This is because the local permittivities (11) are indeed
isotropic. Also, the bulk values (corresponding to )
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Fig. 4. Absolute values of the reflection coefficient from a thin slab in air. The
relative bulk permittivity value is ten. One surface layer occupies a quarter of
the slab thickness.

are isotropic. In the general case when the surface effect is es-
sential, the slab is effectively uniaxial.

Numerical examples showing the reflection coefficient from a
thin dielectric layer in air are given in Figs. 3 and 4. The relative
permittivity of the slab material (as defined for bulk samples) is
taken to be five or ten. The normalized layer thickness is

( is the free-space wave number). The ratio
. For the slab with the bulk relative permittivity equal

to five, we have and ; the other case,
, corresponds to numbers and .

To illustrate the strength of the surface effect, the reflection
curves for a slab of the uniform permittivity are also shown in
these figures. These are slabs with isotropic and homogeneous
permittivity and , respectively. We observe that the
reflection coefficient is smaller if the nonuniform nature of the
local field is taken into account. This is because the surface ef-
fect decreases the averaged permittivity, both components of it.
The figures show that the effect of the nonhomogeneity of the
local field is quite essential for the present examples.

IV. CONCLUSION

This paper has given a simple physical model for the
dielectric surface effect in slabs that are thin with respect to
the wavelength of the field, such that the surface-wave effects
can be neglected. The fact that the local field acting on the
furthermost molecules or inclusions at the surface is smaller
than those well inside the material leads to inhomogeneity of
the effective permittivity across the slab. Therefore the slab
is anisotropic because of the different averaging principle for
the parallel and perpendicular polarizations of the incident
electromagnetic wave. This effect is solely due to the presence
of the boundary since homogenization of bulk samples leads
to isotropic material relations. The numerical results show a
visible surface effect in the homogenized permittivity values
when one surface layer occupies a quarter of the slab thickness.
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