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Abstract—This paper presents an efficient method to accurately
solve large body scattering problems with partial circular sym-
metry. The method effectively reduces the computational domain
from three to two dimensions by using the reciprocity theorem. It
does so by dividing the problem into two parts: a larger 3-D region
with circular symmetry, and a smaller 2-D region without circular
symmetry. An finite-difference time-domain (FDTD) algorithm is
used to analyze the circularly symmetric 3-D case, while a method
of moments (MoM) code is employed for the nonsymmetric part of
the structure. The results of these simulations are combined via the
reciprocity theorem to yield the radiation pattern of the composite
system. The advantage of this method is that it achieves significant
savings in computer storage and run time in performing an equiv-
alent 2-D as opposed to a full 3-D FDTD simulation. In addition to
enhancing computational efficiency, the FDTD algorithm used in
this paper also features one improvement over conventional FDTD
methods: a conformal approach for improved accuracy in mod-
eling curved dielectric and conductive surfaces. The accuracy of
the method is validated via a comparison of simulated and mea-
sured results.

Index Terms—finite-difference time-domain (FDTD) methods,
method of moments, reciprocity theorem.

I. INTRODUCTION

T HE finite-difference time-domain (FDTD) method is
widely applied to simulate electromagnetic propagation

[1], [2] because of its versatility and ability to handle complex
geometries with arbitrary inhomogeneities. Typically, the
spatial discretization used to transform Maxwell’s equations
into difference equations is on the order of 10 to 20 cells per
wavelength at the frequency of interest. Hence, this makes it
difficult to apply the FDTD method to large 3-D problems,
given the limits of computer storage and run time. However,
for a class of geometries that possess azimuthal symmetry, it
is possible to reduce the original 3-D problem to an equivalent
2 1/2-D one. This not only makes large problems manageable,
but also achieves significant savings in computer storage and
run time in the process. This method has been used to model
electromagnetic wave scattering [3], subsurface interface radar
[4], optical lenses [5], cavity resonance problems [6], and
coaxial problems [7]. In many practical applications, the geom-
etry is only partially rather than fully rotationally symmetric.
By invoking the reciprocity principle, the method can also
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be applied to this class of problems, e.g., a paraboloid with a
microstrip patch antenna feed [8]. Because the microstrip patch
array does not have rotational symmetry, we cannot directly
apply the 2 1/2-D FDTD method to calculate the far zone field
of the parabolic antenna system excited by this patch array.
However, this asymmetric patch array can be replaced by an
equivalent current density calculated by the MoM code. We
apply the reciprocity theorem to compute the far zone field
of the antenna system excited by this asymmetric source in a
manner explained below.

First, we illuminate the antenna system by a plane wave, and
use the 2 1/2-D FDTD method to compute the electric field dis-
tribution on the substrate of the patch antenna. Next, we em-
ploy the MoM method to derive the current density distribution
on the patch array. Finally, we apply the reciprocity theorem to
calculate the far zone field of the antenna system excited by an
asymmetric source from these known fields and currents.

The reciprocity-based procedure, outlined above, is very
useful for solving many 3-D problems belonging to this cate-
gory, which would otherwise be intractable via the conventional
FDTD algorithm when applied directly because of the size
of the problem. The purpose of this paper is to address the
following issues that arise in the process of adapting the FDTD
method to the circularly symmetric case: 1) the singularity
problem at the axis of rotation; 2) plane wave source excitation
in the cylindrical coordinate system; 3) development of the
2 1/2-D conformal FDTD algorithm for perfect conductors and
lossy dielectrics; 4) the procedure for handling an obliquely
incident plane wave; and 5) combining FDTD with the reci-
procity principle to compute the far-field pattern of a parabolic
antenna system.

We choose the example of a reflector antenna illuminated by
a plane wave to illustrate the application of the method.

II. M ETHOD

A. FDTD Update Equations for the Axis-Symmetric Case

To reduce the original 3-D problem and to derive the FDTD
update equations for the circularly symmetric case, we begin
by expressing the electric and magnetic fields in the cylindrical
coordinate system in a Fourier series as:

(1)
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(2)

where is the azimuthal harmonic index. Substituting (1)
and (2) into Maxwell’s equations in the cylindrical coordinate
system, we can derive the following FDTD update difference
equations:

(3)

(4)

(5)

(6)

(7)

(8)

In the above equations, the singularity at the axis must
be addressed before numerical computations can be performed.
There are two general approaches [9] to dealing with this singu-
larity: first, to replace with , second, to apply a change
of variables and . However, these two ap-
proaches are not always easy to implement in numerical algo-
rithms. In this paper, we follow a somewhat different proce-
dure that obviates the need for any special treatment of the ap-
parent singularity on the axis for the problem of interest,viz.,
plane-wave scattering by a reflector antenna.

To generate a normally incident plane wave in the cylindrical
coordinate system, we need to set the harmonic numberto 1.
This makes and either sine or cosine functions of. To
handle the singularity on the axis for this, we use Maxwell’s
finite difference equations (3)–(8). From these equations, we
know that only the calculations of and

require the knowledge of and
on the axis. We now use the integral form of Faraday’s Law,
given by

(9)

and apply (9) to the region around the-axis. Since the
-component is either a sine or cosine function of,

and,

, for . Hence, it follows that for this ,
is zero on the axis.

The calculation of is a little more involved

than it is for ; fortunately, it has the
factor associated with it in update equation (5). Because the first
cell in the -direction is a half-cell, always has
a zero factor ( ). As a result, the computation of

on the axis is not needed and, hence, the sin-
gularity issue becomes moot. Finally, we note from the update
equations for the -and -polarized electric fields, that neither
of these fields are located on the axis; hence, the singularity
problem is nonexistent for the computation of these fields.

In order to align the structures with the FDTD grid, we use
the nonuniform meshing technique [7]. The first-order Mur
boundary condition is employed to truncate the computational
domain.

B. Conformal Method for Modeling a Perfect Conductor

To model a curved surface in the 2 1/2-D space, we need
to deal with the distorted cells (see Fig. 1) in an accurate
manner. We follow the procedure described in [10] to handle
the distorted cells containing perfect electrical conductor
(PEC) boundaries. The magnetic field corresponding to the
distorted cells is computed using Maxwell’s integral equations.
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Fig. 1. Conductor with rotational symmetry.

The 2 1/2-D conformal update equation for the-polarized
magnetic field is given by

(10)

where and are the side lengths of the distorted cell edges
that are located in free space, in theand directions, respec-
tively, and is the area of the distorted cell in free space. The
conformal update equations of the and are different from
those of the 3-D conformal FDTD [10]. The conformal update
equations for and in the 2 1/2-D FDTD can be written as

(11)

(12)

where and are the side lengths of the regular cells
in the - and -directions, respectively. The update equations
for the electric fields remain unchanged from the conventional
FDTD equations.

C. Modeling of Curved Dielectric Surfaces

A slightly different procedure, outlined in [11], is used when
the computational domain includes curved dielectric surfaces,

Fig. 2. Dielectric with rotational symmetry.

and it is based on the concept of effective permittivity and con-
ductivity. For the problem at hand, we adapt the algorithm in
[11] for the cylindrical coordinate system in 2 1/2-D as fol-
lows. We compute the effective permittivity and conductivity by
using weighted averages of the distribution of permittivity and
conductivity within the distorted cells. For the rotationally sym-
metric dielectrics considered in this paper, the parameter distri-
bution of the media is uniform in the direction, and the ef-
fective permittivity and conductivity of the-component in the
deformed cell are determined by the intersection of the FDTD
lattice and the media in the– plane. The concept is illustrated
in Fig. 2, and the relevant formulas appear below:

and

(13)

where and are the effective permittivity and con-
ductivity of the distorted cells, respectively, and and
are the areas of the free space and the dielectric inside the de-
formed cell, respectively. However, the effective parameters,
which correspond to and on the interface between free
space and the media, are calculated by the deformed side lengths
inside the dielectric and free space. They are written as

and

(14a)

and

(14b)

where and are the effective permittivity and con-
ductivity corresponding to on the curved dielectric surface,
and and corresponding to on the curved di-
electric surface. The subscriptsand signify dielectric and
free space, respectively (see Fig. 2).
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Fig. 3. Global distribution of total field.

D. Plane-Wave Source Excitation

In the 2 1/2-D problem, the excitation of a plane wave, with
an incident (or ) field, is accomplished by letting .
We then have

(15)

(16)

Similar equations can be written for the-polarization case, and
for the circular polarization as well, by combining the- and
-polarized incident fields with quadrature phasing.

E. Oblique Incidence

The 2 1/2-D FDTD technique cannot be used to model the
case of an obliquely incident plane-wave directly, because it is
not rotationally symmetric. To circumvent this problem, we first
expand this oblique wave as the superposition of a set of az-
imuthal harmonics. The singularity treatment at the-axis for
the normal incidence plane wave is still valid for the oblique
incidence case because we repeatedly model the normal inci-
dent harmonic waves instead of an oblique plane wave. Ideally,
these harmonic waves should extend to infinity in the-direc-
tion so that they can reconstruct the original oblique incidence
plane wave. Since the FDTD computational domain must nec-
essarily be finite, the tapered source technique is used to realize
a smooth transition, from the truncation point to zero, for the
last 40 -cells in the -direction. The first-order Mur absorbing
boundary condition [12] has been found to be adequate for trun-
cating the boundary of the 2 1/2-D space provided it is placed at
a sufficient distance from objects in the FDTD space. In this
paper, a normal incidence wave has been extended from the
-axis up to 460 cells in the-direction. A spline fitting tech-

nique has been used to smoothly connect from the truncation
point to zero for cell numbers 460 to 500 (boundary of the FDTD

domain) in the -direction. This smooth transition effectively re-
duces the effect of mesh truncation in the-direction.

We assume that a plane-wave traveling parallel to the–
plane is obliquely incident upon an antenna system. The electric
field can be written as

(17)
in angular harmonics as follows [13]:

(18)

(19)

where is determined for a given to achieve a convergent re-
sult ( for ). We then solve the problem repeatedly
for the individual harmonics (different), and superimpose the
obtained results to construct the solution for the obliquely inci-
dent case. The FDTD update equations are extracted from:

(20)

(21)

where and let
or .
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Fig. 4. Comparison between conformal and staircase FDTD results for the
main reflector.

F. Feed Analysis

A microstrip patch antenna is used as the feed of the re-
flector antenna system. We use an available MoM code,viz.,
ENSEMBLE, to calculate the current density distribution on the
patch array. This current density is used to replace the patch
array by using the equivalence theorem. Because meshing of
the FDTD computational domain is in the cylindrical coordi-
nate system, and the MoM simulation is in the rectangular co-
ordinate system, we translate the electric field distribution to a
rectangular coordinate grid that matches the MoM coordinate
points by using a planar interpolation scheme.

G. Reciprocity Theorem

In this section we briefly explain how the reciprocity the-
orem is used in our formulation. The reciprocity theorem can
be written as

(22)

where is the area of patch array; is the current density
on the array; , produced by , is the electric field at a far
zone point that we are seeking; is a far zone plane, where the
illuminating electric point dipole source is located; and
produced by , is the electric field distribution on the surface
of the substrate.

We use the MoM-computed current density on the surface of
the substrate, the electric field on the surface of the substrate,
calculated by the FDTD method, and the known illuminating
plane-wave source, to compute the far-field pattern of the an-
tenna system by using the reciprocity theorem as explained in
(22). Next, we explain the step-by-step procedure for imple-
menting the reciprocity theorem.

Step 1) Calculate the current densities, and , on the
surface of the substrate from the MoM code for a
given feed design. These currents replace the patch
array by using the Equivalence Theorem.

Fig. 5. Comparison between normal and oblique (3) incidence cases.

Fig. 6. Geometry of the parabolic antenna and feed.

Fig. 7. Geometry of the feed array.

Step 2) Run the FDTD code to calculate the electric field
distribution on the surface of the substrate without
the patch array.

For the normal incidence case and circularly
polarization, the FDTD code is used to calculate
the copolarized ( , ) and cross-polarized
( ) electric field distributions at the lo-
cation of the patches in the feed array. Note that
the fields ( and ) and ( and ) are
generated by and sources, respectively. The
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Fig. 8. Comparison with experiment data.

general field represents an -polarized field
produced by an -polarized source.

For the oblique incidence case again a circular po-
larization, repeat the above procedure for the indi-
vidual harmonics, and superimpose the obtained re-
sults to construct the copolarization and cross-polar-
ization fields by using (18).

Step 3) Define the co- and cross-polarization, for circular
polarization, for the - and -directed fields as fol-
lows:

(23)

(24)

Step 4) The reciprocity theorem to derive the far-field repre-
sentation of the antenna system excited by the patch
array. Write

-

(25)

Fig. 9. Geometry of the antenna system including the main reflector and feed.

-

(26)

where is the surface of the radiating patches.



1816 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 48, NO. 12, DECEMBER 2000

Fig. 10. Co- and cross-polarization gains versus incident angle.

Step 5) Calculate the gain of the system from the ratio of
this field intensity to that produced by an isotropic
radiator.

Gain (27)

Step 6) Calculate the far zone field pattern first by changing
direction of illuminator of the incident plane wave
and then rotating the feed structure about the-axis
by the desired angular displacement. Note that the
2 1/2-D FDTD simulation cannot be rotated in the

-direction since it is rotationally-invariant in this
direction.

Repeat the procedure above for other incidence plane angles,
to compute entire pattern of the antenna system.

III. N UMERICAL RESULTS

To illustrate the procedure described in the last section,
we calculate the field distribution in the focal region of a
paraboloidal reflector antenna. The antenna has an aperture
diameter of 160.5 mm (24.07), focal length of 90.5 mm
(13.58 ), and an operating frequency of 45 GHz. We first
calculate and from the FDTD program, then obtain

, . Fig. 3 presents the global
field distribution of the reflector for the normal incidence case,
obtained by using the conformal FDTD approach discussed
in the last section. The radial-field distributions are plotted in

Fig. 4, for the staircase- and conformal-FDTD methods for
comparison. In both computations, and equal one-twen-
tieth of the operating wavelength. The total computational
domain includes 500 340 cells.

Second, we consider an obliquely incident plane-wave illumi-
nating the reflector at an angle of 3with respect to the-axis.
Fig. 5 shows the comparison between the normal and oblique in-
cident cases. Note that, as expected, the maximum of the focal
region field shifts 3 in the direction opposite to the shift of the
incident plane wave.

Next, to illustrate the applicability of the approach to ge-
ometries with only partial circular symmetry, we introduce a
microstrip feed (see Figs. 6 and 7), in the focal region of the
reflector, which is illuminated by a circularly polarized plane
wave, with incident angles of 1, 2 , and 3 . The patch antenna
array, obviously, does not possess circular symmetry. The gain
values plotted in Fig. 8 are ratios (dB) of the far-zone electric
fields, for various incidence angles, to the copolarized far-zone
electric field at 0 incidence. The figure compares the simulated
and measured results and the two are seen to be in fairly good
agreement.

The asymmetric behavior of the far-zone field pattern can
be determined by the current density distribution on the patch
array. The simulation results correspond to the plane defined
by and the various values plotted in Fig. 8. For pat-
terns in other planes, the feed structure requires rotation about
the -axis by the desired angular displacement. Note that the
2 1/2-D FDTD simulation cannot be rotated in the-direction
since it is rotationally invariant in this direction.
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The final example is the above antenna covered by a radome
that has an aperture diameter of 190.32 mm (28.55), shown in
Fig. 9. The data plotted in Fig. 10 are ratios (dB) of the far-zone
electric fields, for various incidence angles, to the copolarized
far-zone electric field at 0incidence.

Though not included here, we have also considered the case
where the radome may not be strictly circularly symmetric.

IV. CONCLUSION

This paper has presented an efficient method for determining
radiation patterns for electrically large scatterers with partial cir-
cular symmetry. Through the use of the reciprocity theorem,
a significant reduction in computer resource requirements has
been achieved. We have discussed the conformal method for
modeling curved dielectric and conducting surfaces, and the ta-
pered source method for obliquely incident plane-wave excita-
tion. FDTD update equations were also derived for obliquely
incident plane waves. The overall method was verified by com-
paring simulated results, for both normal and oblique incidence
cases to measured data; and the two were found to be in good
agreement. Thus, for a class of partial axisymmetric geometries,
significant improvement in computational efficiency can be at-
tained through the use of this method, without sacrificing cal-
culation accuracy.
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