2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Journal of Lightwave Technology
Volume 18 Number 1, January 2000

Table of Contents for this issue

Complete paper in PDF format

Application of DBR Mode-Locked Lasers in Millimeter-Wave Fiber-Radio System

Tetsuichiro Ohno, Member, IEEE Kenji Sato, Member, IEEE Seiji Fukushima, Member, OSA Yoshiyuki Doi and Yutaka Matsuoka Member, IEEE

Page 44.

Abstract:

An actively mode-locked laser (MLLD) integrated with a distributed Bragg reflector (DBR) was used as a light source for optical subcarrier transmission. The millimeter (mm)-wave power penalty due to fiber dispersion is suppressed within 4 dB by operating this laser in a symmetric four-mode configuration. The experimental results agree well with the calculation of dispersion-induced penalty for a four-component-lightwave source. Optical subcarrier transmission free from dispersion-induced penalty within experimental error is achieved by further suppression of the end-modes of the DBR-MLLD using a fiber Bragg grating (FBG).

References

  1. H. Ogawa, "Microwave and millimeter-wave fiber optic technologies for subcarrier transmission systems", IEICE Trans. Commun., vol. E76-B , pp.  1078- 1090, 1993 .
  2. W. E. Stephan and T. R. Joseph, "System characteristics of direct modulated and externally modulated RF fiber-optic links", J. Lightwave Technol., vol. LT-5, pp.  380- 387, 1987 .
  3. F. Devaux, Y. Sorel and J. F. Kerdiles, "Simple measurement of fiber dispersion and chirp parameter of intensity modulated light emitter", J. Lightwave Technol. , vol. 11, pp.  1937- 1940, 1993 .
  4. M. Izutsu, S. Shikama and T. Sueta, "Integrated optical SSB modulator/frequency shifter", IEEE J. Quantum Electron., vol. QE-17, pp.  2225 - 2227, 1981 .
  5. H. Schmuck, R. Heidemann and R. Hofstetter, "Distribution of 60 GHz signals to more than 1000 base stations", Electron. Lett., vol. 30, pp.  59- 60, 1994 .
  6. K. Sato, A. Hirano, M. Asobe and H. Ishii, "Chirp-compensated 40 GHz semiconductor modelocked lasers integrated with chirped gratings", Electron. Lett., vol. 34, pp.  1944- 1946,  1998 .
  7. U. Gliese, S. Nørskov and T. N. Nielsen, "Chromatic dispersion in fiber-optic microwave and millimeter-wave links", IEEE Trans. Microwave Theory Tech., vol. 44, pp.  1716- 1724, 1996 .
  8. G. P. Agrawal, Fiber-Optic Communication Systems, New York Wiley, 1997 .
  9. A. S. Daryoush, K. Sato, K. Horikawa and H. Ogawa, "Dynamic response of long optical-cavity laser diode for Ka-band communication satellites", IEEE Trans. Microwave Theory Tech., vol. 45, pp.  1288- 1295, 1997 .
  10. S. Fukushima, Y. Doi, T. Ohno, Y. Matsuoka and H. Takeuchi, "New phase-shift keying technique based on optical delay switching for microwave optical link", IEEE Photon. Technol. Lett., vol. 11, pp.  1036- 1038, 1999 .
  11. D. Wake, C. R. Lima and P. A. Davies, "Transmission of 60-GHz signals over 100 km of optical fiber using a dual-mode semiconductor laser source", IEEE Photon. Technol. Lett., vol. 8, pp.  578- 580, 1996 .