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Effects of Random Phase and Amplitude Errors in
Optical Fiber Bragg Gratings

Ricardo Feced and Michalis N. Zervas

Abstract—This paper studies the influence of random phase and
amplitude fabrication errors on the performance of optical filters
based on fiber Bragg gratings (FBG’s). In particular, we analyze
two effects of particular importance for optical communications:
the excess crosstalk induced in apodized gratings commonly used
in wavelength-division-multiplexing (WDM) systems, and the
time-delay fluctuations that appear in chirped gratings employed
to compensate the fiber dispersion. A statistical model is presented
to explain these effects in terms of the coherence length of the
grating fabrication procedure.

Index Terms—Gratings, noise, optical fiber communication.

I. INTRODUCTION

T HE performance of optical components is usually
degraded by random fluctuations of their optical or

geometrical properties. Rayleigh scattering, for instance, is a
typical example of scattering induced by random fluctuations of
an optical property of the medium: the refractive index [1], [2].
On the other hand, random deviations of the device geometry,
like roughness of its surfaces or randomness in the periodicity
of gratings, can also be responsible for enhanced scattering in
many optical components [3]. In this paper, we investigate the
effect of random optical and geometrical fluctuations on the
performance of optical fiber gratings (OFG’s) as optical filters.

The problem of random propagation in one dimension has
been extensively studied in many different contexts [4]–[6]. The
moment-propagation method, for example, studies the evolu-
tion of the second order field statistics along the medium, and
can be used to predict the amount of backscattered power [4],
[5]. Sometimes, it is important to analyze not only the scattered
power, but also the evolution of the optical phase of the propa-
gating wave. This is specially important for interferometric op-
tical devices, where fluctuations of the waveguide effective re-
fractive index can give rise to a random-walk of the optical phase
that deteriorates their performance [7], [8].

In recent years, OFG’s have become key components in high
speed optical fiber communication systems. The technology of
UV photoinduced fiber gratings [9] has reached now high ma-
turity, enabling the fabrication of complex OFG-based filters to
perform various functions such as selection of wavelength mul-
tiplexed channels or compensation of the link dispersion. Sev-
eral experimental techniques have been demonstrated to fabri-
cate nonuniform gratings, permitting an accurate control of both
the local grating period and the apodization profile along the
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structure [10], [11]. However, the fabrication of increasingly
longer OFG’s with improved spectral response is limited by
the need to maintain the coherence of the grating phase along
the whole structure. Numerical experiments have shown that
random coupling can have important implications in the perfor-
mance of practical filters [3], [12].

In this paper, we study the effect of small random phase or
amplitude fluctuations imprinted on the grating during the fab-
rication process on the spectral response of the filter. We will
present a method to calculate the main statistics of the filter
response, like average reflectivity or average time-delay fluc-
tuations, in terms of a characteristic coherence length of the
grating. The method, which relies on a perturbation approach,
calculates ensemble averages of the spectral response parame-
ters of gratings perturbed with a random-walk phase. In partic-
ular, we will focus on two cases of particular importance for op-
tical communications: the excess crosstalk induced in apodized
gratings commonly used in wavelength-division-multiplexing
(WDM) systems, and the time-delay fluctuations that appear in
chirped gratings employed to compensate the fiber dispersion.
The paper is organized as follows. Section II describes the prop-
agation in OFG’s subjected to random phase and amplitude er-
rors. The statistical averages for the main parameters of their
spectral response is then calculated in Section III. We finally
apply the theory developed to the two particular cases previ-
ously discussed: apodized (Section IV), and chirped (Section
V) OFG’s.

II. PROPAGATION IN FIBER GRATINGS WITH RANDOM PHASE

AND AMPLITUDE EVOLUTION

In this section, we describe the optical propagation in OFG’s
with random phase or amplitude errors along their structure. The
magnitude of the phase errors will be characterized in terms of
a “coherence length” for the grating. In the following sections,
we will present a method to calculate ensemble averages of the
main parameters of the OFG spectral response, and discuss their
dependence on the coherence length previously introduced.

A. Refractive Index Perturbation in Fiber Gratings

Bragg gratings are fabricated in optical fibers by exposing
their core to a periodic ultraviolet (UV) pattern. Initially, a
holographic method based on an split-beam interferometer
[9] demonstrated the possibility of writing gratings by means
of transverse UV exposure. A more recent development, that
greatly simplifies the requirements of the OFG fabrication
setup, is the use of diffractive optical phase-mask gratings [13],
[14]. A third technique in which the grating is transversely

0733–8724/00$10.00 © 2000 IEEE



FECED AND ZERVAS: RANDOM PHASE AND AMPLITUDE ERRORS IN OPTICAL FBG’S 91

written point by point by accurately controlling the position
and spot size of the UV beam has also been demonstrated [15].
These three basic techniques have been modified and improved
to fabricate long gratings with accurate control over the
photo-induced refractive index modulation. The first extension
is the phase-mask scanning technique in which the laser beam
is scanned over a long and high-quality phase-mask [10], [16].
An alternative procedure to write long gratings is to accurately
move and monitor the position of the fiber by means of an
interferometer while exposing it to a time-modulated short UV
interference pattern [11]. This is probably the most versatile
approach, and complex filters designs have been demonstrated
with this technique [17], [18].

Independently of the technique used to write OFG, phase
and amplitude errors are likely to occur due to the stringent re-
quirements of accuracy and stability necessary in the fabrication
process. There are a great variety of possible sources for these
errors. Some of them are associated with the fabrication method,
like phase-errors of phase masks, uncertainty of the fiber posi-
tion in interferometrically controlled methods, lack of mechan-
ical stability of the fabrication setup, or fluctuations in the UV
fluence. Others are intrinsic to the photosensitive fiber, like ge-
ometrical or compositional fluctuations.

The effective refractive index along an OFG can be de-
scribed as

(1)

where is the average effective refractive index, and
, and specify the deterministic grating pa-

rameters: is a reference period, accounts for the local
grating strength (apodization), and will determine its phase
variation and local period. The random properties of the grating
are described by the phase and amplitude stochastic processes

and . The local period of the grating is deter-
mined by both the deterministic phase term and the random
phase term .

The phase and the amplitude noise are usually partially corre-
lated. Fluctuations of the fluence during the fabrication process
contribute to both sources of noise, giving rise to some corre-
lation among them. However, in this paper we study the effects
of the phase and amplitude noises separately, as if they were
statistically independent. The method presented could easily be
extended to take into account phase-amplitude correlations.

1) Phase-Noise:We will assume that the random fluc-
tuations of the local spatial angular frequency ( )
along the grating can be modeled by a zero-average, stationary,
Gaussian process . Fig. 1 illustrates the evolution of the
refractive index perturbation in a grating subjected to random
phase-noise. The phase term in (1) will be driven by

according to the expression

(2)

Fig. 1. Illustration of a grating subjected to phase errors.- - - :Ideal grating.
— :Grating with phase-noise.

The variance for the increments of can now be calculated
as [19]

(3)

where is the autocorrelation function for . In
standard OFG fabrication techniques the correlation length for

is usually much smaller than the grating length and,
therefore, its spectrum is broad compared to the grating spectral
response. Consequently, in most situations we can regard
as a white Gaussian noise. In this case, the phaseevolves
as a Brownian random-walk motion [19], [20], being driven
by the delta-correlated Langevin force that accounts
for random fluctuations of the local period along the grating.

will also follow Gaussian statistics, with independent
increments, and zero average. In analogy with a single-mode
laser, we will define both a “coherence length” and a
“linewidth parameter” that characterizes the variance of
the increments of [21]

(4)

where was taken equal to in (3),
being the Dirac delta. From (4), we see that the standard
deviation of the random phase variation along a grating period

is . The Gaussian nature of the increments of
permits the calculation of the autocorrelation of the

random phase term in (1)

(5)

where stands for ensemble average. The “coherence length”
previously defined measures the distance along which

there is substantial dephasing with respect to the perfect deter-
ministic grating. It can be regarded as a figure of merit for the
grating fabrication system, being ideally as large as possible.

2) Amplitude Noise:Following the same reasoning as in
the previous section, we will assume that the amplitude noise
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process in (1) is a zero-average, Gaussian white-noise.
Consequently, its autocorrelation will be

(6)

where the factor provides a measure for the magnitude of the
amplitude noise. If the grating is sampled in small sections of
length , then the variance of the relative amplitude fluctuations
for each sample is given in terms ofby

(7)

can be considered as the inverse of a maximum cutoff spatial
frequency for the white noise. Its value is primarily determined
by the writing method and is usually of the order of a few hun-
dred microns. As typical noise cutoff frequencies correspond to
optical reflection bandwidths much broader than those of the
deterministic OFG’s, the assumption of delta-correlated noise
sources is expected to be a good approximation in most physical
situations. However, the method presented in following sections
to calculate ensemble averages does not rely on this assumption,
and can be generalized to take into account different statistics
for the noise sources.

B. Coupled-Mode Equations

The one-dimensional scattering problem for an OFG is usu-
ally described in the framework of the coupled-mode formalism
[22]–[24]. The scattering equations are written in terms of two
counter-propagating waves, , backward propagating,
and , forward propagating

(8)

where is the detuning parameter

(9)

and is the vacuum propagation constant ( ). is re-
lated to the grating parameters as

(10)

where is the deterministic part of the coupling function.
The OFG reflection spectral response can be cal-

culated by solving (8) taking into account the appropriate
boundary conditions, i.e., and ,
where is the total length of the grating

(11)

The actual backward and forward electric fields (
and ) are related to the waves and
through the expressions

(12)

The main novelty of the present study is that the coupling
function is an stochastic process characterized by the co-
herence length of the fabrication system. We could cal-
culate ensemble averages for the main parameters of the OFG
spectral response by repetitive solution of the coupled-mode
equations (8) for different realizations of the stochastic process

, and subsequent average of the parameters of interest. This
would yield information about the average behavior of a batch
of gratings written with that fabrication system. In this paper
we develop an alternative method to calculate directly these en-
semble averages without the need of statistical averages over
many realizations of the experiment. The study illustrates the
effects of phase and amplitude errors in the performance of
OFG and provides insight in the interrelations among the var-
ious grating and fabrication system parameters.

C. Approximate Spectral Response for OFG Perturbed with
Random Noise

The main difficulty to calculate ensemble averages for param-
eters related with the OFG spectral response is the non-
linear relation existing between and the coupling func-
tion . Simple linear approximations like the first-order Born
approximation are inaccurate for the analysis of practical grat-
ings with reflectivities larger than 50%. In this section we will
present a novel linearization method that will enable us to calcu-
late ensemble averages in gratings with random phase and am-
plitude errors. The method relies on a perturbational analysis
with respect to the solution of the ideal deterministic grating
characterized by given in (10).

Our objective is to express the reflection coefficient
(11) as a linear function of the stochastic coupling function
with a good degree of accuracy. The procedure starts by solving
exactly the coupled-mode equations for the corresponding de-
terministic case characterized by the coupling function .
The solution of the deterministic equation yields the evolution
of the forward and backward deterministic propagation waves

and , and also the spectral response of the
unperturbed grating . An approximate expression for the
spectral response of the perturbed grating can now be
obtained by substituting the calculated forward deterministic
wave for in the first equation of system (8),
and integrating then the resulting ordinary linear differential
equation. The spectral response can be cast in an expression that
looks very similar to the first-order Born approximation with a
modified coupling function

(13)

where the modified coupling function

(14a)

(14b)

Equation (14b) defines the deterministic modified coupling
function . This modified coupling function can be ap-
proximated by in those parts of the-spectrum where the
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grating reflectivity is low. The spectral response is now
a stochastic process obtained from a linear transformation of the
random coupling function .

The OFG spectral response given in (13) is obviously exact
in the deterministic case, i.e., when phase and amplitude
errors are negligible. If the grating has a long coherence
length and a low amplitude-noise factor, then the
random terms in (14) can be regarded as a small perturbation
and (13) gives a good approximation to the grating spectral
response. The accuracy of this analysis will be corroborated
in following sections by Monte Carlo-type simulations in
which the spectral response of a batch of randomly generated
gratings will be averaged to obtain estimations for ensemble
averages.
III. ENSEMBLE AVERAGES FORGRATING REFLECTIVITY AND

TIME DELAY FLUCTUATIONS

The two parameters that fully characterize the spectral
response of OFG are its reflectivity and time-delay response.
They are, respectively, related to the modulus and
phase of the spectral response . In this section
we will derive expressions to calculate ensemble averages for
these parameters in presence of both phase-noise (Sections
III-A–III-C) and amplitude-noise (Section III-D) in the grating
coupling function.

A. Ensemble Averages forRandom Phase Functions

Let us assume first that the grating is only subjected to
random phase errors, i.e., . All the phase-noise
ensemble averages that we will need are particular cases
of the ensemble average of a general stochastic process

defined as

(15)

where stands for complex conjugate, and and
are random phase functions defined as the product of the deter-
ministic functions and , and the random phase
term , namely

(16)

To calculate the ensemble average
we first substitute (16) in (15) and, subsequently, evaluate the
ensemble average for the random phase terms with the autocor-
relation (5). Finally, by transforming the independent variables

(17)

we obtain the following expression for the sought average
:

(18)

where we see that it involves a cross-correlation integral fol-
lowed by a weighted Fourier transform.

B. Average for theReflectivity in OFG with Phase-Noise

The ensemble average for the reflectivity can be calculated
from the approximate spectral response described in
(13) together with the method for evaluation of ensemble av-
erages shown in (18). Defining the ensemble average for the re-
flectivity as , we find

(19)

which is calculated as the autocorrelation of followed
by a Fourier transform weighted by a decaying exponential (18).

C. Averages for the TimeDelay and its fluctuations in OFG
with Phase-Noise

The estimation of the average time-delay and its fluctuations
is of particular importance for phase-filters like OFG disper-
sion compensators. Generally, the quality of OFG dispersion
compensators is evaluated through the standard deviation of its
time-delay [25]. For this type of filters, the phase of the spec-
tral response varies rapidly within the reflection band in
comparison with its modulus . This fact will permit us
to estimate ensemble averages for the time delay of OFG dis-
persion compensators.

1) Average TimeDelay: The time-delay is defined in
terms of the spectral phase response as

(20)

In the presence of random phase errors, is a stochastic
process. To estimate the ensemble average for the time-delay

, we start with the related ensemble average

(21)
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where we observe that the imaginary part of this expression is
equal to the average of the time-delay weighted by the reflec-
tivity. The ensemble average in (21) is calculated as

(22)

From (20) –(22) we estimate the ensemble average of the
time-delay as

Im
(23)

where Im stands for imaginary part, and the two ensemble av-
erages have been calculated in (19) and (22). This result is ap-
proximate due to the reflectivity weight term that appears in the
time-delay average. Expression (23) would be exact in the limit
of very weak correlation between the time delay and reflectivity.
For small perturbations, the in-band reflectivity of dispersion
compensators will be essentially constant and (23) provides a
good approximation for the statistics of the time-delay.

2) Fluctuations of Time Delay:Our main interest, however,
is to estimate the standard deviation of the time-delay fluctu-
ations. To achieve this objective, we need to evaluate the en-
semble average of the square of the time delay . We pro-
ceed as before, starting with the related ensemble average

(24)

where we have assumed slow variations for the modulus
of the spectral response within the reflection band.

The ensemble average (24) is again calculated in terms of
(19)

(25)

Now we can estimate as

(26)

which can be evaluated from (19), (24), and (25). The variance
of the time-delay is finally expressed in terms of (23)
and (26) as

(27)

The time-delay standard deviation will be used in Sec-
tion V to discuss the effect of random phase errors on dispersion
compensators.

D. Average for theReflectivity in OFG with Both Amplitude
and Phase-Noise

Amplitude noise can also contribute to the deterioration of the
background level in the spectral response of apodized gratings.
In this section, we extend the analysis to calculate the ensemble
average for the reflectivity of a grating subjected to both ampli-
tude and phase-noise. The main assumption of the calculation
is that both noise sources are statistically independent.

Following an analysis similar to that developed in Section
III-A and taking into account the autocorrelation (6) for the rel-
ative amplitude-noise , we calculate the ensemble average
of the reflectivity as

(28)
It is shown that the average reflectivity in this case has two

terms. The first one is that corresponding to a grating subjected
only to phase-noise (19), while the second contribution is the
excess background reflectivity due to a random amplitude as
will be discussed in Section IV-B.

IV. EFFECT OFRANDOM PHASE AND AMPLITUDE ERRORS IN

APODIZED GRATINGS

Apodized gratings exhibit reduced sidelobes in their spectral
response, minimizing crosstalk effects between adjacent optical
channels [26]. Their use in WDM communication systems re-
sults in efficient utilization of the optical bandwidth [27]. In
this section, we study the deterioration of apodized OFG per-
formance due to random phase and amplitude errors incurred
during the fabrication process. The most important effect is a
reduced isolation of the filtered channel due to an enhancement
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Fig. 2. Reflectivity spectrum of the apodized grating. - - - : Ideal deterministic
grating. —: Ensemble average calculated with random phase RP model. •:
Values calculated by averaging over 1000 random experiments.

of the sidelobes and a decrease in the sharpness of the filter’s
bandedge transition.

A. Effects of Phase-Noise

To illustrate the analysis introduced in previous sections, we
first consider an OFG with a raised cosine apodization profile.
The grating has a total length of 1 cm and a maximum cou-
pling constant of 3.5 cm . The maximum reflectivity of
the grating is 90%. Fig. 2 shows the response of the deterministic
grating which exhibits low sidelobes (dashed line).
Let us suppose now that the grating was fabricated with a system
that had a coherence length of 10 cm. This corresponds
to a standard deviation for the random phase variation along a
grating period of 3 mrad. By using the random phase (RP) model
previously developed (19) we can calculate the ensemble av-
erage for the reflectivity (solid line). We clearly observe a sub-
stantial increase in the out-of-band background level and a re-
duced sharpness of the reflection bandgap edge. The predictions
of the RP model were corroborated by statistically averaging the
spectral response of 1000 gratings with phase errors randomly
generated (solid points in Fig. 2). The agreement between both
calculations is very good throughout the reflection spectrum. It
is important to note that Monte Carlo-type simulations are very
expensive from a computational point of view compared to cal-
culations carried out with the proposed RP model.

In a second numerical experiment we allowed the coherence
length of the fabrication system to vary from 1 to 1000 cm.
This corresponds to standard deviations for the random phase
variation along a grating period that vary from 10 to 0.3 mrad.
The ensemble averages of the reflectivity for the cases consid-
ered are shown in Fig. 3. We observe that the out-of-band back-
ground level increases and the bandedge sharpness decreases as
the coherence length is reduced.

The RP model is useful to understand these results and to find
the relation between the out-of-band background level and the
coherence length of the fabrication system. From (18) and (19)
we observe that the ensemble average of the reflectivity is equal
to the Fourier transform of the product of the autocorrelation

Fig. 3. Ensemble average for the reflectivity spectrum of the apodized grating
for various values of the coherence length.

Fig. 4. Ensemble average (•) for the out-of-band reflectivity of the apodized
grating at a detuning of 0.5 nm as a function of the coherence length. The solid
line (—) is a theoretical fit proportional toL .

of with a decaying exponential. This is equivalent to
the convolution of the deterministic grating reflectivity with a
Lorentzian function that accounts for the reduced coherence
of the fabrication system. This spectral response would be
identical to that obtained if we analyzed the ideal grating
by scanning in wavelength a laser with a finite Lorentzian
linewidth. The out-of-band background level is mainly given by
the overlap between the reflection band of the grating and the
decaying Lorentzian function. A simple integration shows that
this overlap is inversely proportional to the coherence length

. Fig. 4 shows the out-of-band reflectivity at a detuning
of 0.5 nm as a function of the coherence length for the cases
previously considered. The solid line is a fit given by

(29)

that shows the accuracy of the prediction. It can also be shown
that the overlap between the reflection band and the Lorentzian
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Fig. 5. Inverse of the reflectivity spectrum of the apodized grating as a
function of wavelength detuning for two different coherence lengths, showing
an approximate linear relation.

function is approximately inversely proportional to the distance
between the detuning and the band edge

(30)

Fig. 5 illustrates this relation for two different values of the
coherence length.

We have shown that the spectral response of apodized grat-
ings is given by the convolution of the ideal deterministic spec-
tral response with a finite linewidth function that accounts for
the reduced coherence length of the fabrication system. This
translates into a degradation of the spectral isolation of the filter.

B. Effects of Amplitude Noise

We study now the effect of amplitude-noise in the spectral re-
sponse of apodized gratings. Let us consider again an OFG with
a raised-cosine apodization profile, a total length of 1 cm and a
maximum coupling constant of 3.5 cm . We assume that
the grating is subjected only to an amplitude-noise character-
ized by an of 3.9 10 cm. According to (7), this means that
the standard deviation of the relative amplitude fluctuation is
4.4% if we describe the grating by sampling sections of 200m
length. Fig. 6 shows the response of the deterministic grating

and compares it with the ensemble average obtained
by means of the amplitude-noise (AN) model developed in Sec-
tion III. The predictions of this model were again confirmed
by statistically averaging the spectral response of 1000 grat-
ings with amplitude-noise randomly generated (solid points in
Fig. 6). We observe that the main effect of amplitude noise is a
substantial increase of the flat background level of the spectral
response.

In a second numerical experiment we allowed the amplitude-
noise factor to vary from 3.9 10 to 8 10 cm. The
ensemble averages of the reflectivity for the cases considered
is shown in Fig. 7. In analogy with the phase-noise case, the
out-of-band background level increases for higher values of the
amplitude-noise factor.

Fig. 6. Reflectivity spectrum of the apodized grating. - - -: Ideal deterministic
grating. —: Ensemble average calculated with amplitude-noise AN model. •:
Values calculated by averaging over 1000 random experiments.

Fig. 7. Ensemble average for the reflectivity spectrum of the apodized grating
for various values of amplitude-noise factor�.

Finally, evaluation of the second term in (28) yields an analyt-
ical expression for the excess out-of-band background reflection
level, which for gratings with raised-cosine apodization profile
is

(31)
The background level scales with the square of the maximum

coupling function , the length of the grating , and the
noise factor . Fig. 8 compares the predictions of this analytical
formula with the AN model, showing exact agreement for
high values of , where the amplitude-noise dominates the
out-of-band reflection.

V. EFFECTS OFRANDOM PHASE ERRORS ONCHIRPED

GRATINGS

The main application of chirped OFG is its use for com-
pensation of the second order dispersion in optical communi-
cation links [28], [29]. For this purpose, it is important that
the time-delay response of the grating exhibits good linearity
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Fig. 8. Ensemble average () for the out-of-band reflectivity of the apodized
grating at a detuning of 0.5 nm as a function of the amplitude-noise factor�.
The solid line (—) is the theoretical fit (31).

to minimize the bit error rate. It has been established that the
time-delay linearity improves in nonuniform apodized chirped
gratings [25]. In this section we are going to study the effect
that a limited coherence length of the fabrication system has on
the time-delay linearity of chirped gratings. We will show that
the standard deviation of the time-delay fluctuations increases
as the coherence length is reduced.

As in the previous section, we illustrate the effects of random
phase errors with a practical chirped grating. The grating, de-
scribed in Fig. 9, has a total length of 15 cm and a raised co-
sine apodization profile that extends over 2 cm at both ends of
the grating. The maximum of the coupling function is 1.3
cm and its deterministic phase was linearly chirped with
a chirp-parameter of 4.92 cm

(32)

The deterministic spectral response of the grating is shown
in Fig. 10. The in-band reflectivity was 90% and the time-delay
exhibited good linearity. The grating was designed to compen-
sate a 100-km fiber-link at a wavelength of 1.5µm for an optical
bandwidth of 0.6 nm.

Let us assume now that the grating is fabricated with a system
of limited coherence length. By using the random phase model
previously developed, we have calculated the standard devia-
tion of the time-delay for different coherence lengths

ranging from 10 to 1000 cm. The results predicted by
the model are shown in Fig. 11 by thick solid lines and clearly
demonstrate that the time-delay fluctuations increase as the co-
herence length is reduced. We corroborated these results by sta-
tistically averaging the time-delay responses of 50 gratings with
randomly generated phase errors distributions (thin lines). The
agreement is very good despite the approximations involved in
the RP model calculations.

It is also interesting to observe in Fig. 11 that the time-delay
fluctuations grow for optical wavelengths that are preferentially
reflected toward the end of the grating (negative detunings). As

Fig. 9. Modulus and phase derivative of the deterministic coupling function
q (z) for an apodized chirped grating.

Fig. 10. Reflectivity and time-delay response for the chirped grating
represented in Fig. 9.

Fig. 11. Spectral evolution for the standard deviation of the time-delay� (�)
for different coherence lengthsL . The thick lines are the results predicted
by the RP model, while the thin lines are statistical averages of 50 randomly
generated chirped gratings.

these wavelengths are able to penetrate further into the grating,
they are also more exposed to the random medium and, conse-
quently, the fluctuations of the time-delay are also higher. This
is also the reason why the RP model underestimates slightly the
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Fig. 12. Standard deviation for the time-delay� at the center of the
reflection band of the chirped grating as a function of the coherence length
L . The chirp-parameter� was fixed to 4.92 cm . The solid line is a square
root fit (L ).

fluctuations of the time-delay. The approximation to the spectral
response given by (13) and (14) considers that the forward prop-
agating wave is that corresponding to the deterministic case, un-
derestimating the penetration of the light into the grating when
this is subjected to random phase errors.

A. Coherence Length and Chirp Parameter Dependence

We would like now to find how the coherence length of the
fabrication system and the grating parameters relate to the time-
delay fluctuations. We use again the RP model to understand
these interrelations. Let us consider a small grating section of
length located at point . From (10), (13), and (14) we observe
that this section will produce a strong reflection if the following
phase-matching condition is verified:

(33)

From (32), we can write (see Fig. 9)

(34)

so that

(35)

We observe that in absence of random phase errors the
penetration depth for a detuning is . The
presence of random phase errors can help to achieve the phase
matching condition at penetration depths that differ from

Fig. 13. Standard deviation for the time-delay� at the center of the
reflection band of the chirped grating versus the chirp parameter�. The
coherence lengthL was kept constant to 100 cm. The solid line is the�

fit.

that corresponding to the deterministic case, reducing the
probability of phase-matching at this deterministic penetration
depth. This is the reason why the fluctuations of the time-delay
increase with random phase errors. The phase increments

follow Gaussian statistics with variance
given by (4). Assuming that the penetration depthin (35) is a
random variable and taking into account (4), we can express the
variance of the penetration depth in terms of the coherence
length . The time-delay variance can then be obtained
from by multiplying it with

(36)

where the symbol denotes proportionality. Equation (36) in-
dicates that the standard deviation of the time-delayscales
inversely proportional to the chirp-parameterand also to the
square root of the coherence length

(37)

In order to corroborate these approximate predictions, we
have represented in Fig. 12 the standard deviation of the
time-delay at the center of the reflection band as a function
of the coherence length . The chirp-parameter was
fixed to 4.92 cm . It can be observed that the square root fit

matches accurately both the points calculated with the
RP model and those obtained from Monte Carlo simulations.
Analogously, in Fig. 13 we have represented the standard
deviation of the time-delay at the center of the reflection
band versus the chirp parameterfor a fixed coherence length
of 100 cm. Again, the predicted fit is satisfactory for both
set of points.
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(a)

(b)

Fig. 14. Standard deviation of the time-delay fluctuations� (�) for three
different coupling strengthsq : 0.8, 1.3, and 1.9 cm . (a) was calculated
with the RP model, while (b) shows the average over 50 randomly generated
chirped gratings.

B. Coupling Strength Dependence

Finally, we are interested in determining the influence of the
grating coupling strength on the time-delay fluctuations. We
initially considered three cases with maximum coupling func-
tion equal to 0.8, 1.3, and 1.9 cm, that corresponded to
in-band reflectivities of 50, 90, and 99%. The coherence length
of the grating was kept constant at a value of 100 cm. In Fig. 14,
we show the standard deviation of the time-delay fluctuations
calculated both with the RP model in part (a), and averaging over
50 randomly generated gratings in part (b). We observe good
qualitative agreement between both calculations, although the
RP model tends to underestimate the standard deviation of the
time-delay. The fluctuations of the time-delay clearly increase
as the grating coupling strength is higher. Also, the slope for the
growth of the fluctuations along the band is larger in this case.

The reason for this behavior can be explained by the fact that
strong gratings relax the phase-matching condition in (33) due
to their broad bandgap

(38)

Fig. 15. Standard deviation of the time-delay fluctuations� at the center
of the reflection band for several coupling strengthsq . Points (•) were
calculated with the RP model; () were calculated averaging over 50 randomly
generated chirped gratings; the dashed line (- - -) is a linear fit. The coherence
lengthL was kept constant to 100 cm and the chirp-parameter� was 4.92
cm .

Consequently, light of a particular wavelength (or detuning
) can interact efficiently with a larger section of the grating

if the coupling strength is high. The size of this region is
approximately equal to , increasing linearly with the
coupling strength. However, in an ideal noiseless grating the
light does not penetrate deep into this region, and is mainly
reflected from an initial section of length . If the
grating is subjected to random phase errors, the light will
be allowed to penetrate further into this region of strong
interaction and the uncertainty of the reflection point will
also be higher. This translates into larger fluctuations of the
time-delay, which scale linearly with the size of the interac-
tion region and, consequently, with Fig. 15 shows the linear
relationship between and the standard deviation of the
time-delay (at the center of the reflection band) for a
constant coherence length of 100 cm. The points in this
figure were calculated both with the random phase model
(RP) and by statistically averaging the time-delay responses
of 50 gratings with randomly generated phase error distri-
butions. The dashed line is a linear fit. For low values of
the coupling constant , the time-delay fluctuation tends
to a constant minimum value. Both curves evolve asymp-
totically toward a linear dependence of with respect to

at high values of the coupling constant. The RP model
provides a good approximation for moderate values of
(less than 2 cm , that correspond to gratings of reflectivity
inferior to 99%), underestimating the time-delay fluctuation
at high values of the coupling constant.

As a summary, we have shown that random phase errors
give rise to enhanced fluctuations in the time-delay of apodized
chirped gratings, degrading their performance as dispersion
compensators. We have demonstrated that the standard devia-
tion of the time-delay scales inversely proportional to the
chirp-parameter and also to the square root of the coherence
length . Also, the fluctuations of the time-delay are more
noticeable for gratings with high reflectivity, scaling linearly
with the coupling constant of the grating.
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VI. CONCLUSION

In this paper, we have studied the effects of random phase and
amplitude errors in the performance of optical filters based on
fiber Bragg gratings. The amount of random phase errors intro-
duced in the grating during the writing process can be regarded
a measure of the quality of the fabrication system. We have
shown that this amount of random phase errors can be quan-
tified through the concept of coherence length, which is applied
for first time in this context. A statistical model was developed to
calculate the ensemble averages of the main grating spectral pa-
rameters in terms of this coherence length. Two particular types
of gratings of particular importance for optical communications
were analyzed: apodized gratings commonly used in WDM sys-
tems, and chirped gratings employed to compensate the fiber
dispersion.

The main effects of random phase errors in apodized grat-
ings were an increase in the out-of-band background reflectivity
and a reduction in the sharpness of the bandedge as the coher-
ence length is decreased. The background reflectivity scaled in-
versely proportional to the grating coherence length, and de-
creased for detunings far away of the bandgap edge. Ampli-
tude errors also gave rise to an increase in the out-of-band back-
ground reflectivity. In this case, however, the background level
remained constant as a function of detuning. The method pre-
sented permits the calculation of the minimum coherence length

and maximum amplitude noise factorthat can be allowed
to achieve a required crosstalk level between different WDM
channels.

In the case of apodized chirped gratings, the random phase er-
rors gave rise to enhanced fluctuations of the time-delay spectral
response, degrading their performance as dispersion compen-
sators. The standard deviation of the time-delay scaled inversely
proportional to the chirp-parameter and also to the square root
of the coherence length. Also, the fluctuations of the time-delay
were larger for gratings of higher reflectivity. Grating fabrica-
tion systems with long coherence lengths are necessary to min-
imize these negative effects.
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