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Effects of Random Phase and Amplitude Errors in
Optical Fiber Bragg Gratings

Ricardo Feced and Michalis N. Zervas

Abstract—This paper studies the influence of random phase and structure [10], [11]. However, the fabrication of increasingly
amplitude fabrication errors on the performance of optical filters  |onger OFG’s with improved spectral response is limited by
based on fiber Bragg gratings (FBG's). In particular, we analyze 1na need to maintain the coherence of the grating phase along

two effects of particular importance for optical communications: th hole struct N ical . ts h h that
the excess crosstalk induced in apodized gratings commonly used € Whole StUCIUre. ‘NUmerical EXpEriments have showi tha

in wavelength-division-multiplexing (WDM) systems, and the random coupling can have importantimplications in the perfor-
time-delay fluctuations that appear in chirped gratings employed mance of practical filters [3], [12].
to compensate the fiber dispersion. A statistical model is presented  |n this paper, we study the effect of small random phase or
to explain these effects in terms of the coherence length of the 4 yityde fluctuations imprinted on the grating during the fab-
grating fabrication procedure. o . .
rication process on the spectral response of the filter. We will
present a method to calculate the main statistics of the filter
response, like average reflectivity or average time-delay fluc-
l. INTRODUCTION tuations, in terms of a characteristic coherence length of the

. . rating. The method, which relies on a perturbation approach,
HE performance of optical components is usuallg

. . . alculates ensemble averages of the spectral response parame-
degraded by random fluctuations of their optical o g P P P

trical ties. Ravleigh ttering. for inst %ers of gratings perturbed with a random-walk phase. In partic-
geometrical properties. Rayleigh scattering, for instance, | r, we will focus on two cases of particular importance for op-

typical'example of scattering ipduced by randgm fluctuationsa al communications: the excess crosstalk induced in apodized
an optical property of the medium.: the refractive index [1], [2 ratings commonly used in wavelength-division-multiplexing

On the other hand, random deviations of the device geome \XIDM) systems, and the time-delay fluctuations that appear in

like rogghness of its surfaces or _randomness in the per'O(_j'C tI?firped gratings employed to compensate the fiber dispersion.
of gratings, can also be responsible for enhanced scatterin

e i ized as follows. Section Il describes th -
many optical components [3]. In this paper, we investigate tf& Paper1s organizet as 1o 'ows. Section 11 desctibes he prop

fect of rand tical and trical fluctuati ¢ %ation in OFG'’s subjected to random phase and amplitude er-
etiect of random optical and geometrica , uctuations on g5 The statistical averages for the main parameters of their
performance of optical fiber gratings (OFG's) as optical filtergy oy response is then calculated in Section Ill. We finally

The problem of random propagation in one dimension hg ; :
) L . ply the theory developed to the two particular cases previ-
been extensively studied in many different contexts [4]-[6]. T sly discussed: apodized (Section IV), and chirped (Section

moment-propagation method, for example, studies the ev F OFG's.

tion of the second order field statistics along the medium, an

can be used to predict the amount of backscattered power [4],

[5]. Sometimes, it is important to analyze not only the scattered- PROPAGATION IN HBER GRATINGS WITH RANDOM PHASE
power, but also the evolution of the optical phase of the propa- AND AMPLITUDE EVOLUTION

gating wave. This is specially important for interferometric op- In this section, we describe the optical propagation in OFG’s
tical devices, where fluctuations of the waveguide effective redth random phase or amplitude errors along their structure. The
fractive index can give rise to a random-walk of the optical phaseagnitude of the phase errors will be characterized in terms of
that deteriorates their performance [7], [8]. a “coherence length” for the grating. In the following sections,

In recent years, OFG’s have become key components in higk will present a method to calculate ensemble averages of the
speed optical fiber communication systems. The technologyrmgin parameters of the OFG spectral response, and discuss their
UV photoinduced fiber gratings [9] has reached now high maependence on the coherence length previously introduced.
turity, enabling the fabrication of complex OFG-based filters to
perform various functions such as selection of wavelength mw- Refractive Index Perturbation in Fiber Gratings
tiplexed channels or compensation of the link dispersion. Sev- . . . : ) .
eral experimental techniques have been demonstrated to fa] ”1_3_ragg gratings are fabncate_d in optical fibers by eXposing

. . - eir core to a periodic ultraviolet (UV) pattern. Initially, a
cate nonuniform gratings, permitting an accurate control of bohh

the local grating period and the apodization profile along t Olographic method based on an split-beam interferometer
g ap P P 9 k[S] demonstrated the possibility of writing gratings by means

of transverse UV exposure. A more recent development, that

Index Terms—Gratings, noise, optical fiber communication.
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written point by point by accurately controlling the position - ldes! Grating

and spot size of the UV beam has also been demonstrated [15_., —— Random Phase Grating
These three basic techniques have been modified and improveg 1o |
to fabricate long gratings with accurate control over the §
photo-induced refractive index modulation. The first extensiong
is the phase-mask scanning technique in which the laser beaiz
is scanned over a long and high-quality phase-mask [10], [16].8
An alternative procedure to write long gratings is to accurately <
move and monitor the position of the fiber by means of an %
interferometer while exposing it to a time-modulated short UV 5§ °-

0.0 4

rac

(]
interference pattern [11]. This is probably the most versatile”
approach, and complex filters designs have been demonstrate | ' ‘ i
with this technique [17], [18]. 0 5 10 15 20
Independently of the technique used to write OFG, phase Distance (in grating periods)

and amplitude errors are likely to occur due to the stringent re-
quirements of accuracy and stability necessary in the fabricati'aﬁ-Gl- Mustration of a grating subjected to phase errors. :Ideal grating.
. ) — :Grating with phase-noise.
process. There are a great variety of possible sources for these
errors. Some of them are associated with the fabrication method, ) )
like phase-errors of phase masks, uncertainty of the fiber po&t€ variance for the increments ¢z) can now be calculated
tion in interferometrically controlled methods, lack of mecharfS [19]
ical stability of the fabrication setup, or fluctuations in the UV A
fluence. Others are intrinsic to the photosensitive fiber, like ge- o (¢(z 4+ A) — ¢(2)) = /
ometrical or compositional fluctuations. -4
The effective refractive index(z) along an OFG can be de-\ here Rpy(r) is the autocorrelation function faFj(z). In
scribed as standard OFG fabrication techniques the correlation length for
Fy(z) is usually much smaller than the grating length and,
therefore, its spectrum is broad compared to the grating spectral
n(z) = n, + {A”_(Z)GJ[KOZH(Z)M(Z)} (14 F,(2)) + C.C.} response. Consequently, in most situations we can reggrg
2 as a white Gaussian noise. In this case, the phésgevolves
D as a Brownian random-walk motion [19], [20], being driven
by the delta-correlated Langevin fordé,(z) that accounts
for random fluctuations of the local period along the grating.
#(z) will also follow Gaussian statistics, with independent
increments, and zero average. In analogy with a single-mode

dr(A —|r]) Brg(r) (3)

wheren, is the average effective refractive index, aRg(=
2n /A), An(z) and8(») specify the deterministic grating pa-
rametersA is a reference period\n(z) accounts for the local

grating strength (apodization), af¢:) will determine its phase laser, we will define both a “coherence length., and a

variation and local period. The random properties of the gratmﬂwewidth parameter’y that characterizes the variane# of
are described by the phase and amplitude stochastic Procegses. rements ob(») [21]

¢(z) and I, (#). The local period\(z) of the grating is deter-
mined by both the deterministic phase tetfn) and the random 9 B
phase termp(=)(A~1(z) = AL + (8/ + ¢/)/2x). o (plzt+B)—¢(=) = £
The phase and the amplitude noise are usually partially corre-
lated. Fluctuations of the fluence during the fabrication proce¥dere Rry(7) was taken equal t@5(7)/Leon in (3), 6(7)
contribute to both sources of noise, giving rise to some corf@eing the Dirac delta. From (4), we see that the standard
lation among them. However, in this paper we study the effec@§Vviation of the random phase variation along a grating period
of the phase and amplitude noises separately, as if they wérdS v/2A/Lcon. The Gaussian nature of the increments of
statistically independent. The method presented could easily®&) Permits the calculation of the autocorrelatiigA )of the
extended to take into account phase-amplitude correlations. fandom phase term in (1)
1) Phase-Noise:We will assume that the random fluc- :
tuations of the local spatial angular frequeney2¢/A(2)) R(A) = <CJ(¢(Z+A)_¢(Z))>
along the grating can be modeled by a zero-average, stationary, 02/2 _ oAl Leon — ,—291A )
Gaussian process;(z). Fig. 1 illustrates the evolution of the

refractive.index perturbation in a grating s.ubjecteq to rando\m]ere<.> stands for ensemble average. The “coherence length”
phase-noise. The phase teipz) in (1) will be driven by ;  reviously defined measures the distance along which
Fy(z) according to the expression there is substantial dephasing with respect to the perfect deter-
ministic grating. It can be regarded as a figure of merit for the
N grating fabrication system, being ideally as large as possible.
=+ 2) Amplitude Noise:Following the same reasoning as in
¢z +8) = ¢(z) = L dr Fy(r). @ the previous section, we will assume that the amplitude noise

2

|A] = 4v]4] (4)

coh

:C_
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processF,(z) in (1) is a zero-average, Gaussian white-noise. The main novelty of the present study is that the coupling

Consequently, its autocorrelation will be function ¢(z) is an stochastic process characterized by the co-
herence length...,, of the fabrication system. We could cal-
(Falz + 7)Fa(2)) = né(1) (6)  culate ensemble averages for the main parameters of the OFG

where the factor, provides a measure for the magnitude of thgpectral response by repetitive solution of the coupled-mode
amplitude noise. If the grating is sampled in small sections %guanons (8) for different realizations of the stochastic process
lengthA, then the variance of the relative amplitude fluctuation (), and subsequent average of the parameters of interest. This
for each sample is given in terms gy would yield information about the average behavior of a batch
of gratings written with that fabrication system. In this paper
2_ " (7) we develop an alternative method to calculate directly these en-
A semble averages without the need of statistical averages over
A can be considered as the inverse of a maximum cutoff spatiag®ny realizations of the experiment. The study illustrates the
frequency for the white noise. Its value is primarily determinegffects of phase and amplitude errors in the performance of
by the writing method and is usually of the order of a few hufPFG and provides insight in the interrelations among the var-
dred microns. As typical noise cutoff frequencies correspondigs grating and fabrication system parameters.
optical reflection bandwidths much broader than those of the . )
deterministic OFG’s, the assumption of delta-correlated noiSe APProximate Spectral Response for OFG Perturbed with
sources is expected to be a good approximation in most physigandom Noise
situations. However, the method presented in following sectionsThe main difficulty to calculate ensemble averages for param-
to calculate ensemble averages does not rely on this assumptiters related with the OFG spectral respoHsg 3) is the non-
and can be generalized to take into account different statistiicgar relation existing betweeH r(3) and the coupling func-

for the noise sources. tion ¢(z). Simple linear approximations like the first-order Born
_ approximation are inaccurate for the analysis of practical grat-
B. Coupled-Mode Equations ings with reflectivities larger than 50%. In this section we will

The one-dimensional scattering problem for an OFG is usRresent a novel linearization method that will enable us to calcu-
ally described in the framework of the coupled-mode formalistate ensemble averages in gratings with random phase and am-
[22]-[24]. The scattering equations are written in terms of tw@litude errors. The method relies on a perturbational analysis
counter-propagating wavesg(z, 3), backward propagating, with respect to the solution of the ideal deterministic grating

andbr(z, 3), forward propagating characterized by, (z) given in (10).
Our objective is to express the reflection coefficiéfhg(3)
de( /3) JBbu(z, B) = — q(2) be(z, B) (11) as alinear function of the stochastic coupling functitn
dz ’ with a good degree of accuracy. The procedure starts by solving
de( B) i Bbr(z, B) = — ¢"(2) bp(z, B) 8) exactly the coupled-mode equations for the corresponding de-
dz ’ terministic case characterized by the coupling functgfr).
wherej is the detuning parameter The solution of the deterministic equation yields the evolution

of the forward and backward deterministic propagation waves

8= 2kno — K, 9) b%(z, B) andby(z, 3), and also the spectral response of the
2 unperturbed gratingf ¢,(/3). An approximate expression for the
andk is the vacuum propagation constartu(/c). (=) is re- spectral response of the perturbed gratifig(3) can now be
lated to the grating parameters as obtained by substituting the calculated forward deterministic
wavebs.(z, 3) for bp(z, ) in the first equation of system (8),
q(z) = J K, A”( ) IO+ e(2) (14 Fo(2)) and integratmg then the resulting ordinary linear differential
2n, 2 equation. The spectral response can be cast in an expression that
= ¢, (2)e*3) (1 + F,(2)) (10) looks very similar to the first-order Born approximation with a

modified coupling functionj(z, /)
whereg,(z) is the deterministic part of the coupling function.

The OFG reflection spectral responggz(3) can be cal- B L . 98-
culated by solving (8) taking into account the appropriate Hr(B) = /Z=o dz 4z, B)e™™ (13)
boundary conditions, i.ebr(0, ) = 1 andbg(L, 5) = 0,
wherelL is the total length of the grating

Hp(B) = bs(0, B). (11) Q(z, ) = oz, B)*D (14 Fulz))  (149)

where the modified coupling functiof(z, 3)

The actual backward and forward electric fields; (=, 3)
ander(z, 3)) are related to the wavég;(z, ) andbg(z, 3) Go(2, B) = qo(2) [V3(z, B)?77]. (14b)
through the expressions
o Equation (14b) defines the deterministic modified coupling
en(z, B) =bp(z, B)etIKo=/2) function g,(z, ). This modified coupling function can be ap-
er(z, B) =bp(z, B)e =/, (12) proximated byyo( ) in those parts of thg-spectrum where the
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grating reflectivity is low. The spectral responde(/3) is now we obtain the following expression for the sought average
a stochastic process obtained from a linear transformation of thes; g,(z, 3), ho(z, B v):
random coupling function(z). . R
The OFG spectral response given in (13) is obviously exadt (/3; Go(2, B), hol(z, B); ’Y)
in the deterministic case, i.e., when phase and amplitude ~ -
errors are negligible. If the grating has a long coherence = <F (/35 9(z: B), Wz, /3))>
length L.,;, and a low amplitude-noise factay, then the L oo . .
random terms in (14) can be regarded as a small perturbation = / dr / dz §o(z + 7, B) Bz, B) e 2Tl 7200
and (13) gives a good approximation to the grating spectral - - (18)
response. The accuracy of this analysis will be corroborated
in following sections by Monte Carlo-type simulations inyhere we see that it involves a cross-correlation integral fol-
which the spectral response of a batch of randomly generatg@led by a weighted Fourier transform.
gratings will be averaged to obtain estimations for ensemble
averages. B. Average for th&eflectivity in OFG with Phase-Noise
[ll. ENSEMBLE AVERAGES FORGRATING REFLECTIVITY AND

The ensemble average for the reflectivity can be calculated
TIME DELAY FLUCTUATIONS

from the approximate spectral resporne () described in

The two parameters that fully characterize the spectdd) together with the method for evaluation of ensemble av-
response of OFG are its reflectivity and time-delay respondg@ges shown in (18). Defining the ensemble average for the re-
They are, respectively, related to the modulé&(3)| and Tectivity as{R(5)) , we find
phasepr(3) of the spectral respons&r(/3). In this section

we will derive expressions to calculate ensemble averages fo . N

these parameters in presence of both phase-noise (Sectiogs'( ) = <HR£/3)HR(5)>

l11-A—-11I-C) and amplitude-noise (Section I1I-D) in the grating _ / d / da dlu. BV (z. B)e—2080—=)

coupling function. 0 Y 0 v dly, )", Pe
=F(B;4o(2 B), dolz, £)i7) (29)

A. Ensemble Avages forRandom Phase Functions
Let us assume first that the grating is only subjected Which is calculated as the autocorrelationjefz, /) followed

random phase errors, i.ek(z) - 0. All the pha_se-n0|se by a Fourier transform weighted by a decaying exponential (18).
ensemble averages that we will need are particular cases

of the ensemble average of a general stochastic procgssayerages for the Timelay and its fluctuations in OFG
F(B; g(z, B), h(z, 3)) defined as with Phase-Noise

The estimation of the average time-delay and its fluctuations
. is of particular importance for phase-filters like OFG disper-
F (/3; d(z, B), h(z, /3)) sion compensators. Generally, the quality of OFG dispersion
L L compensators is evaluated through the standard deviation of its
= / dy / dz §(y, B) h*(z, g)e”28==)  (15) time-delay [25]. For this type of filters, the phase of the spec-
0 0 tral response r(/3) varies rapidly within the reflection band in

. ) - - comparison with its moduludi g(3)|. This fact will permit us
where” stands for complex conjugate, antt, 3) andh(z, 5) ; estimate ensemble averages for the time delay of OFG dis-
are random phase functions defined as the product of the de[f'éfsion compensators.

ministi%{g)nctionsgo(z, /) andh, (=, ), and the random phase 1) Average Tim®elay: The time-delay,(/3) is defined in
terme’™/, namely terms of the spectral phase respopsg3) as

. . bl Ne Opr(B
32 B) =z, BT ta(p) = 22 22 (20)
h(z, B) =ho(z, )’ (16)

To calculate the ensemble averdd&s; 4(z, 8), ji(z7 8))) In the presence of random phase errag§3) is a stochastic

we first substitute (16) in (15) and, subsequently, evaluate tREPCESS. To estimate the ensemble average for the time-delay
ensemble average for the random phase terms with the autoébt(/3)), we start with the related ensemble average
relation (5). Finally, by transforming the independent variables

(PP i)

r=y-u OlHe() . O¢n(d)
I - = (itn(o) 2 2 o)) (o)
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where we observe that the imaginary part of this expression is ) <3§o(757 B) 22 ( /3)> .,y) (25)
equal to the average of the time-delay weighted by the reflec- ap o )
tivity. The ensemble average in (21) is calculated as

Now we can estimaté?(3)) as

N

o= (1Hr(B)I)

(P )

- a~0 2 3 o~ ~
=7 (1 (55 < 2 ) e ) - @2

(26)
C
From (20) —(22) we estimate the ensemble average of the

time-delay as ] i
which can be evaluated from (19), (24), and (25). The variance

of the time-delayo?Z,(3) is finally expressed in terms of (23)

dor(B) 2 and (26) as
<td(ﬁ)> o E< 8/3 |HR2(B)| >
© (EF) o2(B) = (£3(8)) — (ta(P))?. (27)

()

¢ (Hr(B)H{(B))

(23) The time-delay standard deviatiop;(/3) will be used in Sec-
tion V to discuss the effect of random phase errors on dispersion
compensators.
where Im stands for imaginary part, and the two ensemble av-
erages have been calculated in (19) and (22). This result is &p-Average for theReflectivity in OFG with Both Amplitude
proximate due to the reflectivity weight term that appears in tiand Phase-Noise
time-delay average. Expression (23) would be exact in the limit Ampitude noise can also contribute to the deterioration of the
of very weak correlation between the time delay and reﬂeCt'V'tMackground level in the spectral response of apodized gratings.
For small perturbations, the in-band reflectivity of dispersiop, ths section, we extend the analysis to calculate the ensemble
compensators will be essentially constant and (23) provideg,grage for the reflectivity of a grating subjected to both ampli-

good approximation for the statistics of the time-delay. tude and phase-noise. The main assumption of the calculation
_2) Fluctuations of Time DelayOur main interest, however, is that both noise sources are statistically independent.
is to estimate the standard deviation of the time-delay fluctu- Following an analysis similar to that developed in Section

ations. To achieve this objective, we need to evaluate the gfj-a and taking into account the autocorrelation (6) for the rel-

semble average of the square of the time déldys)). We pro-  ative amplitude-noisé&, (), we calculate the ensemble average
ceed as before, starting with the related ensemble average uf the reflectivity as

I
dz |Go(z, B)* 0.

dHg(B3) 0HR{(B) . ’ ’
ap ap (R(B)) = F (B3 Go(2, B); Go(, /3);7)+/
0
(222D e+ (212NN | U
={|—5,") HeBI +|—F7— It is shown that the average reflectivity in this case has two
ap ag ) ) ; _ X
terms. The first one is that corresponding to a grating subjected
N Apr(0) 2 H (/3)|2 (24) only to phase-noise (19), while the second contribution is the
~ ap R excess background reflectivity due to a random amplitude as
will be discussed in Section IV-B.

where we have assumed slow variations for the modulu§; ErrecT OERANDOM PHASE AND AMPLITUDE ERRORS IN
|Hgr(3)| of the spectral response within the reflection band. APODIZED GRATINGS

The ensemble average (24) is again calculated in ternfs of ) ) o ] ) ]
(19) Apodized gratings exhibit reduced sidelobes in their spectral

response, minimizing crosstalk effects between adjacent optical
channels [26]. Their use in WDM communication systems re-
sults in efficient utilization of the optical bandwidth [27]. In
<3HR(/3) 3H§(/3)> this section, we study the deterioration of apodized OFG per-
ap aB formance due to random phase and amplitude errors incurred
_F </3' <8§0(z, 2) 9 /3)> during the fabrication process. The most important effect is a
B ’ a3 J 240\ %, reduced isolation of the filtered channel due to an enhancement
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Fig. 2. Reflectivity spectrum of the apodized grating. - - - : Ideal deterministicid- 3. Ensemble average for the reflectivity spectrum of the apodized grating
grating. —: Ensemble average calculated with random phase RP modelfos;various values of the coherence length.

Values calculated by averaging over 1000 random experiments.

of the sidelobes and a decrease in the sharpness of the filter’:
bandedge transition. 25

230 4
A. Effects of Phase-Noise

.35 4
To illustrate the analysis introduced in previous sections, we

first consider an OFG with a raised cosine apodization profile.
The grating has a total length of 1 cm and a maximum cou-
pling constany™**of 3.5 cnTt. The maximum reflectivity of 5
the grating is 90%. Fig. 2 shows the response of the deterministic
grating|H$(/3)|* which exhibits low sidelobes (dashed line).
Let us suppose now that the grating was fabricated with asysterr 55 L : , :
that had a coherence length.;, of 10 cm. This corresponds ! 10 100 1000
to a standard deviation for the random phase variation along & Coherence Length , L, (cm)
grating period of 3 mrad. By using the random phase (RP) model
previously developed (19) we can calculate the ensemble &ig- 4. Ensemble average (*) for the out-of-band reflectivity of the apodized
. A rating at a detuning of 0.5 nm as a function of the coherence length. The solid
erage for the reflectivity (solid line). We clearly observe a sulﬁhe (—) is a theoretical fit proportional 6!
stantial increase in the out-of-band background level and a re-
duced sharpness of the reflection bandgap edge. The predictions
of the RP model were corroborated by statistically averaging tRE 4. (2, 3) with a decaying exponential. This is equivalent to
spectral response of 1000 gratings with phase errors randoﬁﬁ]? convolution of the deterministic grating reflectivity with a
generated (solid points in Fig. 2). The agreement between p&frentzian function that accounts for the reduced coherence
calculations is very good throughout the reflection spectrum.qf the fabrication system. This spectral response would be
is important to note that Monte Carlo-type simulations are vei{fentical to that obtained if we analyzed the ideal grating
expensive from a computational point of view compared to cdly scanning in wavelength a laser with a finite Lorentzian
culations carried out with the proposed RP model. linewidth. The out-of-band background level is mainly given by
In a second numerical experiment we allowed the cohererif@ overlap between the reflection band of the grating and the
length of the fabrication systefiiy, to vary from 1 to 2000 cm. decaying Lorentzian function. A simple integration shows that
This corresponds to standard deviations for the random ph#ié overlap is inversely proportional to the coherence length
variation along a grating period that vary from 10 to 0.3 mrad:con- Fig. 4 shows the out-of-band reflectivity at a detuning
The ensemble averages of the reflectivity for the cases cons#i-0-5 hm as a function of the coherence length for the cases
ered are shown in Fig. 3. We observe that the out-of-band badkeviously considered. The solid line is a fit given by
ground level increases and the bandedge sharpness decreases as
the coherence length is reduced.
The RP model is useful to understand these results and to find (R(B))
the relation between the out-of-band background level and the
coherence length of the fabrication system. From (18) and (19)
we observe that the ensemble average of the reflectivity is eqtlet shows the accuracy of the prediction. It can also be shown
to the Fourier transform of the product of the autocorrelatidhat the overlap between the reflection band and the Lorentzian

40

Reflectivity (dB)

-50 4 ]

coh*

1
Lcoh

(29)
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Fig. 5. Inverse of the reflectivity spectrum of the apodized grating asfg. 6. Reflectivity spectrum of the apodized grating. - - -: Ideal deterministic
function of wavelength detuning for two different coherence lengths, showigating. —: Ensemble average calculated with amplitude-noise AN model. «:
an approximate linear relation. Values calculated by averaging over 1000 random experiments.

function is approximately inversely proportional to the distance 0
between the detuning and the band edgégpcr

— Ideal Grating

— 1=3910"cm
— — 1=9910%cm
— - 1=8910%cm

220 4

1
|# — Pepcr|

(R(B)) (30)

-30 4
40 |

Fig. 5 illustrates this relation for two different values of the © ;|
coherence length.

We have shown that the spectral response of apodized grar  ° ]
ings is given by the convolution of the ideal deterministic spec- . |
tral response with a finite linewidth function that accounts for
the reduced coherence length of the fabrication system. This
translates into a degradation of the spectral isolation of the filter. Detuning (nm)

Reflectivity (dB)

T T T T T T T T g
-05 -04 03 -02 -01 0.0 0.1 0.2 03 04 05

. . Fig. 7. Ensemble average for the reflectivity spectrum of the apodized grating

B. Effects of Amplitude Noise for various values of amplitude-noise factpr
We study now the effect of amplitude-noise in the spectral re-

sponse of apodized gratings. Let us consider again an OFG withrinally, evaluation of the second term in (28) yields an analyt-
a raised-cosine apodization profile, a total length of 1 cm andaal expression for the excess out-of-band background reflection
maximum coupling constagt*>* of 3.5 cnTt. We assume that level, which for gratings with raised-cosine apodization profile
the grating is subjected only to an amplitude-noise charactées-
ized by any of 3.9- 10~° cm. According to (7), this means that
the standard deviation of the relative amplitude fluctuation is I
4.4% if we describe the grating by sampling sections of 200 (Resccess (Bout—band)) / dz
length. Fig. 6 shows the response of the deterministic grating 0 (31)

|H%(8)|? and compares it with the ensemble average obtaine . .
by means of the amplitude-noise (AN) model developed in Sec(-irhe background level scales with the square of the maximum

tion 1ll. The predictions of this model were again com‘irmeé:OUpIIng functiong;™™*, the length of the grating,, and the

by statistically averaging the spectral response of 1000 grnglse factom. Fig. 8 compares the predictions of this analytical
ings with amplitude-noise randomly generated (solid points |n

ormula with the AN model, showing exact agreement for
Fig. 6). We observe that the main effect of amplitude noise iso"lj‘gtt]ongﬁj rg;;gcr.v:fre the amplitude-noise dominates the
substantial increase of the flat background level of the spectréﬂ ion.
response.

In a second numerical experiment we allowed the amplitude-
noise factorn to vary from 3.9- 107 to 8 - 10~* cm. The
ensemble averages of the reflectivity for the cases consideredhe main application of chirped OFG is its use for com-
is shown in Fig. 7. In analogy with the phase-noise case, thensation of the second order dispersion in optical communi-
out-of-band background level increases for higher values of tbation links [28], [29]. For this purpose, it is important that
amplitude-noise facton. the time-delay response of the grating exhibits good linearity

~ 2
Go(2 A" 1 = 2 @rascLm-

V. EFFECTS OFRANDOM PHASE ERRORS ONCHIRPED
GRATINGS
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Fig. 8. Ensemble averaglf for the out-of-band reflectivity of the apodized Fig. 9. Modulus_and ph_ase derivgtive of the deterministic coupling function
grating at a detuning of 0.5 nm as a function of the amplitude-noise factorqo(z) for an apodized chirped grating.
The solid line (—) is the theoretical fit (31).

1.0

~ 1400
0.9

to minimize the bit error rate. It has been established that th
time-delay linearity improves in nonuniform apodized chirped 21 - 1200
gratings [25]. In this section we are going to study the effecr 07

— 1000 o

that a limited coherence length of the fabrication system has Oz 061 3

the time-delay linearity of chirped gratings. We will show that§ os | S50 &

the standard deviation of the time-delay fluctuations increaseg o | — | 600 %

as the coherence length,,, is reduced. 03 | e
As in the previous section, we illustrate the effects of randon e

phase errors with a practical chirped grating. The grating, de 1

scribed in Fig. 9, has a total length of 15 cm and a raised cc
sine apodization profile that extends over 2 cm at both ends ¢ *°4 . " a7 o3 92 o1 oo o1 o2 v oa os"
the grating. The maximum of the coupling functigi** is 1.3

cm~! and its deterministic pha#€z) was linearly chirped with

a chirp-parametesy of 4.92 cnt2 Fig. 10. Reflectivity and time-delay response for the chirped grating
represented in Fig. 9.

t— 200
0.1

Detuning (nm)

9%0(2)

5,2 = (32)

Leoh =10cm

The deterministic spectral response of the grating is shown
in Fig. 10. The in-band reflectivity was 90% and the time-delay
exhibited good linearity. The grating was designed to compen-
sate a 100-km fiber-link at a wavelength of u® for an optical
bandwidth of 0.6 nm.

Let us assume now that the grating is fabricated with a system=s
of limited coherence length. By using the random phase model g
previously developed, we have calculated the standard devia §
tion of the time-delays.4(/3) for different coherence lengths 1 ; : ‘
Leon ranging from 10 to 1000 cm. The results predicted by 08 0200 o 02 03
the model are shown in Fig. 11 by thick solid lines and clearly Detuning (nm)
demonstrate th"_ﬂ the time-delay fluctuations increase as the I(—:18.'11. Spectral evolution for the standard deviation of the time-dela§3)
herence length is reduced. We corroborated these results by gkatitferent coherence lengtif...,. The thick lines are the results predicted
tistically averaging the time-delay responses of 50 gratings with the RP model, while the thin lines are statistical averages of 50 randomly
randomly generated phase errors distributions (thin lines). THerated chirped gratings.
agreement is very good despite the approximations involved in
the RP model calculations. these wavelengths are able to penetrate further into the grating,

It is also interesting to observe in Fig. 11 that the time-delafiey are also more exposed to the random medium and, conse-
fluctuations grow for optical wavelengths that are preferentialtyuently, the fluctuations of the time-delay are also higher. This
reflected toward the end of the grating (negative detunings). Asalso the reason why the RP model underestimates slightly the

d deviation of the time delay o, (ps)
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Fig. 12. Standard deviation for the time-delay. at the center of the _ - .
reflection band of the chirped grating as a function of the coherence lendi9- 13- Standard deviation for the time-delay, at the center of the

L con. The chirp-parameter was fixed to 4.92 cm?. The solid line is a square 'eflection band of the chirped grating versus the chirp parametethe
root fit (Lfl/z) coherence length...;, was kept constant to 100 cm. The solid line is thre*

‘coh fit.

that corresponding to the deterministic case, reducing the

. i . probability of phase-matching at this deterministic penetration
fluctuations of the time-delay. The approximation to the spectr@épth' This is the reason why the fluctuations of the time-delay

response given by (13) and (14) considers that the forward prgRsrease with random phase errors. The phase increments

agating wave is that corresponding to the deterministic case, w(z + A) — ¢(2)) follow Gaussian statistics with varianed

dgrgstimaﬁng the penetration of the light into the grating Wh%{hen by (4). Assuming that the penetration depih (35) is a

this is subjected to random phase errors. random variable and taking into account (4), we can express the
] variance of the penetration deptf in terms of the coherence

A. Coherence Length and Chirp Parameter Dependence  |gngthr, .. The time-delay variance?, can then be obtained

We would like now to find how the coherence length of thérom o2 by multiplying it with (2n,/c)?

fabrication system and the grating parameters relate to the time-

delay fluctuations. We use again the RP model to understand )

these interrelations. Let us consider a small grating section of> <2ﬂo> o2 x 1 o2 (plz + A) — ¢(2)) x 1

lengthA located at point. From (10), (13), and (14) we observe ~ 7 a2 i ) &2 Leon

that this section will produce a strong reflection if the following (36)

phase-matching condition is verified:

where the symbok denotes proportionality. Equation (36) in-
dicates that the standard deviation of the time-delgyscales
inversely proportional to the chirp-parameteand also to the
square root of the coherence lendth,,

Z+A
/ ) oy (e ) ) - 208 =0, (39

From (32), we can write (see Fig. 9)
1

L (37)

Otd X

06(x) _ < _ £> (34)

In order to corroborate these approximate predictions, we

have represented in Fig. 12 the standard deviation of the

so that time-delayo,q at the center of the reflection band as a function

of the coherence lengtlh.,,. The chirp-parameterx was

L 28 fixed to 4.92 cnT2. It can be observed that the square root fit

(¢(z+A) = ¢(2)) = —aA {Z - <§ + —ﬂ (35)  (L-}/?) matches accurately both the points calculated with the

' RP model and those obtained from Monte Carlo simulations.

Analogously, in Fig. 13 we have represented the standard

We observe that in absence of random phase errors teviation of the time-delay;, at the center of the reflection

penetration depth for a detuning is (L/2 + 23/«). The band versus the chirp parametefor a fixed coherence length

presence of random phase errors can help to achieve the pludsE00 cm. Again, the predicted ! fit is satisfactory for both
matching condition at penetration depths that differ frorset of points.
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3 l( l[ : H\ ' “‘l.bl{\"ll \f\ ! | Fig. 15. Standard deviation of the time-delay fluctuations at the center
b [P ! E- I ]\ A{\ bt of the reflection band for several coupling strengtfis**. Points (¢) were
£ 154 LR 0o !”\ 0, i J\,' calculated with the RP model) were calculated averaging over 50 randomly
G . [f -.“ \4'/ | | generated chirped gratings; the dashed line (- - -) is a linear fit. The coherence
5 . \ length L..;, was kept constant to 100 cm and the chirp-parameteras 4.92
g cm=2,
S 10
B
g Consequently, light of a particular wavelength (or detuning
2 (b) Statistical Average _/3) can interqct efficiently_with_ a larger s_ection of_ the g_ratin_g
5 if the coupling strength is high. The size of this region is

-0.3 -0.2 -0.1 0.0 0.1 02 03

approximately equal tdg***/«, increasing linearly with the
Detuning (nm) coupling strength. However, in an ideal noiseless grating the
(b) light does not penetrate deep into this region, and is mainly

Fig. 14. Standard deviation of the time-delay fluctuations(3) for three reflected from an initial section of length/qg;**. If the
different coupling strengthg;*»*: 0.8, 1.3, and 1.9 cmt. (a) was calculated grating is subjected to random phase errors, the light will
Wl‘ilt'h thde RPt_modeI, while (b) shows the average over 50 randomly generaﬁg allowed to penetrate further into this region of strong
chirped grafings. interaction and the uncertainty of the reflection point will
also be higher. This translates into larger fluctuations of the
time-delay, which scale linearly with the size of the interac-
tion region and, consequently, with Fig. 15 shows the linear
B. Coupling Strength Dependence relationship betweer™* and the standard deviation of the

. . ) . ) time-delay 0,4 (at the center of the reflection band) for a
Finally, we are interested in determining the influence Ofth&)nstant coherence length of 100 cm. The points in this

_gr_a_ting coupling strength on the _time-de_lay fluctuat?ons_ ure were calculated both with the random phase model
|ﬂ|t|aI!¥a§onS|d(|are%tgree3casc(ejs V\gth mar>]<|mum couphgg;un?RP) and by statistically averaging the time-delay responses
tiong,™* equalto 0.8, 1.3, and 1. ; that corresponded o ¢ g gratings with randomly generated phase error distri-

o]

in-band reflectivities of 50, 90, and 99%. The coherence leng&ﬁtions The dashed line is a linear fit. For low values of

of the grating was kept constant at a value of 100 cm. In Fig. ]ﬁlne coupling constanj™>, the time-delay fluctuation tends
we show the standard deviation of the time-delay fluctuations . ~onstant minimuom value. Both curves evolve asymp-

calculated both with the RP m_odellin part (a), and averaging oyg ically toward a linear dependence of, with respect to
50 randomly generated gratings in part (b). We observe gogd.x at high values of the coupling constant. The RP model

qualitative agreement between both calculations, although vides a good approximation for moderate values; <
RP model tends to underestimate the standard deviation of s than 2 cm!, that correspond to gratings of reflr-;ctivity

time-delay. The fluctuations of the time-delay clearly increa fferior to 99%), underestimating the time-delay fluctuation
as the grating coupling strength is higher. Also, the slope for t e high values of the coupling constant

growth of the fluctuations along the band is larger in this case. As a summary, we have shown that random phase errors
The reason for this behavior can be explained by the fact t%% ’
fi

strong gratings relax the phase-matching condition in (33) d
to their broad bandgap

e rise to enhanced fluctuations in the time-delay of apodized
irped gratings, degrading their performance as dispersion
compensators. We have demonstrated that the standard devia-
tion of the time-delay;4 scales inversely proportional to the
chirp-parametesr and also to the square root of the coherence
length L., Also, the fluctuations of the time-delay are more
noticeable for gratings with high reflectivity, scaling linearly

< 2]g5™| A, (38) with the coupling constant of the grating.

/ - ag(;) dz + (¢(z + A) — ¢(2)) — 28A
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VI. CONCLUSION

In this paper, we have studied the effects of random phase and
amplitude errors in the performance of optical filters based on

fiber Bragg gratings. The amount of random phase errors intrd*Y

duced in the grating during the writing process can be regarded
a measure of the quality of the fabrication system. We have

shown that this amount of random phase errors can be quaH—2

tified through the concept of coherence length, which is applied
for firsttime in this context. A statistical model was developed to

calculate the ensemble averages of the main grating spectral ﬂ%E

rameters in terms of this coherence length. Two particular types
of gratings of particular importance for optical communications

tems, and chirped gratings employed to compensate the fiber

dispersion.

The main effects of random phase errors in apodized grat-
ings were an increase in the out-of-band background reflectivity

and a reduction in the sharpness of the bandedge as the cohBf

ence length is decreased. The background reflectivity scaled in-

versely proportional to the grating coherence length, and dgi7)

creased for detunings far away of the bandgap edge. Ampli-

tude errors also gave rise to an increase in the out-of-band ba
ground reflectivity. In this case, however, the background leve

remained constant as a function of detuning. The method pre-

sented permits the calculation of the minimum coherence Iengt{q9

L., and maximum amplitude noise factpthat can be allowed

to achieve a required crosstalk level between different WDM?20]
channels. [

Inthe case of apodized chirped gratings, the random phase er-
rors gave rise to enhanced fluctuations of the time-delay spectr&?l
response, degrading their performance as dispersion compeds

sators. The standard deviation of the time-delay scaled inversely

proportional to the chirp-parameter and also to the square rof#4]
of the coherence length. Also, the fluctuations of the time—dela¥25

were larger for gratings of higher reflectivity. Grating fabrica-

tion systems with long coherence lengths are necessary to minz-
imize these negative effects. [
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