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Abstract—A time-domain beam propagation method (BPM)
based on the finite-element scheme is described for the analysis
of reflections of both transverse electric and transverse magnetic
polarized pulses in waveguiding structures containing arbitrarily
shaped discontinuities. In order to avoid nonphysical reflections
from the computational window edges, the perfectly matched layer
boundary condition is introduced. The present algorithm using the
Padé approximation is, to our knowledge, the first time-domain
beam propagation method which can treat wide-band optical
pulses. After validating this method for an optical grating with
modulated refrative indexes, various photonic crystal circuit
components are simulated.

Index Terms—Finite-element method (FEM), optical waveguide
analysis, photonic crystal, time-domain analysis, time-domain
beam propagation method (TD-BPM).

I. INTRODUCTION

T HE BEAM propagation method (BPM) is at present the
most widely used for the study of light propagation in lon-

gitudinally varying optical waveguides and now there are a great
number of versions of BPM [1]. Especially, a recently developed
BPM based on the finite-element method (FE-BPM) [2]–[5]
using the Padé approximation [6] can give very accuate results
without increasing computational effort even if the wide-angle
beam propagation is treated. However, BPM assumes only the
forward propagating waves, and thus, it is difficult to take into
account backward reflecting waves. One method used to study
distributed reflection and diffraction at arbitrary angle is the fi-
nite difference time-domain (FDTD) technique [7]. This tech-
nique is very powerful and versatile, and has been introduced
and adapted to optical waveguide devices [8]–[10]. In FDTD
very small time step size must be used because both the carrier
and the modulated envelope are included in the wave propagator.

Recently, under the condition that the modulation frequency
is much lower than the carrier frequency, a simple and efficient
propagation algorithm in time domain has been developed and
is called the time-domain BPM (TD-BPM) [11], [12]. In this
new algorithm the computational spatial domain is discretized
with the finite difference method (FDM), hereafter, referred to
as FDTD-BPM. The removal of the fast carrier allows one to
track a slowly varying envelope of a pulsed wave directly in time
domain and thus, the converged solution could be obtained with
moderate time step size. Despite its programming simplicity, it
has suffered from the staircasing approximation when modeling
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Fig. 1. Optical grating with modulated refractive indexes.

curved geometries because in FDM, it is, in general, difficult to
use nonuniform and nonorthogonal meshes. Furthermore, the
formulation was limited to transverse electric (TE) modes and
was based on the Fresnel or paraxial approximation. Therefore,
the wide-band and/or transverse magnetic (TM)-pulsed wave
propagation cannot be treated.

In this paper, a unified TD-BPM based on the finite-element
method (FEM) abbreviated as FETD-BPM is described for
both TE and TM polarized pulses propagating in arbitrarily
shaped waveguiding structures. In order to avoid nonphysical
reflections from the computational window edges, the perfectly
matched layer (PML) boundary condition [5], [13] is intro-
duced. The present algorithm using the Padé approximation
is, to our knowledge, the first wide-band TD-BPM. After
validating this method for an optical grating with modulated
refractive indexes, numerical results are shown for a sharp bend,
a T-branch, a Y-branch, a directional coupler, a multimode
coupler, and a microcavity, all based on photonic bandgap
(PBG) structures [14].

II. BASIC EQUATION

We consider a two-dimensional (2-D) optical waveguide,
where the computational window (domain) is on the-plane
and there is no variation in thedirection. With these assump-
tions and the transversely scaled version of PML [5], [13]
with artificial electric and magnetic conductivities of parabolic
profile, we obtain the following basic equation:

(1)

with

for TE modes (2)

for TM modes (3)

in PML region

in non-PML region
(4)
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(a)

(b)

Fig. 2. Reflection characteristics of an optical grating for: (a) TE and (b) TM
modes.

Fig. 3. Photonic crystal.

where
components of the electric fields;

components of the magnetic fields;

time;

speed of light in free space;

refractive index;

carrier center angular frequency;

PML thickness;

distance from the beginning of PML;

theoretical reflection coefficient [15].

For the PML regions I (perpendicular to theaxis), II (perpen-
dicular to the axis), or III (corners), and
and , or , respectively.

III. FINITE ELEMENT DISCRETIZATION

Substituting a solution of the form

(5)

into (1), we obtain the following equation for the slowly varying
complex amplitude :

(6)

Dividing the spatial domain into quadratic (second-order) tri-
angular elements and applying the standard finite-element tech-
nique to (6), we obtain

(7)

where
global electric or magnetic field vector;
null vector;

and the finite-element matrices are given by

(8)

(9)

where
shape function vector;
denotes a transpose;
extends over all different elements.

Utilizing the Padé recurrence relation [1]–[6], the following
equation of TD-BPM (wide-angle FETD-BPM), which can treat
wide-band optical pulses, is obtained:

(10)

with

(11)

The Fresnel or paraxial equation of TD-BPM (narrow band
FETD-BPM, for simplicity, abbreviated as FETD-BPM) is
easily obtained from (10) by replacing the matrix by .

Applying the Crank–Nicholson algorithm for the timeto
(10) yields

(12)

with

(13)
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Fig. 4. Electric or magnetic field patterns in a straight waveguide for: (a) TE and (b) TM pulses.

(14)

where
time step size;
th time steps;

time steps.
The Bi-CGSTAB algorithm [16] is introduced to solve the linear
(12).

IV. NUMERICAL RESULTS

A. Optical Grating

We consider an optical grating as shown in Fig. 1, where
the number of grating periods is eight and the PML thickness

m. The input pulse with a transverse profile
corresponding to the fundamental mode of the planar waveguide
and a Gaussian profile in the longitudinal direction at is
taken as

(15)

where
propagation constant;
center position of the input pulse;
spot size.

The reflected and transmitted pulses are monitored inside the
waveguide. The fast Fourier transform of these pulses, normal-
ized to the spectrum of the input pulse, gives the reflection and
transmission spectra.

Fig. 2 shows the reflection characteristics with the input
pulse spectrum, where m, m, the car-
rier center wavelength m. The time step size used
is fs which is, in general, sufficient to obtain stable
solutions in the TD-BPM analysis [11]. The total duration
simulated is 220 fs. On a DEC-alpha workstation (500 MHz),
the code takes 25 MB of memory for 37 555 nodal points and
2 098 s to run. The input and reflected pulses are monitored at
the reference point as in Fig. 1, and the reflected spectra are

evaluated from the ratio between the Fourier transforms of the
reflected pulse and the incident pulse. Although the accuracy
of FETD-BPM may be limited to a narrow spectrum around
the carrier center frequency , for both TE and TM modes,
the results of wide-band FETD-BPM agree well with those of
the conventional FEM formulated in frequency domain [17]
over a wide range of frequencies, compared to the paraxial
FETD-BPM. In the FEM [17] the reflection and transmission
characteristics are calculated at every one frequency.

B. Photonic Crystal Circuits

Photonic crystals have inspired great interest recently be-
cause of their potential ability to control the propagation of
light. Mekiset al.have demonstrated high transmission through
sharp bends in photonic crystal waveguides [10].

We consider a photonic crystal of dielectric rods in air on
a square array with lattice constant[10] as shown in Fig. 3.
The crystal has PBG for TE modes which extends from

to , but not for TM modes.
Fig. 4 shows the electric field patterns of the pulse with Gaussian
profiles in both the transverse and longitudinal directions prop-
agating in a straight waveguide, where m and

fs. It is confirmed that the TE pulse is confined in the de-
fect, core region, while the TM pulse cannot be guided and is
radiated into the cladding region. In the following, therefore we
consider the TE pulse propagatoin and the time step size is taken
as fs.

Fig. 5(a) shows a 90bend proposed by Mekiset al. [10] and
(b) the element division in the neighboorhood of the corner, and
(c) the reflection and transmission characteristics. On a DEC-
alpha workstation (500 MHz), the code takes 85 MB of memory
for 158 607 nodal points and 106 s per time step of
fs to run. Two pulses with m (solid line) and

m (dashed line) are sent down the waveguide covering
different ranges of frequencies, and the input pulse at fs
is taken as

(16)
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(d)

Fig. 5. 90� bend with (a) structure, (b) element division, (c) propagation characteristics, and (d) electric field patterns.

with

(17)

where is a periodic function corresponding to the fun-
damental mode of the photonic crystal waveguide of period.
For all examples presented in connection with photonic crystal
circuits in this subsection, the input pulses are the same. One is
at m (solid line) and the other at m
(dashed line) as shown in the top panel of Fig. 5(c). Also, for
all propagation curves shown in Figs. 5–10, solid and dashed
lines correspond to the input pulses at m and at

m, respectively.
In Fig. 5(c) the results of FDTD using six pulses [10] are

also plotted. In the FDTD calculation [10], nonphysical, spu-

rious Gibbs oscillations are observed near the lower cutoff fre-
quencies. On the other hand, such phenomena do not occur in
our calculation. Fig. 5(d) shows the electric field patterns for the
pulse of m. Fig. 6(a) shows a 90bend with zero
radius of curvature, (b) the reflection and transmission charac-
teristics, and (c) the electric field patterns ( m). The
transmission is a little deteriorated.

Now, we propose photonic crystal circuit components as
shown in Figs. 7–12 and simulate those propagation character-
istics.

Fig. 7(a) shows a T-branch. From Fig. 7(b) high transmission
is observed at frequency ranges from to

. From Fig. 8(a) and (b), on the other hand, we can
see that the transmission property of a Y-branch is not so good
because of high return loss. The electric field patterns (
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Fig. 6. Zero-curvature 90� bend with (a) structure, (b) propagation characteristics, and (c) electric field patterns.

Fig. 7. T-branch with (a) structure, (b) propagation characteristics, and (c) electric field patterns.
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Fig. 8. Y-branch with (a) structure, (b) propagation characteristics, and (c) electric field patterns.

Fig. 9. Directional coupler with (a) structure, (b) propagation characteristics, and (c) electric field patterns.

m) for the T-branch and the Y-branch are, respectively,
shown in Figs. 7(c) and 8(c).

Fig. 9(a)–(c) shows, respectively, a directional coupler
and its propagation characteristics, and the electric field
patterns ( m). It is worthy of note that a

very low-loss 3-dB coupler can be realized at frequency
.

Fig. 10(a)–(c) shows, respectively, a multimode coupler,
the propagatoni characteristics, and the electric field pat-
terns ( m). In this structure, equal contributions
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Fig. 10. Multimode coupler with (a) structure, (b) propagation characteristics, and (c) electric field patterns.

Fig. 11. Microcavity with (a) structure, (b) propagation characteristics, and (c) electric field patterns.

in ports 3 and 4 can be hardly realized at very low reflec-
tion at port 1 and transmission at port 2.

Finally, we consider single and double microcavities cou-
pled to straight waveguides in Figs. 11(a) and 12(a). From
Figs. 11(b) and 12(b), we can see that these structures can
produce optical filters with sharp transmission resonances.
Figs. 11(c) and 12(c) show the electric field patterns (

m).

V. CONCLUSION

A wide-band FETD-BPM using the Padé approximation was
described for both TE and TM polarized pulses. To validate
the present algorithm, numerical results are shown for optical
gratings and are compared with the conventional FEM in fre-
quency domain. Furthermore, various photonic crystal circuit
components were simulated and those fascinating properties
were demonstrated.



KOSHIBA et al.: TIME-DOMAIN BEAM PROPAGATION METHOD 109

Fig. 12. Double microcavities with (a) structure, (b) propagation characteristics, and (c) electric field patterns.

A full-wave FETD-BPM for three-dimensional structures is
now under consideration.
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