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Performance Analysis of Direct Detection Spectrally
Sliced Receivers Using Fabry–Perot Filters

Mark S. Leeson

Abstract—The use of a spectrally sliced (SS) broad-band source
provides a cost effective alternative to laser diode sources for
wavelength-division multiplexing (WDM). In this paper the per-
formance of direct detection p-i-n diode intensity modulated SS
systems is analyzed using the saddlepoint approximation. Using
this approach, based on moment generating functions, the effects
of pulse distortion, intersymbol interference (ISI) and nonideal
modulator extinction ratios have been included in the analysis of
SS systems for the first time. The presence of ISI error floors as
the product of optical bandwidth and bit time decreases is demon-
strated using a model that agrees with previous work in the case
of low bit rate, widely spaced channels. In addition, comparisons
with recent experimental results from the literature are made with
good agreement. Subsequently, the use of an integrate and dump
filter where the integration time starts after the beginning of a bit
is investigated and shown to produce significant enhancements
to bit-error rate performance. Furthermore, it is shown that a
modulator extinction ratio of 20 dB will suffice for 10 9 bit-error
rate (BER) in most cases, with 30 dB offering a performance close
to that possible with an ideal modulator. Finally, the likely system
power for an SS system is presented.

Index Terms—Intersymbol interference, optical communication,
saddlepoint approximation, spectral slicing, wavelength-division
multiplexing (WDM).

I. INTRODUCTION

WAVELENGTH division multiplexing (WDM) offers an
increasingly attractive path for upgrading the digital

telecommunications access network to cope with increasing
customer bandwidth requirements [1]. The economic aspects
of service provision in this portion of the network are such
that low cost methods of generating a range of wavelengths
are necessary. One option is to use an optical filter to provide
narrow slices of a broad-band noise source producing an
approach commonly known as spectral or spectrum slicing (SS)
[2]–[5]. This provides a cost-effective alternative to laser diode
sources for WDM systems but introduces excess intensity noise
due to the source incoherence. To investigate the performance
of SS systems it is useful to define the parameter, given by
the produce of the optical bandwidth of the SS signal ()
and the bit time ( ). To reduce the statistical fluctuations in
signal energy should be large, but this limits the number of
available WDM channels and introduces a power penalty due to
fiber dispersion. The use of low values, however, increases
the number of photons per bit needed to achieve a given error
rate because of the energy fluctuations in the noise like source.
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Additionally, as demonstrated subsequently in this paper the
effect of intersymbol interference (ISI) is greatly increased as

is reduced.
Analysis of SS systems using Gaussian noise statistics is not

appropriate in the regions of practical interest, that is narrow
channels and high bit rates, as recently demonstrated by Arya
and Jacobs [6]. To date the theoretical framework used to pre-
dict the bit-error rate (BER) performance of SS systems has not
included realistic filter or modulator characteristics. The main
purpose of this paper is to analyze the sensitivity of a p-i-n diode
receiver using SS signals via an improved statistical model of a
broad-band source and an accurate transfer function for the filter
used to slice it. Additionally, it is demonstrated that care must be
exercised in the approximation of the receiver optical filter by
an equivalent optical bandwidth rectangular filter on two counts.
First, the approximation is increasingly inaccurate at low values
of and second the use of an orthogonal function expansion for
analysis requires the calculation of the exact eigenvalues rather
than an equal eigenvalue approximation. Moreover, using the
saddlepoint approximation (SPA) [7] described all the neces-
sary calculations may be carried out relatively quickly using a
PC. Further to this, the methods used are shown to correlate well
with experimental results from the literature and to allow incor-
poration of nonideal extinction ratios. Also, it is demonstrated
that the use of receiver integration times starting after the begin-
ning of a bit period offers significant benefits in terms of reduced
ISI. This enables the error floors due to ISI to be dramatically re-
duced and operation at low values to be possible in exchange
for a small power penalty at high values.

Section II provides an outline of the receiver structure used
for the analysis and presents the mathematical framework for
the problem. Section III presents the SPA for the SS system
assuming a rectangular receiver filter without intersymbol in-
terference (ISI). Results are first obtained using an orthogonal
expansion for the noise in which the eigenvalues are assumed
to be in number and all of equal value. It is demonstrated
that this assumption is likely to be inaccurate at lowvalues
and results obtained using the correct eigenvalues for the rectan-
gular filter. Section IV describes the modification of the model
to include Fabry–Perot (FP) filters comprising two main ele-
ments. First, the photocurrent resulting from a received pulse is
reduced because of the impulse response of the FP filter. Second,
ISI is present since the FP produces an exponential pulse tail,
which also leads to a crossproduct (beat term) when two one
pulses follow each other. The modifications to the simplified
model of Section III are quite considerable, requiring nonsta-
tionary statistics to be incorporated in a manner described in
the Appendix. Section V presents the results obtained using the
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Fig. 1. The model of the spectrally sliced system considered.

improved model and also a comparison with experimental re-
sults from the literature. In Section VI the benefits of starting
the receiver integration period after the beginning of a bit are
investigated. This method, although studied for optically pream-
plified systems, has not before been examined in the context of
SS systems. Section VII presents the impact of nonideal extinc-
tion ratios on the SS system to simulate the effect of practical
modulators. The system implications of the performance of SS
transmission are addressed in Section VIII by determination of
the available power budget. The outcomes of the study are dis-
cussed in Section IX and conclusions drawn in Section X.

II. M ODEL OF THERECEIVER STRUCTURE

The receiver structure assumed in this analysis is shown in
Fig. 1, where the incoming signal has been produced by taking
a narrow slice of a noise like source. It arrives at an optical
bandpass filter nominally identical to that used to produce the
transmitted spectrum. The filter is followed by an ideal square
law detector and an integrate and dump filter. For the case of
on–off keying, considered here, the integrated pulse energy is
compared with a decision threshold. In the formalism of [6],
the current signal at the input to the decision circuit may be
expressed as

(1)

where and are independently iden-
tically distributed baseband Gaussian processes with optical
bandwidth and variance . This latter quantity is equal
to the photocurrent contributed by each of the two orthogonal
polarizations. The term represents the thermal noise current
induced in the electrical part of the receiver, which is much
greater than shot noise (taken as negligible) for a p-i-n diode.
A receiver filter is always necessary for a spectrally sliced
system for wavelength-division demultiplexing (WDM) so
the noise like signals, , , and , are thus doubly filtered
Gaussian processes and must be analyzed accordingly. The
squaring of these processes by the photodiode renders them
non-Gaussian since it is a nonlinear operation. Despite this it is
still worth considering a Gaussian approximation since it leads
to an analytically straightforward method. The recent results in
[6] have shown, however, that such an approximation is only
justified when the slicing filter bandwidth is a large multiple
of the bit rate. In other cases the Gaussian approximation is
far too conservative and leads also to error floors that are not
present in practice. The sections below present the analysis and
results of the decision problem at the detector approached using

non-Gaussian statistics in the SPA. They include favorable
comparisons with both the results in [6] and experimental
results in addition to a proposal to improve the performance of
SS systems using integrate and dump filters.

III. SADDLEPOINT APPROXIMATION FOR ARECTANGULAR

FILTER

A. Equal Eigenvalues

The saddlepoint approximation (SPA) uses moment gener-
ating functions (MGF’s) to produce estimates that bit errors
occur. The probability that the noise alone exceeds a threshold

, denoted by , is given (for a continuous distribution) by

(2)

where is related to the noise MGF by

(3)

The parameter is the positive root of the equation

(4)

and the primes indicate differentiation with respect to.
When a “0” arrives only the receiver thermal noise current is

present, which is Gaussian and white with zero mean. Thus the
appropriate function is

(5)

for a noise current power of and decision threshold.
The case of a “1” arriving adds the filtered noise-like signal

with a modified chi-squared distribution [8]. The mean signal
photocurrent, , is given by

(6)

where
photodiode quantum efficiency;
electronic charge;
mean number of photons per bit;
bit rate.

Filtered noise-like signals, such as those produced during spec-
tral slicing, are well described by a Karhunen–Loeve expansion
[9] using the eigenfunctions, , and eigenvalues obtained
from the equation

(7)
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where
bit time;
autocorrelation function of the noise-like signal.

The parameter is used to characterize the perfor-
mance of the system. Assuming that all the eigenvalues needed
for the KL expansion are the same and equal to yields a
moment generating function (MGF) of

(8)

and hence (5) becomes, for a one received

(9)

The appropriate probability in this case is

(10)

where is in this case the positive root of .
For equally likely ones and zeros the overall BER is found

from

BER (11)

In [6] a threshold of is suggested based on the integral of the
thermal noise alone with no pulse. Initially this assumption was
adopted leading to a simple quadratic equation from
for . To find a value for was only marginally more difficult
requiring numerical solution of from (9).

For the purposes of comparison the same values of(255
nA), (0.7), and (5 Gb/s) as [6] were used, giving the results
shown by the dash-dot line in Fig. 2, where the mean number
of photons required for a BER is shown. The results ob-
tained are very similar those shown in [6, Fig. 2] but the method
employed here is extremely fast producing each of the results
plotted in a less than a minute on a 350-MHz Pentium PC for
any value of .

B. A More Accurate Calculation

The approximation of the eigenvalues byequal values is
likely to be inaccurate for low values of . It relies on a signal
passing undistorted through a receiver filter [10] and this as-
sumption will break down as the filter bandwidth narrows. To
obtain more accurate results it is necessary to use a KL expan-
sion with the eigenvalues taking on appropriate values for the
particular filter transfer function. The function remains
the same but becomes

(12)

where are the eigenvalues of the bandpass filter. This is the
expression recently given by Monroy and Einarsson [11] with

Fig. 2. Receiver sensitivity atP = 10 using the parameters of [6]
calculated by the equal eigenvalue approximation (chain line), via the exact
eigenvalues for a rectangular filter (dotted line) and for the FP filter (solid line).

no signal present in an optically preamplified direct detection
receiver.

The eigenvalues for the bandlimited spectrum are the radial
prolate spheroidal functions [9] and may easily be found by
numerical solution of (7) using the kernel .
The number of dominant eigenvalues is known to be [9]
and this is demonstrated by two different values ofshown
in Fig. 3(a) and (b). The former illustrates a case of large,
namely 40, and the error introduced by neglecting the 41st
and subsequent eigenvalues will be small. In contrast the latter
illustrates the inaccuracy introduced by the equal eigenvalue
assumption for . Here the contribution of the third
eigenvalue is not negligible and the second one is significantly
smaller than the first, so the use of equal eigenvalues is very
inaccurate.

A direct numerical solution of , with from
(12) and a threshold of , gave the results plotted using the
dotted line in Fig. 2. To enable solution of (12), and subsequent
similar expressions, truncation of the infinite sum was used with
250 eigenvalues being calculated. Although this may appear
rather large, Lawetz and Cartledge [12] have demonstrated that
a large number of eigenvalues are necessary for the FP case and
the computational burden in the SPA was not excessive.

The graph clearly demonstrates the impact of the equal
eigenvalues approximation on the number of photons required
to achieve a BER. At high values of the results are
very close but for low the mean number of photons required
is considerably overestimated. Given that low represents
closely spaced channels at high bit rates, the use of the equal
eigenvalue approximation is insufficiently accurate for the
determination of system performance limits.

The use of the threshold was found to be reasonable
by comparison with a solution for , and by Newton’s
method in the manner suggested in [7]. Using the optimum
threshold made only a small impact on the number of pho-
tons required to achieve BER ( reduced by 2%–5%).
The actual thresholds obtained were within a few percent of

over the range considered. In the calculations of Sec-
tions IV–VII below, however, the optimum threshold was deter-
mined because the ISI dominated, low, cases required thresh-
olds much greater than to optimize BER performance.
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(a)

(b)

Fig. 3. The eigenvalues for rectangular filters: (a) atm = 40 and (b) atm = 2.

IV. SADDLEPOINT APPROXIMATION FOR AFABRY–PEROT

FILTER

A. Autocorrelation Function and Signal Shape

At this stage the unrealistic assumption of a rectangular filter
transfer function was laid aside in favor of the FP filter. This is a
common choice for optical filtering (either in fiber or bulk form)
and the receiver and transmitter were assumed to use filters with
identical characteristics. Spectral slicing takes the output of a
broad-band optical source [modeled by white Gaussian noise of
two-sided power spectral density (PSD) ] and filters this
to produce a narrow slice. The noise remains Gaussian but is
no longer white since the PSD is modified by filtering. For high
mirror reflectivities FP filters may be modeled by a Lorentzian
characteristic and the equivalent baseband form of a low pass
filter characteristic used with the single-sided PSD [12], [13].
The low-pass filter has transfer function

(13)

where is the 3 dB bandwidth of the filter (the full-width at
half-maximum (FWHM), , is then ). The received ex-
cess noise component of the spectrally sliced signal,, will

have been filtered at both the transmitter and the receiver and
thus has a PSD of

(14)

hence an autocorrelation function

(15)

To enable meaningful comparison of the performance of two
FP filters with the idealized situation use must be made of the
equivalent bandwidth [14], which is given by

(16)

Additionally the pulse shape, assumed rectangular when it
reaches the receiver, is distorted by the FP filter producing
nonstationary signal statistics. To develop the KL expansion, a
kernel must be found for the eigenvalue equation. The received
pulse has a shape that will be the result of filtering by one FP
because it arises from on–off keying (OOK) after the slice is
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obtained. The received “1” pulse, , is thus, for an ideal
extinction ratio

(17)

and the statistics in question are given by . The
KL expansion does not rely on the stationarity of and, as
shown in the Appendix, the relevant kernel is

(18)

B. The Photodiode Output

The intersymbol interference (ISI) resulting from the expo-
nential decay in (17) above has been the subject of study of this
author and others [15]–[18] but not in the context considered
here. The only previous consideration of the performance of SS
systems with nonrectangular filters by, Arya [19], does not in-
clude ISI and will thus be optimistic

received

received.

(19)
By using the variable it is possible to produce a KL ex-
pansion for the noise like signal to play the role of the second
term in (12). In the Appendix it is shown that the ISI may be in-
cluded to a good approximation by consideration of only 1 pre-
vious pulse and that the crossproduct between and
has an approximate MGF

(20)

where and are related to in the manner demonstrated
in Section C of the Appendix. Given these approximations
the ISI appears only when the previous pulse is a “1” and the
crossproduct only when the current and previous pulses are
both “1.” Thus the SPA uses the condition (11) plus the four
equations

(21a)

(21b)

(21c)

(21d)

where
SPA phase function for symbol preceded by
symbol ;
eigenvalues obtained using the kernel (18);

.
The form of the SPA expressions means that, in contrast to Sec-
tion III, the equations are not stable for a solution using the ma-
trix form of Newton’s method. Hence the equations in (21) were
solved simultaneously and standard numerical techniques1 used
to find the value of that gave the minimum BER. Although
this increased the amount of computation required, solution was
still easily obtainable in a few minutes using a 350-MHz Pen-
tium PC.

V. RESULTS FORFP FILTER SPECTRALLY SLICED SYSTEM

A. Bit-Error Rate

The presence of ISI introduces floors in the achievable min-
imum BER for a given . Hence, in this section the first results
from the calculations above, shown in Fig. 4, are BER against
mean photons per bit with as a parameter to indicate this be-
havior. Note that in this section remains the product of the bit
time and the bandwidth of the ideal filter. This need not be an
integer since the probability density function (pdf) for the noise
like source [4] contains a gamma function in general which is
replaced by a factorial when integervalues are usedfor math-
ematical convenience. From the figure it may easily be seen that
the error floors are extremely severe for low values of. In-
deed it is not possible to achieve a BER below when is
10 or less. This is illustrated by the solid line on Fig. 2, which
shows error floor behavior with the number of photons required
to achieve BER rising steeply to infinity as approaches
ten. This is a highly significant result, indicating that there is an
absolute limit on a simple spectrally sliced system in terms of
channel spacing and bit rate to achieve a given BER.

B. Comparison with Published Results

As indicated by Arya and Jacobs [6] there is a lack of ex-
perimental data for spectrally sliced systems at lowvalues.
One of the most useful recent practical contributions has been
made by Keating and Sampson [4] and here comparison is made
with their results for the standard SS system. To undertake the
comparison an avalanche photodiode (APD) was incorporated
into the model using the approach of [7]. In essence the MGF is
modified to take account of the shot noise within the APD and
its gain (M) to become, for each orthogonal component

(22)

where is the MGF of the avalanche gain, given by
Personick’s relationship [20]. The use of in the
MGF corresponds to the customary Poisson transform [7] to
account for the doubly stochastic Poisson statistics within the
APD. Modeling carried out in [4] used the Gamma distribution

1All the calculations in this paper were performed using MATLAB®.
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Fig. 4. The logarithm of the BER as a function of the received photons per bit form values between 2 and 15.

Fig. 5. Comparison of calculated results (solid lines) with the experiment of
Keating and Sampson [4] (diamonds) for: (a) a laser diode and (b) an SS source.

for in which the statistics of , the optical power received, are
given by

SNR

(23)
where is the mean value of and

(24)

with
equivalent bandwidth of (16) above;
electrical noise equivalent bandwidth;
polarized (unpolarized) light.

Equation (23) represents the pdf corresponding to the MGF in
(8) when an unpolarized source and an integrate and dump filter

are used. This may be seen by substituting into (24)
for the integrate and dump filter to give SNR
and recognizing that for integer . Keating
and Sampson’s experiment used a polarizer so and

, leading to an MGF equivalent to the rectangular filter
approximation, namely

(25)

including the APD. For further validation and comparison, the
standard case of a laser source was incorporated the framework
by removing the excess noise MGF. One further refinement
was required in that a nonideal extinction ratio had to be incor-
porated to account for the characteristic of the Mach–Zehnder
modulator used in [4]. The result of this was that there was no
longer a state where zero photons arrive and both SPA func-
tions contained functions of the form (22) with different eigen-
values for “0” and “1.” For extinction ratio photons were
assumed to arrive during a “1” pulse and photons
in a “0,” resulting in a mean number of photons
per bit. The necessary parameters for the APD were assigned
typical values for an InGaAs device [21], a center wavelength
of 1534 nm was used for the FP and the laser was assigned a
realistic wavelength of 1560 nm. The best fit was obtained by
allowing the APD quantum efficiency and gain to be slightly
different for the laser and the SS. This is likely for different
wavelengths and also it is possible that the APD and modulator
exhibited some nonlinearity. Fig. 5 shows a comparison of the
calculated log (BER) as a function of received power, using
the parameters shown in Table I, for the SS and laser compared
with points taken from [16]. The agreement is very good, given
that all diode parameters had to be estimated, with the extinction
ratio and SNR used being only 1.5 and 1 dB away, respectively,
from those quoted for the experiment.
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Fig. 6. Extensions to the calculations of Fig. 5. 1—calculated results for the experiment of [4]; 2—integrate and dump with SNR= 37; 3—(25) with SNR = 37;
4—integrate and dump with SNR= 14; and 5—2 FP system withm � 15.

TABLE I
PARAMETERS USED IN COMPARISON OF

CALCULATED RESULTS WITH THEEXPERIMENT OFKEATING AND SAMPSON[4]

To quantify the benefit of an integrate and dump filter the
MGF in (25) was replaced with one including the eigenvalues
for the FP filter, namely

(26)

The value of for a straight substitution in the experiment of
[16] was 37, since the nominal experimental was 0.23 nm
at 1534 nm. Such a high value ofproduced dramatic changes
in BER, as may be seen from curve 2 on Fig. 6. Comparison
with the fit to the experimental SS results, reproduced as curve 1,
shows several dB’s improvement for all BER’s and removal of
the error floor. Such a comparison is not the most useful one be-
cause increasing , which is effectively SNR, is bound to give
much improved performance. This is demonstrated by curve 3
which shows the result of a calculation based on (25) but using
SNR . Again, vastly improved performance is demon-
strated but the integrate and dump offers an advantage of a few
dB’s. A better approach is thus to view the use of the integrate

and dump filter as a way of either increasing the available bit
rate per channel or permitting closer channel spacing by virtue
of smaller FP bandwidths being possible. To demonstrate this
curve 4 shows the BER of an integrate and dump based system
with SNR dB to match the experimental fit.
A considerable improvement in performance is shown with the
error floor reduced by two orders of magnitude.

Note that the experimental arrangement fed the output of the
modulator straight to the APD, there was no receiver filter and
no ISI. This system would not be satisfactory for WDM so once
good agreement with the measured results had been obtained
the analysis was extended to examine the likely performance
of such a system for WDM. The eigenvalues from the kernel
(18) were used in (26) and ISI included (the crossproduct was
neglected as it is negligible for the values relevant in this
section). The double FP combination resulted in and
a BER performance shown by curve 5, which is only slightly
degraded in comparison with curve 4. This is a promising result
since it represents the arrangement that would be needed for an
operational WDM system.

VI. REDUCED INTEGRATION TIME

Two particularly promising proposals have been considered
to date to improve the performance of SS transmission systems,
namely, optical preamplification [6] and feedforward noise re-
duction [16]. Here a simpler option is considered, requiring no
additional optical components. The integration time is ad-
justed so that it starts from some time,, greater than zero.
This will considerably ameliorate the effects of the ISI while not
significantly reducing the integrated output until becomes a
large fraction of .

The benefit likely to be obtainable by using a reduced inte-
gration time was investigated in several ways. Initially the likely
starting point for integration was examined by calculating the
growth of the power received in the bit and the ISI, normalized
to their respective maximum values. The former was found by
using the kernel (18), calculating the eigenvalues resulting from
changing the limits of integration from to and then
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Fig. 7. Normalized eigenvalue sum (left hand scale) and normalized ISI (right hand scale) as a function of integration time form = 2 (dotted line) andm = 10

(solid line).

taking their sum. To find the latter the multiplier was modi-
fied to take account of the changed integration time and became

(27)

Fig. 7 shows the variation of the eigenvalue sum and ISI for a
low value of 2 and for a mid range value of 10. It is apparent
that the ISI is mostly confined to the first 10%–20% of the bit.
Thus by reducing the integration time to 80%–90% it is possible
to greatly reduce ISI while still capturing the majority of the
power in a one pulse, which is at 80% or more of its maximum
for such integration times.

To further quantify the effects of integration time a modified
crossproduct term was included. For this the variance of the non-
stationary component became

(28)

The integration time was varied from 75% to 100% of the bit
time for different values of and received photons. The out-
come may be summarized with reference to Fig. 8, which shows
the variation in BER with for the values of five and
ten at two different numbers of mean received photons per bit.
There is an optimum value for the integration time to achieve
the lowest BER, where the benefits of ISI amelioration are not
outweighed by the loss of collected power. The optimum moves
to higher percentages of the bit time asincreases since the
ISI becomes less significant so the impact of collected power
loss rapidly dominates. The minima are quite flat, however, sug-
gesting that benefits are easy to obtain by control of the integra-
tion period requiring only modest precision. The impact on the
performance of SS system using the reduced integration time
may be demonstrated by the results shown in Fig. 9. This shows
the mean number of photons per bit needed to achieve
BER as a function of and using as a parameter. Com-
parison with Fig. 2 reveals that the range offor which the

Fig. 8. Logarithm of the BER as a function of integration time form = 5

(upper curves) andm = 10 (lower curves) atN = 9000 (dotted lines) and
N = 10000 (solid lines).

Fig. 9. Receiver sensitivity atP = 10 using the parameters of reference
[6] calculated forT = T (chain line);T = 0:99T (dotted line);T =

0:95T (dashed line); andT = 0:9T (solid line).

desired BER may be obtained is considerably extended. The re-
duced integration time removes the error floor but price paid for
this is power penalty of up to 1 dB as gets large.

VII. I MPACT OF EXTINCTION RATIO

The results in the preceding sections, apart from Section V-B,
all assume an ideal extinction ratio. As shown, however, by
the comparison with experimental results above this is not al-
together realistic and extinction ratio will play a part in the per-
formance achievable in SS systems. The effect of a nonideal
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extinction ratio will be particularly noticeable for low values of
, where the ISI is already producing an error floor. This was

investigated by calculating the BER achieved as a function of
the mean number of photons received using the extinction ratio,
, as a parameter. The SPA equations were modified using the

same approach as Section V-B above and took on a form sim-
ilar to (21d), since there was always a photocurrent present. The
four cases arising from the use of one previous bit were incorpo-
rated by the use of the appropriate photocurrents for the signal,
ISI and crossproduct.

Typical results are shown in Fig. 10 for with other
parameters being the same as used in Sections II–IV. The dotted
lines represent the use of the whole bit for integration, for com-
parison with Fig. 4, while the solid lines represent .
The benefit of the reduced integration time may clearly be seen
as is the effect of a low extinction ratio. The results with an in-
finite extinction ratio are not shown on the figure because they
would be indistinguishable from the 30 dB results.

In addition the problem was addressed from the angle of as-
certaining the minimum extinction ratio that will permit a par-
ticular error rate to be achieved. Fig. 11 shows the necessary
extinction ratios as a function of for BER’s of and

using a 90% integration time. The figure shows illustra-
tive results for mean numbers of photons received of 20 000 and
15 000 but the effects were similar for all signal levels. Exam-
ination of the figure shows that an extinction ratio of 20 dB or
better will allow operation down to the minimum set by the
ISI.

VIII. SYSTEM IMPLICATIONS

In this section the results from the above sections are used to
make an assessment of the power budget likely to be available.
True determination of the system limits needs definite parame-
ters to be meaningful since if, for example, a physical layer BER
of is acceptable and a power budget of 20 dB will suffice
then the total capacity will be hundreds of gigabits per second.
Such high figures may indeed be possible but the exploration
of the full space of system possibilities is not the focus of this
paper. With this caveat it is instructive to compare the available
power budget as a function of the optical bandwidth per channel.

The power budget may be obtained using the ratio (expressed
in dB’s) of the mean number photons that would be received
by a photodiode straight in front of the transmitter to the mean
number actually required to achieve BER. By equating the
power received and the power in the slice just after the trans-
mitter the following is obtained for the number of transmitted
photons per bit,

(29)

where
Planck’s constant;
frequency of the light;
PSD of the broad-band source.

Using the PSD of Sampson and Holloway [3], namely
W/Hz at 1550 nm, and a per channel bit rate of 2.5

Gb/s permits immediate comparison with the p-i-n diode results

Fig. 10. The logarithm of the BER as a function of the received photons per
bit form = 5 with extinction ratios of 10, 15, 20, and 30 dB; solid linesT =

0:9T and dotted linesT = T .

Fig. 11. The minimum extinction ratio required to achieve a BER of10

(upper curves) and10 (lower curves) as a function ofm for Np = 20000

photons per bit (solid line) and 15 000 photons per bit (dotted line);T =

0:9T .

Fig. 12. Available power budget as a function of optical bandwidth per
channel calculated using the method of [6] (dotted line); the eigenvalues of the
rectangular filter (chain line); the eigenvalues for 2 FP filters withT = T

(heavy solid line) andT = 0:9T (solid line).

of [6]. Substituting the equivalent bandwidth and inserting
these values into (29) gives as the maximum
number of transmitted photons. Using this relationship power
budgets as a function of filter bandwidth for four cases were be
obtained as shown in Fig. 12, which uses a logarithmic-axis
to emphasis subsequent comments. The first case, shown in
bold, is the use of two matched FP filters and ;
here the available power budget falls steadily from 35 dB at
a filter bandwidth of 1 nm to 29 dB at 0.3 nm before a rapid
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decline as the ISI limit sets in. Reduction of the integration
time is the second scenario, shown as the lighter solid line; it
may be seen that there is a penalty of approximately 0.5 dB
at large bandwidths but the rapid decline due to ISI does not
set in until 0.1 nm. The third set of results, shown as a chain
line, indicates the behavior of the system predicted using the
rectangular filter approximation with exact eigenvalues as in
Section III-B. Finally, the equal eigenvalue approximation of
[6] is shown a dotted line using the results of Section III-A. It is
easy to see that these methods give the same result as the filter
bandwidth increases, allowing for the small penalty incurred
by the reduced integration time. This is as expected because
ISI becomes a large problem only for low values of. The
main benefit of the reduced integration time is illustrated by
this figure with the lower limit of operation being extended to
0.1 nm before the power budget rapidly disappears.

IX. DISCUSSION

The use of the SPA is extremely effective in determining the
BER of SS systems, for which the Gaussian approximation is
overly conservative unless is very high. At values greater
than 20 the equal eigenvalue approximation produces an error in
the number of photons required for BER of 0.04 dB or less
(compared with the FP calculation). In contrast the Gaussian ap-
proximation produces an error of some 7.2 dB at , not
falling below 1 dB until is greater than 40. The ease of solu-
tion of the equations in Section III-A means that the equal eigen-
value method provides a useful BER performance estimate for

. For values below 20 then the accuracy of the equal
eigenvalue method decreases rapidly, reaching an underestimate
of 2.7 dB at . There seems to be, however, little benefit
in using the exact eigenvalues for the rectangular filter since the
region of the greatest difference in results is for lowvalues
and the ISI error floor results presented above render the results
meaningless. To obtain useful performance predictions for low

it is essential to include the effect of ISI, which eventually be-
comes the dominant limiting factor. This point has not emerged
in previous work since it quite possible to operate with only a
slicing filter in a single channel study.

For low the neglect of the ISI and, to lesser extent, the
crossproduct coupled with the leakage of power from the cur-
rent bit interval, makes more detailed analysis necessary. Inclu-
sion of both transmitter and receiver FP filters means that the
noise must be treated as the output of 2 FP filters in series while
the received pulse shape is the result of a single filter. The use
of the equivalent optical bandwidth enables a meaningful com-
parison to be made between the results for 2 FP filters and for
the idealized rectangular filter.

The analysis presented here is a new approach to the problem
in that the KL expansion is based on a kernel appropriate to non-
stationary statistics. This presents no computational problems in
addition to the determination of the eigenvalues that is necessary
for any analysis based on a KL expansion. The BER results ob-
tained by the expansion tend smoothly toward those obtained
from the more approximate models asincreases.

The ISI is straightforward to incorporate into the SPA since
it is not necessary to carry out convolutions for additional noise

and interference using an MGF based approach. The squaring
operation at the photodiode means that the truncated pulse train
approximation for ISI requires only one previous pulse because
of the rapid fall off in the exponential tails. The difference be-
tween the treatment of terms for SS and, say, an optically pream-
plified system is that all terms are stochastic in SS. This results
in a crossproduct term that is the product of two Gaussian dis-
tributions, in contrast to a system having a deterministic signal
where the relevant term remains Gaussian. Here again the use
of the MGF means that this term may be incorporated in the
analysis framework without generating a huge computational
burden.

The comparison made with recent experimental results in
Section V-B shows good agreement and enables predictions of
the likely results with integrate and dump filters to be made. The
error floor for a single channel system may be reduced by up to
two orders of magnitude using integrate and dump filtering. A
WDM SS system offers a BER of less than for 2.5 Gb/s
channels. Moreover, these figures are for inexpensive SS sys-
tems based only on broad-band sources and FP filters.

The use of a reduced integration time offers a simple tech-
nique to reduce the impact of ISI. The relatively slowly rising
pulses enable the integration time to be started from as late as
10% of the bit time before the photocurrent is reduced suffi-
ciently to offset the benefits of the ISI reduction. Indeed if the
intention was to operate at low values one could start the in-
tegration at 20%–25% of the bit time, since the penalty incurred
arises for high values. The presence of broad minima (Fig. 8)
for BER as a function of integration time means that benefits
from reduced integration time will accrue even with imprecise
control of the starting point.

The results of Figs. 10 and 11 show that it is important that a
minimum level of extinction is possible from modulators used
in SS systems. However, 20 dB will be sufficient to achieve

BER in most cases and 30 dB offers performance only
marginally different from an ideal modulator.

The representative system power budget results in Sec-
tion VIII demonstrate the effect of using a reduced integration
time. A power budget of in excess of 20 dB is available using
channels having optical bandwidths of 0.1 nm. Clearly the total
transmission capacity available for an SS system depends on
acceptable the power budget and BER but seems to be at least
tens of gigabits per second.

X. CONCLUSION

The SPA has been applied to direct detection SS systems for
the first time and has provided a tractable approach to BER cal-
culations irrespective of . Previous analyzes have been ex-
tended by the inclusion of pulse distortion by the receiver filter
an ISI term and a signal ISI crossproduct term. The limiting
factor in SS at low values has been shown to be these latter
terms arising from the exponential tails produced by the re-
ceiver FP filter. Severe error floors have been demonstrated that
outweigh the eventual power penalty from the noise like na-
ture of the broad-band source. Output from the model has been
compared with experimental results giving good agreement and
using the 2 FP arrangement for a WDM system suggests BER’s
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of less than for 2.5-Gb/s channels. The use of a reduced
integration time has been seen to be an extremely powerful, yet
simple, technique to reduce the impact of ISI. Control of the
starting point for integration need not be overly precise because
broad minima are present in the BER versus integration time
characteristics. Furthermore, it has been shown that an extinc-
tion ratio of 20 dB will suffice for BER in most cases,
with 30 dB offering a performance close to that possible with
an ideal modulator. The system power budget may be extended
by using reduced integration times and offers the potential for
high, low cost system transmission capacity. The SPA may also
be used to consider the performance of noise reduction methods
and optical preamplification, and this forms the basis of further
work by the author.

APPENDIX

The integrated photodiode output may be written as

(A.1)

This produces three terms.

A. Square of the Signal

(A.2)

Now is a zero-mean Gaussian random variable, with pdf
and spectral density resulting from the filtering

of the white spectrum from the noise like (LED) source by two
FP filters. However, is not stationary so the stan-
dard form of the Wiener–Khintchine Theorem cannot be used.
A modification has, however, been derived by Tsao [22] for non-
stationary signals. This allows the autocorrelation function to be
written, for real , as

(A.3)

Since the PSD is known to be

(A.4)

it follows immediately that

(A.5)

The power transmitted may be obtained by considering the au-
tocorrelation function at as , i.e., by saying
the receiver may collect photons for an infinite time, to give

. Using (16) for the equivalent band-
width yields the required relationship between the rectangular
filter and the FP for meaningful comparison,

(A.6)

The eigenvalues used for the KL expansion have a sum equal to
since the decomposition of the signal is into a sum

of zero mean Gaussian random variables with pdf’s

(A.7)

Hence, the eigenvalue equation is

(A.8)

where

The KL expansion isnot restricted to stationary signals and so
the solution of the nonstationary system may be used to express

thus

(A.9)

with large enough to give the required numerical accuracy.
The evaluation of provides the required MGF

(A.10)

for each polarization and quadrature component.

B. ISI

The ISI results from the sum of the tails of preceding pulses
and thus has the form

(A.11)

where
random variable with a 50% probability of being
“1” or “0”;
samples of the zero-mean Gaussian random vari-
able , with variance to account for the pre-
multiplication of (A.1) by .

This series may be dealt with by truncation considering all the
possible bit combinations for the number of previous bits re-
tained. Since the sum of two Gaussian random variables is also
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Gaussian it is possible to deduce that when all the previous bits
are “1” the maximum ISI will be Gaussian with variance

(A.12)

Even with the lowest value considered the second
and subsequent terms in the series will be of magnitude less than

. Hence it is only necessary to consider
one previous bit because the accuracy obtained, for considerable
extra calculation, will be small if more are retained.

The value of the integral of the ISI is thus

(A.13)

where is a chi-squared variable resulting from the
squaring of . Note that the do not vary with time
when the subsequent bit is considered, since they are samples,
and thus the integration with respect tomay be performed.
The MGF for is given by

(A.14)

for each polarization and quadrature component, where

C. Cross Product

The cross product

(A.15)

only occurs when both the signal and the ISI are nonzero. Given
the approximation made in Section B of the Appendix above the
integral may be rewritten as

(A.16)

The random variable is nonstationary but is Gaussian, since
only linear operations are performed on to obtain it;
is clearly also Gaussian. The product of two Gaussian random
variables is known to have zero mean and a pdf [23]

(A.17)

where is an order zero modified Bessel function of the
second kind. Such an expression may be dealt with using the
Mellin transform [24] enabling its variance to be obtained as

and an approximate MGF to order to be written, for
each polarization and quadrature component, as

(A.18)

The variance of may easily be found as
and may be approached using the method for non-

stationary signals in Section A of the Appendix above to give a
variance, after considerable manipulation, of

(A.19)

The contribution to the number of photons required to achieve
a given BER is generally small, a few percent at most, and be-
comes negligible as increases because remains zero mean
and typically .
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