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Modeling Large Air Fraction Holey Optical Fibers
Tanya M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett

Abstract—We develop a modal decomposition approach to solve
the full vector wave equation for holey optical fibers (HF). This
model can be used to explore the modal properties of a wide range
of HF’s, including those with large air holes. The optical properties
of HF can be tailored via the arrangement of the air holes, and this
flexibility leads to a wide range of practical applications.

Index Terms—Eigenfunctions, eigenvalues, modeling, op-
tical dispersion, optical fiber applications, orthogonal function
methods, periodic structures.

I. INTRODUCTION

T HE flexibility offered by holey optical fibers has generated
a great deal of interest in these rather unusual structures.

The cladding region in a holey fiber (HF) consists of a large
number of air holes running along the length of the fiber. Fig. 1
is an SEM photograph of a typical HF structure. HF’s guide
light due to the effective refractive index difference between the
core (formed by the absence of an air hole—see Fig. 1) and the
cladding.

For some specific periodic arrangements of the air holes, a
bandgap forms in the transverse plane, [1] and then the absence
of a single hole creates a localized state within the bandgap
which can be used to guide light along with fiber. Such fibers are
usually referred to as photonic crystal fibers (PCF’s), and we do
not explicitly consider this guidance mechanism here. Instead
we investigate a broader range of fiber structures; in a HF, the
holes do not need to conform to a periodic distribution in order
to guide light. HF’s exhibit unique transmission characteristics
(see [2] and [3]), and many of these properties can be tailored
via the hole distribution.

Most of the unusual properties of HF arise from the fact that
the effective index difference between core and cladding is a
strong function of wavelength, since at longer wavelengths the
modal field extends further into the air holes thereby reducing
the effective cladding index. As a consequence, some HF’s can
be single-moded regardless of the wavelength [2]. Another re-
sult of the HF geometry is that a significant fraction of the modal
power can be located inside the holes, which suggests that these
fibers may be useful as evanescent field devices [5], [6].

The first model developed for HF’s was theeffective index
model[2], which uses an equivalent step-index fiber approxi-
mation. Although this model provides some useful analytical re-
sults, it cannot accurately predict properties such as dispersion
or birefringence. These quantities depend critically on the ge-
ometry, and this approach ignores the complex transverse index
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profile in HF. In the full-vector technique described by Ferrando
et al. [7], the modal fields and the refractive index profile are
decomposed into plane wave components, and by doing this the
wave equation is reduced to an eigenvalue problem. Although
this approach can account for the complicated cladding struc-
ture of HF, it is computationally intensive. Also, the refractive
index profile is defined over a restricted region, and periodic
boundary conditions are used to extend the structure spatially.
This imposes an additional periodicity on the system which is
somewhat restrictive for HF’s, which, unlike PCF’s, do not need
to be periodic.

Alternative scalar approaches were developed independently
by Mogilevtsev et al. [8] and ourselves [3], and in both
approaches the electric field was described using localized
Hermite–Gaussian functions. This is efficient because it takes
advantage of the localization of the guided modes. However,
this approach cannot be accurate unless the refractive index
is also represented well. Reference [8] does not describe the
way in which they chose to describe the index distribution, but
in our method the central index defect and the air hole lattice
are described independently. We decompose the electric field
and index defect using localized functions, and the lattice of
air holes using periodic functions. This approach is efficient
because the quantities are decomposed using functions chosen
carefully to suit, and so a small number of terms can be used.
Also, like the purely plane-wave approach, this model can
accurately describe the complex transverse structures found in
HF.

To accurately model HF’s with large air holes, it is crucial to
use a full vector model. In [3] we found that when
the scalar approximation becomes inadequate (see Fig. 2 for def-
initions of and ). In particular, it is crucial to use a vector
model when predicting sensitive quantities such as dispersion.
Here we extend the scalar model from [3] to a full vector model
of light propagation to enable us to accurately predict the prop-
erties of a much fuller range of HF’s.

II. FULL MODAL VECTORMODEL

A. Background

As we are exploring the modal properties of HF, we take the
fiber to be uniform in the propagation () direction, and so the
modal electric field can be written in the form

(1)

where is the propagation constant of theth mode, and
and are the transverse and longitudinal components of the
modal electric field respectively. The axes used here are defined
in Fig. 2.
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Fig. 1. SEM photograph of a holey fiber cross-section,d=� � 0:2 (whered
is the hole diameter,� the hole separation). In this fiber the HF structure has
been enclosed in a solid jacket (see bottom left) to reduce its fragility.

We start by writing the transverse component of the modal
electric field in the following general form:

(2)

Using (1) and (2) in the full vector wave equation, we obtain the
following pair of coupled equations for the electric field com-
ponents and [9]

(3)

where is the wavenumber and is the
transverse refractive index profile. The subscript labeling the
mode number () has been dropped for brevity.

To solve (3) for HF’s, we decompose the transverse refractive
index profile and the modal electric field using orthogonal func-
tions. The choice of functions is crucial in making this method
efficient and accurate, and they are described briefly in Sec-
tion II-B.

B. Decompositions

The modal electric field is expanded as

(4)
[see (2)] where the are orthonormal Hermite–Gaussian
functions with a characteristic width , where is
the interhole separation. More details are given in [3]. Using
this decomposition, only a few terms are needed to reconstruct
observed modal profiles.

The transverse refractive index profile is described in two
parts. The periodic lattice of holes is described using periodic

Fig. 2. Idealized HF cross-section.

functions, and the central index defect is described using Her-
mite–Gaussians of characteristic width , where is the
defect diameter, as then fewer terms are required for accuracy.
Hence, we write

(5)

where and terms are used for the defect and holes, respec-
tively, and

(6)

(7)

is the transverse extent of the structure, and
is with replaced by .

To avoid producing overlap integrals which cannot be eval-
uated analytically, we choose also to expand using the
same functions [see (3)]. Hence we write

(8)

This decomposition makes the calculation significantly more ef-
ficient, and it is natural to use the same functions to decompose

, as it has the same spatial feature distribution as. For
a given HF, the coefficients , , , and are evaluated
by performing overlap integrals, and they only need to be cal-
culated once for any structure.

C. Electric Field Polarization

The decompositions defined in Section II-B can be used to
turn (3) into an eigenvalue problem, and this procedure is de-
scribed in [3] for the scalar case. For HF’s of the type shown
in Figs. 1 and 2, the modal field and the index profile are both
symmetric, which is why the even basis set given in Section II-B
can be used to represent them. When these decompositions are
used in the vector wave equation the equations for the- and
-components of the field (3) decouple.
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Fig. 3. Left, mode of the HF from Fig. 1 when polarizers were aligned for maximum throughput. Right, the polarizer at the output was rotated by 90�. The gain
was adjusted for the second image (at least 30 dB extinction occurs over 90�), and the contour levels are separated by 0.5 dB. Note that there is no significant
change in the shape of the mode.

The fact that (3) decouple is important, because it im-
plies that the modes of HF’s must be linearly polarized.
This has been confirmed experimentally using a length of
the HF shown in Fig. 1. Light at 1.5 m was launched
into the fiber, and plane polarizers were inserted at both
the output and input ends. The left plot in Fig. 3 shows the
fundamental mode from this fiber when the polarizers were
aligned to give maximum power throughput. As the polar-
izer at the output was rotated, we found that mode intensity
decreased until at 90rotation it was extinguished by at least
30 dB. The plot on the right in Fig. 3 shows the mode after
the 90 rotation; the camera gain has been adjusted so that
the mode shapes can be compared more easily. Notice that
no significant distortion of the mode shape occurs during
this rotation. This experiment was done for different orien-
tations of the polarizer at the input end, and the result was
unchanged.

The fact that the mode is extinguished by the rotation of the
output polarizer without any distortion of the mode shape leads
us to conclude that to a good approximation, the fundamental
modes are linearly polarized in this fiber. We expect that this will
remain true for other HF’s with similar symmetry properties.

In order to model HF with an asymmetric index profile or
to obtain accurate predictions for the second-mode cutoff, it is
necessary to use both odd and even basis functions in the decom-
positions. Then the- and -components of the wave equation
would no longer decouple. Although only even basis functions
are used here for simplicity, it is straightforward to add odd func-
tions to our decompositions, and we expect that this approach
should remain accurate and efficient with this extension.

D. Eigenvalue System

As described in Section II-C, for the structures considered
here, the vector wave equations for the- and -components of
the modal field separate, and so they can be considered inde-
pendently. We assign theand polarizations the propagation
constants and , respectively.

Using the decompositions described in Section II-B, the
vector wave equations then reduce to the following eigenvalue
systems:

(9)

where the eigenvectors have components defined by the
modal field coefficients thus:
where has been replaced by for compactness, and

. The matrices from (9) take the form

...
...

...
...

...
...

...
...

...
...

...
...

(10)

where

(11)

and the are overlap integrals of the modal functions, defined
as

(12)
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It is straightforward to evaluate analytically, and and
simplify to

(13)

where

(14)

and is simply a dummy variable of integration. The overlap
integrals in (14) can be evaluated analytically for the decompo-
sitions chosen in Section II-B, even though the mode and index
defect have different characteristic widths ( ). This is
a significant advantage, as numerical calculation of these over-
laps is computationally intensive.

By solving (9) the modes and corresponding propagation con-
stants of the fiber can be calculated. For this full vector problem,
a guided mode consists of a polarization doublet formed by-
and -components of the mode, and each component has an as-
sociated propagation constant. Both and are
matrices, and so the solution to each eigenvalue equation pro-
duces eigenvalue/eigenvector pairs. Only one or at most a
few of these pairs correspond to guided modes of the fiber, and
these modes can be distinguished by extracting the eigenvalues
( ) which fall within the range allowed by the structure (see
[3]).

III. RESULTS

Using the full vector model presented in Section II, a much
wider range of holey fibers (HF’s) can be explored. In particular,
it gives us the flexibility to probe HF’s with large air fractions,
and we find that these fibers have a rich and diverse range of
properties.

A. A Typical HF

We begin by presenting some results of our vector method for
a typical large air fraction HF. Fig. 4 shows an SEM image of
a HF we have fabricated with a relative hole size of
and a hole spacing of m. Note that unlike the fiber
shown in Fig. 1, the air holes in this fiber are large enough that
the full vector model is required. Here we describe the model

Fig. 4. SEM of a holey fiber withd=� � 0:6. Again, the structure was
enclosed in a solid jacket to reduce its fragility.

predictions, beginning with the simplest approximation for this
HF structure.

1) The First Approximation:We begin by describing some
results of the vector model for a HF with a perfect hexagonal ar-
rangement of holes. We use the parameters of the fiber in Fig. 4:
a relative hole size of and an interhole separation of

m. This is clearly a simplification because we as-
sume that the holes lie on a regular hexagonal lattice, and we
ignore the small interstitial air holes between the large air holes
in Fig. 4. These extra holes are typically only found in large air
fraction HF; in small air fraction HF the interstitials normally
close up during fabrication. Section III-A2 investigates the ef-
fect interstitial holes can have on the modal properties of HF.

Fig. 5 shows the intensity profiles of the fundamental modes
at m for this HF as calculated using the new vector
model when , terms are used. The re-
fractive index profile is superimposed on the modal profiles, and
the left and right plots show the- and -components of the po-
larization doublet respectively. Both components of the funda-
mental mode reflect the hexagonal lattice symmetry. Slight dif-
ferences between these components are apparent; for example
the -component is somewhat more extended in the(hori-
zontal) direction. Although these modes are similar, this does
not imply that it is valid to ignore the vector terms in the wave
equation.

The full vector model predicts that the area (see Sec-
tion III-B for definition) of the fundamental mode of this HF is
approximately 12 m for both the - and -components. This
is a relatively small mode area when compared with more con-
ventional fibers, and could be useful in enhancing nonlinear ef-
fects in these fibers. However, often a large mode area is desired
in order that nonlinear effects can be avoided altogether, and in
Section III-B we discuss the ways in which the mode area in a
HF can be tailored.

When a HF has large air holes, the effective index difference
between the core and the cladding is a very strong function of
wavelength, and hence this type of fiber is highly dispersive.
The group velocity dispersion (GVD) of the HF described above
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Fig. 5. Intensity in the fundamental modes at� = 1:5 �m for a HF withd=� = 0:6. The refractive index profile is superimposed. Left and right plots show the
x- andy-components of polarization doublet, respectively.P = 100,C = F = 10. The intensity contours are spaced by 1 dB.

( ) is approximately 30 psnm km (i.e., anoma-
lous dispersion) at m. The way in which the GVD is
calculated is described in [3].

2) Effect of Interstitial Holes:Section III-A1 presented the
predictions for the simplest possible HF geometry. The most ob-
vious difference between this HF and the real fiber shown in
Fig. 4 is the presence of interstitial holes (see Fig. 6, which is
a magnified view inside the cladding region). Indeed interstitial
holes are typically present in large air fraction HF’s. Here we
explore the influence these additional holes have on the modal
properties of the fiber. For simplicity we assume that the inter-
stitial holes are circular, and we take the hole diameter to be.
Although Fig. 6 shows that they are actually somewhat trian-
gular, this is a good approximation.

When the interstitial holes are much smaller than the wave-
length of light, they do not significantly influence the fiber prop-
erties, and so the mode is hexagonal in shape (see Fig. 5). At
the other extreme, when the holes are large relative to the wave-
length, the modal field decays rapidly inside them, and extends
out from the core between the interstitials. Hence the mode takes
on the (smaller) hexagonal shape defined by this inner ring of
triangular holes. Here we explore the region between these two
extremes, where the effect of the interstitials on the mode prop-
erties is not so obvious. Note that when small interstitials are
considered, it is crucial that (the number of terms used to de-
scribe the cladding region) is large enough to ensure an accurate
result.

When (the size of the interstitials) is increased from zero
the mode area decreases, as expected. For example, consider a
HF with , which is approximately the diameter of
circular air holes with the same area as the interstitials in the real
HF shown in Fig. 4. For this , we find that at m
the mode area and GVD are reduced to approximately 10m
and 8 ps nm km , respectively. Interestingly, we find that for
this example the interstitial holes circularize the mode profile,
as shown in Fig. 7. At around this value of , the decrease
in the intensity caused by the interstitials eliminates the fila-
ments of light which otherwise extend between the large holes

Fig. 6. Magnified view of the cladding region for the HF from Fig. 4.

(see Fig. 5). This circularization of the usually hexagonal mode
shape is potentially useful, as it makes the integration of HF’s
with conventional fiber systems more straightforward. Indeed,
even without this circularization, we have recently found that it
is possible to splice HF’s to conventional fiber types with a loss
of only dB [10], which is acceptable for many device appli-
cations.

B. Mode Area of HF’s

Simply altering the size or arrangement of the holes in a holey
fiber can have a profound effect on its properties. One prop-
erty of particular interest which can be readily tailored in HF
is the area of the fundamental mode. Often a large mode area
is desired so that high powers can be transmitted without in-
ducing nonlinear effects in the fiber [11], [12]. Alternatively,
small mode area fibers can be used to enhance these nonlinear-
ities. We showed in [3] that the HF geometry offers great flexi-
bility in the range of mode areas which can be achieved. In HF,
the mode area can to a large extent be tailored via the choice of
hole spacing ( ), hole size ( ), and the arrangement of these
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Fig. 7. Intensity at� = 1:5 �m, whend=� = 0:6, d =� = 0:085. The refractive index profile is superimposed forP = 300,C = F = 10. The intensity
contours are spaced by 1 dB.

holes. In [3], we were limited to considering fibers for which
the scalar approximation is valid, and hence were restricted to
HF’s with small holes. Using the vector model developed in this
paper, we can explore the mode areas achievable in a much fuller
range of HF’s.

In the small air fraction HF’s considered in [3], the mode
area , (see [3]) is principally determined by the size of the
core, which is defined by (the separation between the holes
in the HF). For such fibers, the mode size is typically a weak
function of wavelength. Although shorter wavelengths decrease
more rapidly inside a hole, typically very little of the model
power is located within the holes in these fibers, and so this
has only a small effect on the mode size. Even with this restric-
tion, small air fraction HF’s can demonstrate a very wide range
of mode areas, ranging from significantly less than one micron
squared to a few hundred microns squared at 1.5m, simply by
varying [3]. One disadvantage of using a largeto achieve a
large mode area is that the bend loss of a holey fiber increases
in proportion to [2].

We find that if is smaller than the wavelength of the light
guided by the fiber, then a significant fraction of the funda-
mental mode’s power (up to %) can be located in the air
holes [5]. In this regime, the mode is not as closely confined to
the core, and so the mode area can be significantly larger than
the core area. However, in the wavelength range of interest for
telecommunications purposes, this condition is only satisfied for
very small , and so even though the mode size is significantly
larger than the core, the resulting mode areas are still tiny. Fig. 8
shows for a range of such HF’s; note that the results for the

and -components of the polarization doublet which forms
the fundamental mode are very similar. These fibers have very
small mode areas, on the order of a micron squared. One poten-
tial application of such fibers is in exploring nonlinear effects,
as the tight mode confinement implies that such effects should
be present even at quite moderate powers.

Simply by increasing the distance between the holescan
be increased dramatically. This is demonstrated in Fig. 9, which
gives results for a spacing of m. This was chosen

Fig. 8. A (�) for a range of HF’s with large holes.� = 0:75 �m, the
solid, dotted and dashed pairs of lines correspond tod=� = 0:7, 0:8, and0:9,
respectively, each pair is comprised of the result for thex andy-components.

to correspond to the HF described in [13], which indicates that
it is feasible to fabricate such HF’s. This graph indicates that
rather large mode areas of the order of a few hundred squared
microns are possible in these fibers. Figs. 8 and 9 both suggest
that regardless of , is larger when the air fill fraction is
lower. This occurs because when the holes are small, the degree
to which the modal field decays within them is also small, and
so the field extends further into the cladding region.

IV. DISCUSSION ANDCONCLUSION

The full vector model developed in this paper is a powerful
predictive tool which allows us to calculate the modal proper-
ties of a much fuller range of holey fibers than previous scalar
techniques. It is an efficient and accurate alternative to existing
techniques. Recently this model was validated against experi-
ment by comparing the predictions for the group velocity dis-
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Fig. 9. A (�) for a range of HF’s with� = 23 �m. The solid, dotted and
dashed pairs of lines correspond tod=� = 0:5, 0.7, and 0.9, respectively, each
pair is comprised of the result for thex- andy-components.

persion with measured values for a particular HF [10]. This is
a stringent test, and allows us to have confidence in the predic-
tions made by our model.

In Section III-A2, predictions were made for one HF which
we have fabricated. We find that it is possible to produce HF
which has a circular fundamental mode rather than the more typ-
ical hexagonal shape. This is an advantage because it allows for
more straightforward integration with conventional fiber sys-
tems.

Both here and in [3], we have shown that the complicated
cladding structure of HF leads to highly unusual and tailorable
modal properties. For example, in Section III-B, we showed that
the mode area in HF’s can be tailored over three orders of mag-
nitude. This high degree of flexibility means that HF’s can be
designed to suit a very wide range of applications. Using the
new efficient vector model developed here, many other proper-
ties of large air fraction holey fibers can now be explored. For
example, the extremely large index difference between the core
and cladding in HF’s can lead to very high dispersion in these
fibers. Using the new model developed here, it is now possible
to explore the range of HF’s which may be suited to dispersion
compensation applications.
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