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Modeling Large Air Fraction Holey Optical Fibers

Tanya M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett

Abstract—We develop a modal decomposition approach to solve profile in HF. In the full-vector technique described by Ferrando
the full vector wave equation for holey optical fibers (HF). This et al. [7], the modal fields and the refractive index profile are
model can be used to explore the modal properties of a wide range yocomposed into plane wave components, and by doing this the
of HF's, including those with large air holes. The optical properties S :
of HF can be tailored via the arrangement of the air holes, and this nge equation is reduced to an e'genva'ﬁie problem. .Although
flexibility leads to a wide range of practical applications. this approa.ch can account for the complicated cladding struc-

Index Terms—Eigenfunctions, eigenvalues, modeling, op- Fure of HFZ It I.S computatlonally mtepswe. AIS.O’ the refrac.tlvg
tical dispersion, optical fiber applications, orthogonal function ndex profile is defined over a restricted region, and periodic
methods, periodic structures. boundary conditions are used to extend the structure spatially.
This imposes an additional periodicity on the system which is
somewhat restrictive for HF's, which, unlike PCF’s, do not need
to be periodic.

HE flexibility offered by holey optical fibers has generated Alternative scalar approaches were developed independently

a great deal of interest in these rather unusual structurby. Mogilevtsev et al. [8] and ourselves [3], and in both
The cladding region in a holey fiber (HF) consists of a largapproaches the electric field was described using localized
number of air holes running along the length of the fiber. Fig. lermite—Gaussian functions. This is efficient because it takes
is an SEM photograph of a typical HF structure. HF’s guidedvantage of the localization of the guided modes. However,
light due to the effective refractive index difference between thkis approach cannot be accurate unless the refractive index
core (formed by the absence of an air hole—see Fig. 1) and thealso represented well. Reference [8] does not describe the
cladding. way in which they chose to describe the index distribution, but

For some specific periodic arrangements of the air holesjraour method the central index defect and the air hole lattice
bandgap forms in the transverse plane, [1] and then the absease described independently. We decompose the electric field
of a single hole creates a localized state within the bandgapd index defect using localized functions, and the lattice of
which can be used to guide light along with fiber. Such fibers agdr holes using periodic functions. This approach is efficient
usually referred to as photonic crystal fibers (PCF’s), and we thecause the quantities are decomposed using functions chosen
not explicitly consider this guidance mechanism here. Insteadrefully to suit, and so a small number of terms can be used.
we investigate a broader range of fiber structures; in a HF, tAéso, like the purely plane-wave approach, this model can
holes do not need to conform to a periodic distribution in ordeccurately describe the complex transverse structures found in
to guide light. HF's exhibit unique transmission characteristidsF.

(see [2] and [3]), and many of these properties can be tailoredlo accurately model HF's with large air holes, it is crucial to
via the hole distribution. use a full vector model. In [3] we found that whépA > 0.35

Most of the unusual properties of HF arise from the fact théte scalar approximation becomes inadequate (see Fig. 2 for def-
the effective index difference between core and cladding isritions of d and A). In particular, it is crucial to use a vector
strong function of wavelength, since at longer wavelengths thedel when predicting sensitive quantities such as dispersion.
modal field extends further into the air holes thereby reducindere we extend the scalar model from [3] to a full vector model
the effective cladding index. As a consequence, some HF's aaflight propagation to enable us to accurately predict the prop-
be single-moded regardless of the wavelength [2]. Another mrties of a much fuller range of HF's.
sult of the HF geometry is that a significant fraction of the modal
power can be located inside the holes, which suggests that these Il. FuLL MODAL VECTORMODEL
fibers may be useful as evanescent field devices [5], [6].

The first model developed for HF’s was teffective index A Background
model[2], which uses an equivalent step-index fiber approxi- As we are exploring the modal properties of HF, we take the
mation. Although this model provides some useful analytical réber to be uniform in the propagation)(direction, and so the
sults, it cannot accurately predict properties such as dispersinodal electric field can be written in the form
or birefringence. These quantities depend critically on the ge-
ometry, and this approach ignores the complex transverse index Ej(z,y, 2) = (ej(a:, y) +¢5(, y)é) exp(if;z) (1)

. INTRODUCTION
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Fig. 2. Idealized HF cross-section.

Fig. 1. SEM photograph of a holey fiber cross-sectigh) = 0.2 (whered : : - ; : _
is the hole diameter\ the hole separation). In this fiber the HF structure hagu_ncuons' ar_]d the central md_ex- def_eCt is described gsmg Her
been enclosed in a solid jacket (see bottom left) to reduce its fragility. mite—Gaussians of characteristic width « d, whered is the

defect diameter, as then fewer terms are required for accuracy.

We start by writing the transverse component of the modgence, we write
electric field in the following general form:

~
N

Cc—-1
@ n? =Y calle,y) + Y PuPley) ()

t S A
e =cxr+e,y.
j = Cx vy a,b=0 a, b=0

Using (1) and (2) in the full vector wave equation, we obtain thgne e and P terms are used for the defect and holes, respec-

following pair of coupled equations for the electric field COMgively, and

ponentse,(x, y) ande,(z, y) [9]
V2 /32 ) -1 8 9 In n2 9 1n n2? C(xa y) :z/}:zl(x)z/}l()l(y) (6)
{ﬁ k2 o } “ T2 O <6x gz e oy ) Pz, y) = Cos<2a7m> Cos<2b7ry> @)
v: B2 2 -1 9 9 In n? 9 In n? ¢ ¢
{ﬁ T2 tn } =2 Jy <6”’ Ox tey dy ) L is the transverse extent of the structure, and

®) P¢ isap™ with w,, replaced byw,.
To avoid producing overlap integrals which cannot be eval-

wherek = 27 /X is the wavenumber and = n(z, y) is the yated analytically, we choose also to expan¢h?) using the

transverse refractive index profile. The subscript labeling tRgme functions [see (3)]. Hence we write

mode numbery) has been dropped for brevity. ol oy

To solve (3) for HF's, we decompose the transverse refractive N N

index profile and the modal electric field using orthogonal func- In(n?) = Z carClw, y) + Z PPz, y).  (8)

tions. The choice of functions is crucial in making this method @, b=0 a,b=0

efficient and accurate, and they are described briefly in Sernis decomposition makes the calculation significantly more ef-

tion 11-B. ficient, and it is natural to use the same functions to decompose
o In(n?), as it has the same spatial feature distribution’ag=or
B. Decompositions a given HF, the coefficients,s,, c!%, p.;, andpl are evaluated
The modal electric field is expanded as by performing overlap integrals, and they only need to be cal-
. culated once for any structure.
e, y) = 4 (Eanva’ (@)™ (W)E + EQ 0" (@ (WY) ¢ Electric Field Polarization
a, b=0

(4) The decompositions defined in Section 11-B can be used to
[see (2)] where the)* are orthonormal Hermite—Gaussiarturn (3) into an eigenvalue problem, and this procedure is de-
functions with a characteristic widthy,, « A, whereA is scribed in [3] for the scalar case. For HF's of the type shown
the interhole separation. More details are given in [3]. Using Figs. 1 and 2, the modal field and the index profile are both
this decomposition, only a few terms are needed to reconstragimmetric, which is why the even basis set given in Section 11-B
observed modal profiles. can be used to represent them. When these decompositions are

The transverse refractive index profile is described in twased in the vector wave equation the equations forzthand

parts. The periodic lattice of holes is described using periodiecomponents of the field (3) decouple.
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Fig. 3. Left, mode of the HF from Fig. 1 when polarizers were aligned for maximum throughput. Right, the polarizer at the output was rotatathbygah
was adjusted for the second image (at least 30 dB extinction occurs f)emfd the contour levels are separated by 0.5 dB. Note that there is no significant
change in the shape of the mode.

The fact that (3) decouple is important, because it im- Using the decompositions described in Section II-B, the
plies that the modes of HF's must be linearly polarizediector wave equations then reduce to the following eigenvalue
This has been confirmed experimentally using a length systems:
the HF shown in Fig. 1. Light at 1.5%wm was launched

into the fiber, and plane polarizers were inserted at both . 32

the output and input ends. The left plot in Fig. 3 shows the Mob, = 52V

fundamental mode from this fiber when the polarizers were /32

aligned to give maximum power throughput. As the polar- Myv, = L2 vy 9)

izer at the output was rotated, we found that mode intensity

decreased until at 9Qotation it was extinguished by at leaswhere the eigenvectors, have components defined by the
30 dB. The plot on the right in Fig. 3 shows the mode aftenodal field coefficients thus(&g, ... &5 €5 ... €3 5)
the 90 rotation; the camera gain has been adjusted so thétere /' — 1 has been replaced b¥ for compactness, and
the mode shapes can be compared more easily. Notice that x, . The matrices\/,, from (9) take the form

no significant distortion of the mode shape occurs during

this rotation. This experiment was done for different orien- / Mgyo ... MGoor Moo -+ MGors
tations of the polarizer at the input end, and the result was : : : : : :
unchanged. - N - N

The fact that the mode is extinguished by the rotation of the //\\/t/t%foo e M%fOf 'A.A//tt%]-'lo e M((foff
output polarizer without any distortion of the mode shape leads 1000 == 1007 1010 = 1077
us to conclude that to a good approximation, the fundamental : : : : : :
modes are linearly polarized in this fiber. We expect that thiswill \ M% o, ... M%zor Mz, ... MGz
remain true for other HF’s with similar symmetry properties. (10)

In order to model HF with an asymmetric index profile or
to obtain accurate predictions for the second-mode cutoff, itighere
necessary to use both odd and even basis functions in the decom-
positions. Then the- andy-components of the wave equation @ = 1 JpSy (R 1(3) (11)
would no longer decouple. Although only even basis functions aved g2 Tebed T Tabed g2 abed
are used here for simplicity, it is straightforward to add odd fun‘ifnd theT are overlap integrals of the modal functions, defined
tions to our decompositions, and we expect that this appro%g '
should remain accurate and efficient with this extension.

Da= [ [ @@V @ ol dedy
D. Eigenvalue System o
1Ra= [ [ e e @@ ddy
As described in Section II-C, for the structures considered =
here, the vector wave equations for theandy-components of 1(3% / / P (@) (y)
a b \Y
the modal field separate, and so they can be considered inde®”*
pendently. We assign theandy polarizations the propagation

constants3, andg,, respectively.

11 TLQ
< g (@ ™) a2
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It is straightforward to evaluat&®) analytically, and/® and
I® simplify to

c-1 r-1
2 22) (22 21) ,(21
I((wZ;d: Z cfgIJ(fac)Ig(bd)"‘ Z pfgIJ(fac)Ig(bd)
f,9=0 f,9=0
c-1 r-1
3z _ In 7(22) £(31) In 7(21) £(32)
Iabcd - Z cf!]‘[gbd Ifac - Z pfﬂ‘[gbd Ifac
f,9=0 f,9=0
c-1 r-1
3,y _ In 7(22) £(31) In 7(21) £(32)
Topoi = = Z ol jac Lgvd’ — Z Pigl o Lgpa  (13)
f.9=0 f.9=0

where

o0 2/
18, = [ (22 ) upeneas

oo
o>
(22) _ d m m Fig. 4. SEM of a holey fiber withi/A =~ 0.6. Again, the structure was
Iilizis - [m z/)“ (3)1/)22 (3)1/)23 (8) ds enclosed in a solid jacket to reduce its fragility.

o>

N - CRRLL O

irizig 0s  Ve\s)T g ads predictions, beginning with the simplest approximation for this
o m HF structure.
78D / M (s) wm(s)M ds (14) 1) The First Approximation:We begin by describing some
e —oo O3 " s results of the vector model for a HF with a perfect hexagonal ar-

L . . . rangement of holes. We use the parameters of the fiber in Fig. 4:
and s is simply a dummy variable of integration. The overla g P g

. . _ B relative hole size of /A = 0.6 and an interhole separation of
mt_egrals in (14) can be evaluated analytically for the deCOT"'F’R' = 3.2 pum. This is clearly a simplification because we as-

Z't'fonf rc]hoszr_nf;n Setct|ﬁn ”'?‘ gvgn th.gtjgh the mOd?”?.nd. 'ndgﬁfme that the holes lie on a regular hexagonal lattice, and we
efect have different characteristic widths,( # wq). Thisis ;0046 the small interstitial air holes between the large air holes

a significant advantage, as humerical calculation of these ovi Fig. 4. These extra holes are typically only found in large air

IapB:s IS clompu;attfnally dlntens:jve. di i fraction HF; in small air fraction HF the interstitials normally
y solving (9) the modes and corresponding propagation Cose up during fabrication. Section 1lI-A2 investigates the ef-

stants of the fiber can be calculated. For this full vector probleq%Ct interstitial holes can have on the modal properties of HF
a guided mode consists of a polarization doublet formed-by Fig. 5 shows the intensity profiles of the fundamental modes

andy-components of the mode, and each component has angs = 15 »m for this HF as calculated using the new vector
sociated propagation constant. Bdth. andM,, are 72 x F?

i d 5o th lution t h ei | i model whenP = 100, C = F' = 10 terms are used. The re-
matrices, and so the solution to each eigenvalue equation i e ingex profile is superimposed on the modal profiles, and

5 . :
ducesF“ eigenvalue/eigenvector pairs. Only one or at mosttﬁﬁ left and right plots show the andy-components of the po-

few of these pairs corrgs_ponq to guided modgs of the.fiber, Afization doublet respectively. Both components of the funda-
these modes can be distinguished by extracting the eigenval

(82 /k*) which fall within the range allowed by the structure (Sefyre
[3]).

tal mode reflect the hexagonal lattice symmetry. Slight dif-
nces between these components are apparent; for example
the z-component is somewhat more extended in ithghori-
zontal) direction. Although these modes are similar, this does
Ill. RESULTS not imply that it is valid to ignore the vector terms in the wave

: . . guation.
Using the full vector model presented in Section Il, a much The full vector model predicts that the arelag (see Sec-

ywd_er range of hole_zy_f}bers (HF's) car’1 be_explored. _In part_|culatri,on [1I-B for definition) of the fundamental mode of this HF is
it gives us the flexibility to probe HF's with large air fractions, . 2 .
. . . . a(g)foroxmately 12:m* for both thez- andy-components. This
and we find that these fibers have a rich and diverse range. . .
i is a relatively small mode area when compared with more con-
properties. . . . X .
ventional fibers, and could be useful in enhancing nonlinear ef-
) fects in these fibers. However, often a large mode area is desired
A. A Typical HF in order that nonlinear effects can be avoided altogether, and in
We begin by presenting some results of our vector method fection 111-B we discuss the ways in which the mode area in a
a typical large air fraction HF. Fig. 4 shows an SEM image dfiF can be tailored.
a HF we have fabricated with a relative hole sizelpf\ ~ 0.6 When a HF has large air holes, the effective index difference
and a hole spacing of = 3.2 um. Note that unlike the fiber between the core and the cladding is a very strong function of
shown in Fig. 1, the air holes in this fiber are large enough thatvelength, and hence this type of fiber is highly dispersive.

the full vector model is required. Here we describe the mod€he group velocity dispersion (GVD) of the HF described above
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Fig. 5. Intensity in the fundamental modes\at 1.5 pm for a HF withd/A = 0.6. The refractive index profile is superimposed. Left and right plots show the
z- andy-components of polarization doublet, respectivély= 100, C' = F' = 10. The intensity contours are spaced by 1 dB.
(d/A = 0.6) is approximately 30 ppm~—t-km~! (i.e., anoma- ‘
lous dispersion) ak = 1.5 um. The way in which the GVD is
calculated is described in [3]. ‘ ‘
predictions for the simplest possible HF geometry. The most ob-
vious difference between this HF and the real fiber shown in
Fig. 4 is the presence of interstitial holes (see Fig. 6, which is
a magnified view inside the cladding region). Indeed interstitial
holes are typically present in large air fraction HF's. Here we
explore the influence these additional holes have on the modal
properties of the fiber. For simplicity we assume that the inter-
Alth . . . ol nole?
ough Fig. 6 shows that they are actually somewhat trian- . \\G'ff"““‘

gular, this is a good approximation. u ' ‘

When the interstitial holes are much smaller than the wave- ' ‘
len_gth oflight, they do nOt_Signiﬁcantly ir_lfluence the ﬁbelt prOpT:i . 6. Magnified view of the cladding region for the HF from Fig. 4.
erties, and so the mode is hexagonal in shape (see Fig. 5). Rt
the other extreme, when the holes are large relative to the wave- o o
length, the modal field decays rapidly inside them, and exten®€ Fig- 5). This circularization of the usually hexagonal mode
outfrom the core between the interstitials. Hence the mode tai&&pe is potentially useful, as it makes the integration of HF’s
on the (smaller) hexagonal shape defined by this inner ring Wwjth conventional fiber systems more straightforward. Indeed,
extremes, where the effect of the interstitials on the mode prdpPossible to splice HF's to conventional fiber types with a loss
erties is not so obvious. Note that when small interstitials afé©nly ~1 dB [10], which is acceptable for many device appli-
considered, it is crucial that (the number of terms used to de-cations.
scribe the cladding region) is large enough to ensure an accurate
result. B. Mode Area of HF's

Whend; (the size of the interstitials) is increased from zero Simply altering the size or arrangement of the holes in a holey
the mode area decreases, as expected. For example, consifibeacan have a profound effect on its properties. One prop-
circular air holes with the same area as the interstitials in the réathe area of the fundamental mode. Often a large mode area
HF shown in Fig. 4. For thig; /A, we find that at\ = 1.5 um is desired so that high powers can be transmitted without in-
the mode area and GVD are reduced to approximatelyr® ducing nonlinear effects in the fiber [11], [12]. Alternatively,
and 8 ps nimt km~1, respectively. Interestingly, we find that forsmall mode area fibers can be used to enhance these nonlinear-
this example the interstitial holes circularize the mode profil@jes. We showed in [3] that the HF geometry offers great flexi-
as shown in Fig. 7. At around this value &f/ A, the decrease bility in the range of mode areas which can be achieved. In HF,
in the intensity caused by the interstitials eliminates the fildhe mode area can to a large extent be tailored via the choice of

2) Effect of Interstitial Holes:Section IlI-Al presented the 1
stitial holes are circular, and we take the hole diameter td, be l ‘
triangular holes. Here we explore the region between these tR{n without this circularization, we have recently found that it
HF with d; /A = 0.085, which is approximately the diameter oferty of particular interest which can be readily tailored in HF
ments of light which otherwise extend between the large holbsle spacing4), hole size {/A), and the arrangement of these
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Fig. 7. Intensity ab = 1.5 gm, whend/A = 0.6, d;/A = 0.085. The refractive index profile is superimposed fr= 300, C = F = 10. The intensity
contours are spaced by 1 dB.

holes. In [3], we were limited to considering fibers for which 6
the scalar approximation is valid, and hence were restricted tc B
HF’s with small holes. Using the vector model developed in this
paper, we can explore the mode areas achievable in amuch fulle
range of HF's.

In the small air fraction HF's considered in [3], the mode &~
aread.g, (see [3]) is principally determined by the size of the £
core, which is defined by (the separation between the holes \3;
in the HF). For such fibers, the mode size is typically a weak ..
function of wavelength. Although shorter wavelengths decrease <"
more rapidly inside a hole, typically very little of the model
power is located within the holes in these fibers, and so this
has only a small effect on the mode size. Even with this restric-
tion, small air fraction HF's can demonstrate a very wide range
of mode areas, ranging from significantly less than one micron 0
squared to a few hundred microns squared af:inSsimply by 05 1 15 2
varying A [3]. One disadvantage of using a largeo achieve a A (um)
large mode area is that the bend loss of a holey fiber increases
in proportion toA® [2]. Fig. 8. A.()\) for a range of HF’s with large holess = 0.75 pm, the

We find that if A is smaller than the wavelength of the lightsolid, dotted and dashed pairs of lines correspontjtb = 0.7, 0.8, and0.9,
guided by the fiber, then a significant fraction of the funddgspectlvely, each pair is comprised of the result forttedy-components.
mental mode’s power (up t&30%) can be located in the air ) ) S
holes [5]. In this regime, the mode is not as closely confined t§ correspond to the HF described in [13], which indicates that
the core, and so the mode area can be significantly larger tHai§ féasible to fabricate such HF's. This graph indicates that
the core area. However, in the wavelength range of interest f8fher large mode areas of the order of a few hundred squared
telecommunications purposes, this condition is only satisfied fBlicrons are possible in these fibers. Figs. 8 and 9 both suggest
very smallA, and so even though the mode size is significantifat regardless o, A.q is larger when the air fill fraction is
larger than the core, the resulting mode areas are still tiny. Fig@ver- This occurs because when the holes are small, the degree
showsA.z for a range of such HF’s; note that the results for th{® Which the modal field decays within them is also small, and
+ and y-components of the polarization doublet which form&© the field extends further into the cladding region.
the fundamental mode are very similar. These fibers have very
small mode areas, on the order of a micron squared. One poten- IV. DISCUSSION ANDCONCLUSION
tial application of such fibers is in exploring nonlinear effects, The full vector model developed in this paper is a powerful
as the tight mode confinement implies that such effects shoygbdictive tool which allows us to calculate the modal proper-
be present even at quite moderate powers. ties of a much fuller range of holey fibers than previous scalar

Simply by increasing the distance between the hdlgscan techniques. It is an efficient and accurate alternative to existing
be increased dramatically. This is demonstrated in Fig. 9, whigdthniques. Recently this model was validated against experi-
gives results for a spacing of = 23 um. This was chosen ment by comparing the predictions for the group velocity dis-

4_
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Fig. 9.
dashed pairs of lines correspond#oA = 0.5

pair is

persi
a stri
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In Section IlI-A2, predictions were made for one HF WhIC|

600

200 =7

Ace(X) for arange of HF's withA = 23 pm. The solid, dotted and
,0.7, and 0.9, respectively, each
comprised of the result for the andy-components.

on with measured values for a particular HF [10]. This
ngent test, and allows us to have confidence in the prec
made by our model.
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(20]
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(12]
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-

we have fabricated. We find that it is possible to produce HF
which has a circular fundamental mode rather than the more typ-
ical hexagonal shape. This is an advantage because it allows for
more straightforward integration with conventional fiber sys
tems.

Both here and in [3], we have shown that the complicate
cladding structure of HF leads to highly unusual and tailorah
modal properties. For example, in Section I11-B, we showed th
the mode area in HF's can be tailored over three orders of m:
nitude. This high degree of flexibility means that HF's can b
designed to suit a very wide range of applications. Using the
new efficient vector model developed here, many other proper-
ties of large air fraction holey fibers can now be explored. For
example, the extremely large index difference between the cer
and cladding in HF’s can lead to very high dispersion in the:
fibers. Using the new model developed here, it is now possik:;

to explore the range of HF's which may be suited to dispersi
compensation applications.
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(4]
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(6]
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