2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Journal of Lightwave Technology
Volume 18 Number 2, February 2000

Table of Contents for this issue

Complete paper in PDF format

Birefringence Free Planar Optical Waveguide Made by Flame Hydrolysis Deposition (FHD) Through Tailoring of the Overcladding

A. Kilian, J. Kirchhof, B. Kuhlow, G. Przyrembel and W. Wischmann

Page 193.

Abstract:

Stresses developing in a planar waveguide resulting from the different thermal expansion coefficients of the substrate and the three glass layers (buffer, core and cladding) were analyzed using a finite element method. It can be shown that mainly the thermal expansion of the overcladding determines the birefringence in the finished waveguide. Based on that result, recipes for an overcladding made with the flame-hydrolysis-deposition-(FHD)-process were devised. We demonstrate the absence of birefringence in a commercial waveguide layer overclad with this glass. The high doping levels required for the cladding to have a thermal expansion coefficient sufficient for this raises concerns about the moisture sensitivity of such a glass. We examined the depth dependent composition of the glass using WD-ESCA (wavelength dispersive electron microprobe) and show, that at the surface a layer depleted of dopants is formed during the high temperature sintering process. This layer can serve as a protective coating to isolate the underlying, higher doped layer from the effects of moisture. Analysis of the stresses shows that this does not effect the birefringence behavior of the waveguide.

References

  1. M. Kawachi, "Recent progress in silica-based planar lightwave circuits on silicon", Inst. Elect. Eng. Proc.-Optoelectron., vol. 143 , no. 5, pp.  257- 262, 1996.
  2. Y. P. Li and C. H. Henry, "Silica-based optical integrated circuits", Inst. Elect. Eng. Proc.-Optoelectron., vol. 143, no. 5, pp.  262- 280, 1996.
  3. S. Suzuki, et al. "Polarization-insensitive arrayed-waveguide gratings using dopant-rich silica-based glass with thermal expansion adjusted to Si substrate", Electron. Lett., vol. 33, no. 13, p.  1173, 1997.
  4. C. Henry, M. Milbrodt and H. Yaffe, " Polarization compensated integrated optical filters and multiplexers", U.S. Patent 5 341 444.
  5. B. Green, et al. "Radiolytic modification of birefringence in silica planar waveguide structures", U.S. Patent 5 506 925.
  6. Y. Inoue, et al. "Polarization mde converter with polyimide half waveplate in silica based planar lightwave circuits", IEEE Photon. Technol. Lett., vol. 6, no. 5, p.  626, 1994.
  7. M. Kawachi, et al. "Single mode channel optical waveguide with a stress-induced birefringence control region ", U.S. Patent 4 781 424.
  8. S. M. Ojha, et al. "Simple method of fabricating polarization insensitive and very low crosstalk AWG grating devices", Electron. Lett., vol. 34, no.  1, p.  78, 1998.
  9. W. Vogel, Glaschemie, 3rd ed.   Berlin : Germany : Springer, 1992.
  10. L. Maissel, "Thermal expansion of silicon", J. Appl. Phys., vol. 31 , p.  22, 1960.
  11. J. J. Wortman and R. A. Evans, "Young's modulus, shear modulus and Poisson's ratio in silicon and Germanium", J. Appl. Phys., vol. 36, no.  1, p.  153, 1965.
  12. G. W. Scherer, "Stress-induced index profile distortions in optical waveguides", Appl. Opt., vol. 19, no. 12, p.  2000 , 1980.