2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Journal of Lightwave Technology
Volume 18 Number 2, February 2000

Table of Contents for this issue

Complete paper in PDF format

Frequency-Dependent Characteristics of an Ion-Implanted GaAs MESFET with Opaque Gate Under Illumination

Nandita Saha Roy, B. B. Pal and R. U. Khan

Page 221.

Abstract:

Commercial metal-semiconductor-field-effect tran- sistors (MESFET's) have opaque gate. We present here the frequency-dependent characteristics of an ion-implanted GaAs MESFET with opaque gate under illumination. The incident light enters the device through the gate-source and gate-drain spacings. Two photovoltages are developed: one across the Schottky junction due to generation in the side walls of the depletion layer below the gate and the other across the channel-substrate junction due to generation in the channel-substrate depletion region. The frequency dependence of the two photovoltages along with channel charge, drain-source current, transconductance and channel conductance of the device have been studied analytically and compared with the published theoretical results. For the first time, a commercially available GaAs optically illuminated field-effect transistor (OPFET) has been analyzed for frequency-dependent characteristics instead of the transparent/semitransparent gate OPFET.

References

  1. C. Baack, G. Elze and G. Walf, "GaAs MESFET: A high speed optical detector", Electron. Lett., vol. 13, no. 7, p.  193, Mar.  1977.
  2. H. Mizuno, "Microwave characteristics of an optically controlled GaAs MESFET", IEEE Trans. Microwave Theory Tech., vol. MTT-31 , pp.  596- 600, July  1983.
  3. S. Mishra, V. K. Singh and B. B. Pal, "The effect of surface recombination on the frequency dependent characteristics of an ion-implanted GaAs OPFET", IEEE Trans. Electron Devices, vol. 37, pp.  942- 946, Apr.  1990.
  4. B. B. Pal, Shubha, K. Kumar and R. U. Khan, "Frequency dependent behavior of an ion-implanted GaAs OPFET considering photovoltaic effect and the gate depletion width modulation ", Solid State Electron., vol. 38, no. 5, pp.  1097- 1102, 1995 .
  5. Shubha, B. B. Pal and R. U. Khan, "Optically controlled ion-implanted GaAs MESFET characteristic with opaque gate", IEEE Trans. Electron Devices, vol.  45, pp.  78- 84, Jan.  1998.
  6. G. W. Taylor, H. M. Darley and P. K. Chatterjee, "A device model for an ion-implanted MESFET ", IEEE Trans. Electron Devices, vol. ED-26, pp.  172 - 182, Mar.  1979.
  7. B. B. Pal and S. N. Chattopadhyay, "GaAs OPFET characteristics considering the effect of gate depletion modulation due to incident radiation", IEEE Trans. Electron Devices, vol. 39, pp.  1021- 1027, May  1992 .
  8. Y. Zebda and S. Abu Helweh, "AC characteristics of optically controlled MESFET (OPFET)", J.Lightwave Technol., vol. 15, pp.  1205- 1211, July  1997.
  9. S. M. Sze, Physics of Semiconductor Devices, 2nd ed.   New Delhi : India : Wiley Eastern Ltd. , 1983 , pp.  755- 755. 
  10. Shubha, R. B. Lohani, B. B. Pal and R. U. Khan, "A generalized D.C model for GaAs OPFET considering ion implanted profile", Optic. Eng., vol. OPD.ENG. 37, no.  4, pp.  1343 - 1352, Apr.  1998.
  11. R. N. Simons, "Microwave performance of an optically controlled AlGaAs/GaAs high electron mobility transistor and GaAs MESFET", IEEE Trans. Microwave Theory Tech., vol. MTT-35, pp.  1444- 1455, Dec.   1989.
  12. S. Kawasaki, H. Shiomi and K. Matsugatani, "A novel FET model including an illumination-intensity parameter for simulation of optically controlled millimeter-wave oscillators ", IEEE Trans. Microwave Theory Tech., vol. 46, pp.  820- 828, June  1998.