2000 IEEE.
Personal use of this material is
permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for
creating new collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the
IEEE.
IEEE Journal of Lightwave Technology
Volume 18 Number 2, February 2000
Table of Contents for this issue
Complete paper in PDF format
Bragg Gratings in Multimode
and Few-Mode Optical Fibers
Toru Mizunami,
Member, OSA
Tzvetanka V. Djambova
,
Tsutomu Niiho and Sanjay Gupta
Page 230.
Abstract:
Bragg gratings in optical fibers in multimode propagation are
investigated experimentally and theoretically. Bragg gratings formed in optical
fibers in multimode propagation show multiple reflection peaks or multiple
transmission dips in the reflection or transmission spectra, respectively.
For standard graded-index multimode fiber, the number of reflection peaks
of a Bragg grating depends on excitation condition of propagating modes. The
number of reflection peaks of a Bragg grating at around 1.55
µm is 19 for highly multimode excitation and 3-4
for lower order mode excitation. We analyze the phase-matching conditions
of the propagating modes and identify half of the reflection peaks as the
reflection to the same mode and the rest as the reflection to the neighboring
modes. In dispersion-shifted fiber, a Bragg grating at around 0.8
µm in three-mode propagation shows three reflection
peaks in the reflection spectrum. The temperature dependence of each reflection
peak is similar to that of a conventional Bragg grating in single-mode fiber.
Polarization dependence measured on a Bragg grating in multimode graded-index
fiber is negligible. An advantage of Bragg gratings in multimode fiber (MMF)
and the applications are discussed.
References
-
G.
Meltz, W. W.
Morey and W. H.
Glenn, "Formation of Bragg gratings in optical fibers
by a transverse holographic method", Opt. Lett., vol. 14, pp. 823- 825,
Aug. 1989.
-
A.
Othonos, "Fiber Bragg gratings",
Rev. Sci. Instrum.
, vol. 68, pp. 4309- 4341, Dec. 1997.
-
K. H.
Wanser, K. F.
Voss and A. D.
Kersey, "Novel fiber devices and sensors based on multimode
fiber Bragg gratings", Proc. SPIE, vol. 2360, pp. 265- 268, 1994.
-
W. W.
Morey, G.
Meltz, J. D.
Love and S. J.
Hewlett, "Mode-coupling characteristics of UV-written
Bragg gratings in depressed-cladding fiber", Electron. Lett., vol. 30, pp. 730- 732,
Apr. 1994.
-
S. Okude, M. Sudoh, K. Shima, T. Sakai, A. Wada and R. Yamauchi, "A novel technique for suppressing undesired coupling of LP01 mode to cladding modes in fiber Bragg grating", in Tech. Dig., 11th Int. Conf. Optical Fiber Sensors, Sapporo, Japan,May 1996
, pp.
380- 383.
-
V.
Mizrahi and J. E.
Sipe, "Optical properties of photosensitive
fiber phase gratings", J. Lightwave Technol., vol. 11, pp.
1513- 1517, Oct. 1993.
-
T.
Mizunami, S.
Gupta, T.
Yamao and T.
Shimomura, "Multimode fiber Bragg gratings-spectral
characteristics and applications", in Int. Conf. Integrated Optics Optical
Fiber Commun./Eur. Conf. Optical Commun., vol. 3, Sept. 1997, pp.
182- 185.
-
K. O.
Hill, B.
Malo, F.
Bilodeau, D. C.
Johnson and J.
Albert, "Bragg gratings fabricated in monomode
photosensitive optical fiber by UV exposure through a phase mask",
Appl. Phys.
Lett., vol. 62, pp. 1035- 1037, Mar. 1993.
-
T.
Mizunami, S.
Gupta and T.
Shimomura, "KrF-laser induced fiber Bragg gratings:
Formation characteristics and cutback measurement", Japan. J. Appl. Phys.
, vol. 35, pp. 4349-
4352, Aug. 1996.
-
Y. Suematsu and
K. Iga,
Hikari Faiba Tsuusin Nyuumon, (in Japanese),
3rd ed. Tokyo, Japan : Ohmusha, 1989, p.
184, 188, 189, and 194.
-
K.
Kitayama, S.
Seikai and N.
Uchida, "Impulse response prediction based on experimental
mode coupling coefficient in a 10-km long graded-index fiber",
IEEE J.
Quantum Electron., vol. QE-16, pp. 356-
362, Mar. 1980.
-
S.
Takahashi and S.
Shibata, "Thermal variation of attenuation for optical
fibers",
J. Non-Cryst. Solids, vol. 30, pp. 359- 370, 1979.
-
G.
Meltz and W. W.
Morey, "Bragg grating formation and germanosilicate
fiber photosensitivity", Proc. SPIE, vol. 1516, pp. 185- 199, 1992.
-
Y. G.
Han, C. S.
Kim, K.
Oh, U. C.
Paek and Y.
Chung, "Performance enhancement of strain and temperature
sensors using long period fiber grating", in Proc. SPIE Int. Conf. Optical Fiber Sensors
, vol. 3746, Apr. 1999, pp. 58- 61.
-
S.
Gupta, T.
Mizunami and T.
Shimomura, "Computer control of fiber Bragg grating
spectral characteristics using a thermal head", J. Lightwave Technol., vol. 15
, pp. 1925- 1928, Oct. 1997.
-
J. L.
Archambault, L.
Reekie and P.
St. J. Russell, "100% reflectivity Bragg reflectors
produced in optical fibers by a single excimer laser pulses",
Electron.
Lett., vol. 29, pp. 453- 455, Mar. 1993.
-
B.
Malo, D. C.
Johnson, F.
Bilodeau, J.
Albert and K. O.
Hill, "Single-excimer-pulse writing of fiber gratings
by use of a zero-order nulled phase mask: Grating spectral response and visualization
of index perturbations", Opt. Lett., vol. 18, pp. 1277
- 1279, Aug. 1993.
-
C. G.
Askins, M. A.
Putnam, G. M.
Williams and E. J.
Friebele, "Contiguous fiber Bragg grating
arrays produced on-line during fiber draw", Proc. SPIE, vol. 2191, pp. 80- 85,
1994.
-
N. J. Vasa, P. Husayin, M. Kidosaki, T. Okada, M. Maeda and T. Mizunami, "Fiber grating butt-coupled cw Cr3+ : LiSrAlF6 laser performance", in Tech. Dig. Conf. Lasers and Electro-Optics , San Francisco, CA, May 1998, pp.
67- 68.
-
T.
Mizunami, T.
Niiho and T. V.
Djambova, "Multimode fiber Bragg gratings for fiber
optic bending sensors", Proc. SPIE, vol. 3746, pp. 216- 219, Apr. 1999
.