2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Journal of Lightwave Technology
Volume 18 Number 2, February 2000

Table of Contents for this issue

Complete paper in PDF format

Bragg Gratings in Multimode and Few-Mode Optical Fibers

Toru Mizunami, Member, OSA Tzvetanka V. Djambova , Tsutomu Niiho and Sanjay Gupta

Page 230.

Abstract:

Bragg gratings in optical fibers in multimode propagation are investigated experimentally and theoretically. Bragg gratings formed in optical fibers in multimode propagation show multiple reflection peaks or multiple transmission dips in the reflection or transmission spectra, respectively. For standard graded-index multimode fiber, the number of reflection peaks of a Bragg grating depends on excitation condition of propagating modes. The number of reflection peaks of a Bragg grating at around 1.55 µm is 19 for highly multimode excitation and 3-4 for lower order mode excitation. We analyze the phase-matching conditions of the propagating modes and identify half of the reflection peaks as the reflection to the same mode and the rest as the reflection to the neighboring modes. In dispersion-shifted fiber, a Bragg grating at around 0.8 µm in three-mode propagation shows three reflection peaks in the reflection spectrum. The temperature dependence of each reflection peak is similar to that of a conventional Bragg grating in single-mode fiber. Polarization dependence measured on a Bragg grating in multimode graded-index fiber is negligible. An advantage of Bragg gratings in multimode fiber (MMF) and the applications are discussed.

References

  1. G. Meltz, W. W. Morey and W. H. Glenn, "Formation of Bragg gratings in optical fibers by a transverse holographic method", Opt. Lett., vol. 14, pp.  823- 825,  Aug.  1989.
  2. A. Othonos, "Fiber Bragg gratings", Rev. Sci. Instrum. , vol. 68, pp.  4309- 4341, Dec.  1997.
  3. K. H. Wanser, K. F. Voss and A. D. Kersey, "Novel fiber devices and sensors based on multimode fiber Bragg gratings", Proc. SPIE, vol. 2360, pp.  265- 268, 1994.
  4. W. W. Morey, G. Meltz, J. D. Love and S. J. Hewlett, "Mode-coupling characteristics of UV-written Bragg gratings in depressed-cladding fiber", Electron. Lett., vol. 30, pp.  730- 732,  Apr.  1994.
  5. S. Okude, M. Sudoh, K. Shima, T. Sakai, A. Wada and R. Yamauchi, "A novel technique for suppressing undesired coupling of LP01 mode to cladding modes in fiber Bragg grating", in Tech. Dig., 11th Int. Conf. Optical Fiber Sensors, Sapporo, Japan,May 1996 , pp.  380- 383. 
  6. V. Mizrahi and J. E. Sipe, "Optical properties of photosensitive fiber phase gratings", J. Lightwave Technol., vol. 11, pp.  1513- 1517, Oct.  1993.
  7. T. Mizunami, S. Gupta, T. Yamao and T. Shimomura, "Multimode fiber Bragg gratings-spectral characteristics and applications", in Int. Conf. Integrated Optics Optical Fiber Commun./Eur. Conf. Optical Commun., vol. 3, Sept. 1997, pp.  182- 185. 
  8. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson and J. Albert, "Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask", Appl. Phys. Lett., vol. 62, pp.  1035- 1037, Mar.  1993.
  9. T. Mizunami, S. Gupta and T. Shimomura, "KrF-laser induced fiber Bragg gratings: Formation characteristics and cutback measurement", Japan. J. Appl. Phys. , vol. 35, pp.  4349- 4352, Aug.  1996.
  10. Y. Suematsu and K. Iga, Hikari Faiba Tsuusin Nyuumon, (in Japanese), 3rd ed.   Tokyo, Japan : Ohmusha, 1989, p.  184, 188, 189, and 194. 
  11. K. Kitayama, S. Seikai and N. Uchida, "Impulse response prediction based on experimental mode coupling coefficient in a 10-km long graded-index fiber", IEEE J. Quantum Electron., vol. QE-16, pp.  356- 362, Mar.  1980.
  12. S. Takahashi and S. Shibata, "Thermal variation of attenuation for optical fibers", J. Non-Cryst. Solids, vol. 30, pp.  359- 370, 1979.
  13. G. Meltz and W. W. Morey, "Bragg grating formation and germanosilicate fiber photosensitivity", Proc. SPIE, vol. 1516, pp.  185- 199, 1992.
  14. Y. G. Han, C. S. Kim, K. Oh, U. C. Paek and Y. Chung, "Performance enhancement of strain and temperature sensors using long period fiber grating", in Proc. SPIE Int. Conf. Optical Fiber Sensors , vol. 3746, Apr. 1999, pp.  58- 61. 
  15. S. Gupta, T. Mizunami and T. Shimomura, "Computer control of fiber Bragg grating spectral characteristics using a thermal head", J. Lightwave Technol., vol. 15 , pp.  1925- 1928, Oct.  1997.
  16. J. L. Archambault, L. Reekie and P. St. J. Russell, "100% reflectivity Bragg reflectors produced in optical fibers by a single excimer laser pulses", Electron. Lett., vol. 29, pp.  453- 455, Mar.  1993.
  17. B. Malo, D. C. Johnson, F. Bilodeau, J. Albert and K. O. Hill, "Single-excimer-pulse writing of fiber gratings by use of a zero-order nulled phase mask: Grating spectral response and visualization of index perturbations", Opt. Lett., vol. 18, pp.  1277 - 1279, Aug.  1993.
  18. C. G. Askins, M. A. Putnam, G. M. Williams and E. J. Friebele, "Contiguous fiber Bragg grating arrays produced on-line during fiber draw", Proc. SPIE, vol. 2191, pp.  80- 85,  1994.
  19. N. J. Vasa, P. Husayin, M. Kidosaki, T. Okada, M. Maeda and T. Mizunami, "Fiber grating butt-coupled cw Cr3+ : LiSrAlF6 laser performance", in Tech. Dig. Conf. Lasers and Electro-Optics , San Francisco, CA, May 1998, pp.  67- 68. 
  20. T. Mizunami, T. Niiho and T. V. Djambova, "Multimode fiber Bragg gratings for fiber optic bending sensors", Proc. SPIE, vol. 3746, pp.  216- 219, Apr.  1999 .