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Improved Three-Point Formulas Considering the
Interface Conditions in the Finite-Difference Analysis

of Step-Index Optical Devices
Yih-Peng Chiou, Yen-Chung Chiang, and Hung-Chun Chang, Member, IEEE, Member, OSA

Abstract—A general relation, considering the interface condi-
tions, between a sampled point and its nearby points is derived.
Making use of the derived relation and the generalized Douglas
scheme, the three-point formulas in the finite-difference modeling
of step-index optical devices are extended to fourth order accuracy
irrespective of the existence of the step-index interfaces. With nu-
merical analysis and numerical assessment, several frequently used
formulas are investigated.

Index Terms—Finite-difference method, generalized Douglas
scheme, step-index optical waveguides.

I. INTRODUCTION

W ITH the rapid progress of computers, in both software
and hardware, simulation programs or computer-aided

design (CAD) tools for the design of optoelectronic devices
have become more and more convenient and important. Among
these CAD tools, the finite-difference method (FDM) is one of
the most well-known numerical methods, which is widely used
in the mode solvers and beam propagation methods (BPM’s).
Comprehensive reviews can be found in [1] and [2].

Since the differential equations are directly approximated
with their corresponding difference equations in the FDM,
the efficiency and accuracy of the FDM are greatly affected
by its finite-difference (FD) formulas. Various formulations
have been proposed to elevate the accuracy and efficiency in
the modeling. The simplest FD formula is based on the scalar
approximation. Stern [3] derived vectorial formulas based on
graded index approximation, in which the dielectric interface
conditions between different refractive indexes were matched
by means of averaging the permittivity over meshes. As will be
shown later, these formulas have truncation errors where

is the grid spacing and denotes that the order isth
power of It should be noted that the accuracy is not elevated
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when finer grid spacings are used. Besides, the interface is
required to be in the middle between the sampled points, i.e.,

in Fig. 1. If the interface is not in the middle
between the sampled points, the truncation errors would be
large than Vassallo [4] provided improvement of the
FDM for step-index optical waveguides without averaging
the permittivity over meshes. The resulting formulas were
derived from the Taylor series expansion and from matching
of interface conditions, and gave more accurate results. The
truncation errors are usually irrespective of the location
of the interface with respect to the sampled points. If the
interface is in the middle between the sampled points, then the
truncation errors in Vassallo’s formulas are Usually,
the truncation error of the commonly used three-point FD
schemes can only be at best. Formulations with higher
order truncation errors can be obtained when higher order
terms are retained in the derivation. The generalized Douglas
(GD) scheme [5]–[7] was used in the BPM’s to increase the
accuracy of the FD formulas. The accuracy was elevated to

when the medium is homogeneous, i.e., the refractive
indexes in Fig. 1. However, interface
conditions were not treated. The accuracy was still at
best and was reduced to when the interface is not in the
middle between the sampled points or the discretization is
nonuniform [7], i.e., or in Fig. 1. Yamauchi
et al. [8] derived formulas under nonuniform discretization for
the GD scheme and improved Vassallo’s formulas to
accuracy irrespective of the location of the interface by means
of evaluating higher order terms through the BPM. The above
derivations all placed the interface between the sampled points.
Lüsseet al. [9] derived another formulation by placing the
interfaces exactly at the sampled points, i.e., in Fig. 1.
Hadley [10] derived quasifourth order equations by taking the
interface conditions and nonuniformity of grid spacings into
consideration. The higher order terms were evaluated through
the BPM and a complicated averaging operator.

In this paper, formulas similar to Vassallo’s [4] are derived
simply by the Taylor series expansion and matching the inter-
face conditions. The interfaces need not be located exactly at
the sampled points, that is, they can be placed at the grids or
elsewhere. Higher order terms are retained and the GD scheme
is adopted. It is also found that higher order terms are not nec-
essarily evaluated through the BPM and the complicated aver-
aging operator as in [8] and [10], but they can be included in
a more general and simple algebraic form. The resulting eigen-
value problems can be solved directly and efficiently, instead
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Fig. 1. Sketch of interfaces between sampled points.

of indirectly and inefficiently using the BPM. The derived for-
mulas can also be applied to the BPM with little extra compu-
tation efforts, compared with the computation in the eigenvalue
problem, in finding the coefficients.

Several formulations are derived in Section II, followed by a
description of numerical implementation in Section III. In Sec-
tion IV the formulation is assessed and applications to modal so-
lutions for slab waveguides and multiple-quantum-well waveg-
uides are numerically demonstrated. Section V gives the con-
clusion.

II. FORMULATION

A general relation between the sampled fieldand the fields
nearby as shown in Fig. 1 is derived in this section. It is
found that Stern’s [3] and Vassallo’s [4] formulations are lower
order cases of our derived formulation. Retaining the higher
order terms and making use of the GD scheme, the truncation
error of our formulation can be extended to irrespective
of the existence of the interfaces.

A. General Formulation Considering the Interface Conditions

Consider the magnetic field at a sampled point and the
fields nearby, and as shown in Fig. 1, where and

represent fields at just to the left and and just to the right sides
of the interface, respectively. Using the Taylor series expansion,

is expressed as

(1)

When (1) is differentiated times successively and multiplied
with we can express the derivatives of in terms of the
derivatives of as

(2)

When the first terms are retained in (1) and higher order terms
(H.O.T.) are ignored, we have

(3)

Equation (3) can be rewritten in a matrix form as

... ...
...

...
...

. . .
...

...

(4)

or denoted as

(5)

where and denote the first and second derivatives, respec-
tively, and denotes theth derivative. Similarly, and
its derivatives can be expressed in terms ofand its deriva-
tives as

(6)

or denoted as

(7)

The interface conditions require that

(8)

(9)

where

for transverse electric (TE) case
for transverse magnetic (TM) case.

(10)

Making use of the Helmholtz equation, the relation between the
higher order derivatives of and can be obtained. The
Helmholtz equation for is

(11)
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where is the propagation constant, is the wave number in
free space, and is the refractive index. From (8) and (11), we
have

(12)

or

(13)

where and and are the refractive
indexes of two adjacent regions, as shown in Fig. 1. Repeating
the similar process successively, higher order derivatives of
can be expressed in terms of and its derivatives as

(14)

(15)

(16)
...

or denoted as

(17)

From (5), (7), and (17), and its derivatives can be expressed
in terms of and its derivatives as

(18)

where

(19)

Note that (17) is exact without any truncation error while (5) and
(7) have truncation errors, which reveals that the trunca-
tion errors will not increase with the interface conditions being
included and that the truncation errors are from the neglect of
higher order terms of the Taylor series expansions. Also, when
(17) is multiplied with 1/θ, we have the -field formulation,
which reveals that the -field and the -field formulations are
equivalent, and the accuracy and efficiency are the same for
these two formulations.

The relations between the above-mentioned fields can be il-
lustrated as

(20)

where TSE denotesTaylor Series Expansionand MBC denotes
Matching the Boundary Condition. Similarly, and its
derivatives can be expressed in terms ofand its derivatives as

(21)

Considering the first rows of we have

(22)

where and are the first rows of and , respec-
tively.

B. Scalar Approximation and Graded-Index Approximation

The simplest three point formula is based on the scalar ap-
proximation, and the vectorial nature is ignored. The second
derivative is the same as that in a homogeneous medium and
is expressed as

(23)

and reduced to

(24)

when the grid spacing is uniform Equations
(23) and (24) are good approximations when the index contrast
is low but fail when the index contrast is high. Besides, the vec-
torial nature is not included.

Stern [3] derived a vectorial formulation and similar formula-
tion can be derived from the graded-index approximation, which
was frequently used later in the optical waveguide simulation
[11]–[13]. In their derivation,

and the second derivatives are assumed to be continuous.
Thus, the formulation is the same as (24) for TE cases and

(25)

for TM cases. Since the second derivatives are assumed to be
continuous, the truncation error in (22) is for
and thus the truncation errors of (24) and (25) are

which means that the truncation errors would not de-
crease with the grid size with the existence of the interfaces.
Equations (24) and (25) may be a good approximation in the
modeling of structures with graded index or low index contrast
but they are not suitable in the modeling of step-index structures.

C. Improved Formulation with Truncation Errors

Vassallo [4] derived an improved formulation by making use
of the Helmholtz equation. Equivalently, in the derivation.
From (22), we have

(26)

(27)
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where the coefficients ’s and ’s are and are given in
the Appendix. is obtained by ignoring and eliminating

(28)

Since the coefficients of and are and
respectively, the approximation in (28) is
Interestingly, when

(29)

and

or (30)

the coefficients would have such relation
and as shown in the Appendix.

Eliminating would result in eliminating simultaneously
and the approximation in (28) is thus

D. Improved Formulation of Higher Order Accuracy

In this subsection the improved formulation is derived based
on the GD scheme. Again, can be expressed in terms of
and its derivatives as

(31)

(32)

where the coefficients ’s and ’s are and given in the
Appendix. If the higher order terms containing and

in (31) and (32) are ignored, then and can be solved
as

(33)

(34)

Following the procedure in Section II-C, it can be found that,
usually, and Also,

when (29) and (30) are satisfied. Elimi-
nating in (31) and (32) by the linear combination

we have (35) shown at the bottom of
the page or denoted as

(36)

which is approximated with

(37)

or

(38)

Since is and
the approximation in (37) and (38) are,

at worst, Similarly, when (29) and (30) are satisfied,
the coefficients would have such relation

and as shown in the Appendix.
Eliminating would result in eliminating simultaneously.
Besides, and
and are Therefore, formulas with accuracy is
obtained when (29) and (30) are satisfied.

III. I MPLEMENTATION

Substituting (38) into the Helmholtz equation

(39)

leads to

(40)

or

(41)

Combining all sampled points together from (41), we have an
algebraic equation

(42)

or denoted as

(43)

(35)
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where diag
results from the operator results from the

operator and is an identity matrix. The
matrices , and are all tridiagonal. Note that when the
GD scheme is not adopted, and the formulation reduces
to Vassallo’s [4]. The eigenvalue problem in (43) can be solved
efficiently with the shifted-inverse power method [14].

Substituting with in (41) and assuming the enve-
lope approximation where is the refer-
ence refractive index, we have

(44)

This formulation can also be applied to the beam propagation
method directly as described in [7] and [8].

IV. NUMERICAL RESULTS

A. Assessment of the Formulation

The investigated structure is a symmetric slab waveguide.
The core and cladding indexes are and

for GaAs and Ga Al As, respectively.
The waveguide width is m and the wavelength is

m. The effective index for the TE mode of this wave-
guide is and the transverse wave
numbers in the core and cladding are

and
respectively. In the assessment of the

formulation the magnitudes of the fields, and are
assigned with exact values and then or are evaluated
using (24), (25), (28), and (38). For example

(45)

for our formulation, where in the core region and
in the cladding region. The relative error in the transverse

wave number is defined as

(46)

in the core region, or

(47)

in the cladding region.
Fig. 2 shows for the TE case with respect to the grid

size for uniform grids, i.e., and
in Fig. 1, where 3pt. denotes that three-point

formulation is adopted and 5pt. formulation is adopted. All the
sampled points are in the core region. It can be seen that the
slopes are two and four for and formulations, re-
spectively. Note that calculated using the five-point scheme
is slightly larger than that calculated using the three-point
scheme. in the cladding region is of the same order as
(not shown). The truncation error of our formulation is exactly

Fig. 2. Relative error in the transverse wave number with respect to the grid
size: uniform grid size.

Fig. 3. Relative error in the transverse wave number with respect to the grid
size: nonuniform grid size.

The distorted behavior of for is due
to finite digits in the computer.

Fig. 3 shows the relative error with respect to the average grid
size for nonuniform grids, i.e., and

in Fig. 1. The three sampled points again are all in the
core region. The average grid size is defined as

(48)

where the ratio in this case. is larger than that in
the case of uniform grids, but still behaves as It can be
seen that calculated using the five-point scheme is slightly
smaller than that calculated using the three-point scheme.

in the cladding region is again of the same order as
Fig. 4 shows the relative error with respect to the grid size

for an interface lying between sampled points, that is,
and in

Fig. 1. It can be seen that the truncation error of our formulation
is also even if the interfaces exist. The accuracy of our
formulation is close to that of the uniform grid size as shown in
Fig. 2. The transverse wave vector cannot be well approximated
using the graded-index approximation whose truncation error is
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Fig. 4. Relative error in the transverse wave number with respect to the grid
size: interfaces lying between sampled points.

only and cannot be reduced with smaller grid size due to
the existence of the interface.

As shown in Figs. 2–4, the accuracy is greatly enhanced when
higher-order formulation is adopted. Or on the other side, the
efficiency is elevated because coarser grids can be used. For
example, the grid size of the formulation can be about
ten times larger that of the formulation at
All the above results are for TE cases. The TM cases have also
been assessed, the results being close to those for the TE cases
for the same parameters.

From the above assessment of the numerical error, the deriva-
tion in Section II is confirmed and the truncation error of our
derived formulation is indeed We have applied the de-
rived formulation to various parameters, which also validates
our derivation.

B. Application to Mode Solvers: Slab Waveguides

First, a weakly guiding waveguide is investigated. The struc-
ture is the same as that considered in [10]. The wavelength is
1.55µm and the waveguide width is m. The core and
cladding relative permittivities are and

respectively. The exact effective index is
The transparent boundary condition [15] is

adopted.
Fig. 5(a) and (b) shows the field profiles calculated

using the formulation for large grid sizes
and 1 m, respectively. The solid curves are the analyt-
ical field profiles and the circles are the results calculated
using our formulation. The numerical effective indexes are

and
for and 1 m, respectively. In this case the propagation
constant and the modal profile can be calculated accurate to
four digits even though only one sampled point is placed in the
core. It seems that our formulation may be more “economic”
than that of Hadley’s [10] which requires a sampled point at
the each interface. Our results are accurate to the same order
as those of [10] with slightly smaller error when the grid sizes
are the same.

Fig. 5. Field profiles for grid size�x = (a) 2�m and (b) 1�m.

Fig. 6 shows the relative error in the reduced propagation con-
stant with respect to the grid size. The reduced propagation con-
stant is defined as [10]

(49)

The dashed curve is calculated using an scheme across
the interface and an scheme elsewhere. It can be seen
that such rough approximation yields worse results for large grid
sizes, while the effect of inaccurate sampled points near the in-
terface is less weighted due to much more sampled points
for small grid sizes. If the interface conditions are considered,
the results become better for large grid sizes. It can be seen that
the truncation error of our formulation is indeed The
grid size with truncation errors can be ten times larger or
more than that with truncation errors, resulting in great
reduction of the computation effort.

C. Application to Mode Solvers: Multiple-Quantum-Well
Waveguides

The modal characteristics of multiple-quantum-well (MQW)
optical waveguides have attracted considerable attention be-
cause of their distinctive features and potential applications in
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Fig. 6. Relative error in the reduced propagation constant with respect to the
grid size for different three-point formulations.

photonic devices. Unfortunately, those complicated structures
are difficult to analyze using conventional FD techniques
since the refractive index varies significantly and the widths of
wells and barriers are very small and usually not uniform. The
equivalent index methods [16] or the finite element methods
[17] are often employed. The situation changes when the
formulation of high accuracy is applied. The grid size is much
more flexible and the accuracy can be much higher than those
of conventional FD schemes.

The modal characteristics of a complicated MQW waveguide
is investigated to show the excellent performance of our formu-
lation. Fig. 7 shows the index distribution. The wavelength is

m, and the widths of wells and barriers are
m and m, respectively. The refractive

indexes of the wells, barriers, and claddings are
and for GaAs, Ga Al As,

and Ga Al As, respectively. There are 55 wells and 56
barriers in the MQW structure. The exact effective propagation
constants are and
for TE and TM modes, respectively. Only one sampled point
is placed at the center of each well or barrier. The grid size is
0.0095 m in the MQW region and 0.01m in the cladding
region. Fig. 8 shows the calculated field distribution which is
indistinguishable from the analytical one. The calculated effec-
tive propagation constants are
and for TE and TM modes, respectively, which
are both correct to ten digits even nonuniform grid sizes are used
under such strongly guiding structure.

V. CONCLUSION

We have derived improved three-point formula for the finite-
difference analysis of step-index optical waveguides. A gen-
eral relation is derived from the Taylor series expansion and
matching the interface conditions. From the relation, the trun-
cation errors are not from matching the boundary conditions but
from the truncation of the higher order terms in the Taylor se-
ries expansion. Also, the -field and the -field formulations
are actually equivalent. Making use of the the general relation
and the Generalized Douglas scheme the improved formulation

Fig. 7. Refractive index profile of the investigated MQW optical waveguide.

Fig. 8. Field profile in the MQW optical waveguide.

is derived. It is found that the frequently adopted formulations
of Stern’s [3] and Vassallo’s [4] are lower-order cases of our de-
rived formulation.

We have assessed the frequently used formulations and our
derived formulation for various parameters. Our formulation is
indeed in the uniform discretization cases irrespective of
the existence of the interfaces. The graded-index approximation



250 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 18, NO. 2, FEBRUARY 2000

is not suitable for cases with high refractive index contrast ratio
since the accuracy is only When the discretization is
nonuniform, the accuracy is reduced, especially in cases with
high refractive contrast ratio.

The improved formulation has been applied to the mode
solver of slab waveguides and multiquantum waveguides,
which shows its preference in accuracy and efficiency. The
derived formulation can be applied not only to the analysis of
optical waveguides, but also to other electromagnetic simula-
tions for structures with step index.

APPENDIX

The parameters ’s in (27) are as follows:

(50)

Replacing and with and respectively,
’s can be obtained. Specifically, when and ’s

become

(51)

Or when and ’s become

(52)

The parameters ’s in (27) are as follows:

(53)

Replacing and with and respectively,
’s can be obtained. Specifically, when and ’s

become

(54)

Or when and ’s become

(55)



CHIOU et al.: IMPROVED THREE-POINT FORMULAS OF STEP-INDEX OPTICAL DEVICES 251

REFERENCES

[1] C. Vassallo, “1993–1995 optical mode solvers,”Opt. Quantum Elec-
tron., vol. 29, pp. 95–114, 1997.

[2] D. Yevick, “Some recent advances in field propagation techniques,”
Proc. SPIE, pp. 502–511, 1996.

[3] M. S. Stern, “Semivectorial polarized finite difference method for optical
waveguides with arbitrary index profiles,”Inst. Elect. Eng. Proc.-J., vol.
135, pp. 56–63, 1988.

[4] C. Vassallo, “Improvement of finite difference methods for step-index
optical waveguides,”Inst. Elect. Eng. Proc.-J., vol. 139, pp. 137–142,
1992.

[5] L. Sun and G. L. Yip, “Modified finite-difference beam-propaga-
tion method based on the Douglas scheme,”Opt. Lett., vol. 18, pp.
1229–1231, 1993.

[6] J. Yamauchi, M. Sekiguchi, O. Uchiyama, J. Shibayama, and H.
Nakano, “Modified finite-difference formula for the analysis of
semivectorial modes in step-index optical waveguides,”IEEE Photon.
Technol. Lett., vol. 9, pp. 961–963, 1997.

[7] C. Vassallo, “Interest of improved three-point formulas for finite-dif-
ference modeling of optical devices,”J. Opt. Soc. Amer., vol. 14, pp.
3273–3284, 1997.

[8] J. Yamauchi, J. Shibayama, O. Saiti, O. Uchiyama, and H. Nakano, “Im-
proved finite-difference beam propagation method based on the gener-
alized Douglas scheme and its application to semivectorial analysis,”J.
Lightwave Technol., vol. 14, pp. 2401–2406, 1996.

[9] P. Lüsse, K. Ramm, and H.-G. Unger, “Comparison of a vectorial and
new semiconductor finite-difference approach for optical waveguides,”
Opt. Quantum Electron., vol. 29, pp. 115–120, 1997.

[10] G. R. Hadley, “Low-truncation-error finite difference equations for pho-
tonic simulation I: Beam propagation,”J. Lightwave Technol., vol. 16,
pp. 134–141, 1998.

[11] Y. Chung and N. Dagli, “Analysis ofz-invariant andz-variant semi-
conductor rib waveguides by explicit finite difference beam propagation
method with nonuniform mesh configuration,”IEEE J. Quantum Elec-
tron., vol. 27, pp. 2296–2305, 1991.

[12] P.-L. Liu, S. L. Yang, and D. M. Yuan, “The semivectorial beam prop-
agation method,”IEEE J. Quantum Electron., vol. 29, pp. 1205–1211,
1993.

[13] W. P. Huang and C. L. Xu, “Simulation of three-dimensional optical
waveguides by a full-vector beam propagation method,”IEEE J.
Quantum Electron., vol. 29, pp. 2639–2649, 1993.

[14] A. Jennings,Matrix Computation for Engineers and Scientists. New
York: Wiley, 1977.

[15] C. Vassallo and J. M. van der Keur, “Comparison of a few transparent
boundary conditions for finite-difference optical mode-solvers,”J.
Lightwave Technol., vol. 15, pp. 397–402, 1997.

[16] M. Saini and E. K. Sharma, “Equivalent refractive index of MQW
waveguides,”IEEE J. Quantum Electron., vol. 32, pp. 1383–1390,
1996.

[17] B. M. A. Rahman, Y. Liu, and K. T. V. Grattan, “Finite-element modeling
of one- and two-dimensional MQW semiconductor optical waveguides,”
IEEE Photon. Technol. Lett., vol. 8, pp. 928–931, 1996.

Yih-Peng Chiou was born in Taoyuan, Taiwan,
R.O.C., on October 10, 1969. He received the B.S.
degree in electrical engineering from the National
Taiwan University, Taipei, in 1992 and the Ph.D.
degree from the College of Electrical Engineering,
National Taiwan University in 1998.

He is currently with the Taiwan Semiconductor
Manufacturing Co., Ltd., Hsin-Chu, Taiwan. His
research interests include new finite difference
methods for solving the propagation characteristics
of optical wave in dielectric waveguides.

Yen-Chung Chiang was born in Hualien, Taiwan,
R.O.C., on March 10, 1970. He received the B.S.
and M.S. degrees from the Department of Electrical
Engineering, National Taiwan University, Taipei,
Taiwan, in 1992 and 1994, respectively. He is
currently working towards the Ph.D. degree at the
same university.

Hung-Chun Chang (S’78–M’83) was born in
Taipei, Taiwan, R.O.C., on February 8, 1954. He
received the B.S. degree from National Taiwan
University, Taipei, Taiwan, in 1976 and the M.S. and
Ph.D. degrees from Stanford University, Stanford,
CA, in 1980 and 1983, respectively, all in electrical
engineering.

From 1978 to 1984, he was with the Space,
Telecommunications, and Radioscience Laboratory
of Stanford University. In August 1984, he joined
the Faculty of the Electrical Engineering Department

of National Taiwan University, where he is currently a Professor. He served as
Vice-Chairman of the Electrical Engineering Department from 1989 to 1991,
and Chairman of the newly established Graduate Institute of Electro-Optical
Engineering at the same university from 1992 to 1998. His current research
interests include the theory, design, and application of guided-wave structures
and devices for fiber optics, integrated optics, optoelectronics, and microwave
and millimeter-wave circuits.

Dr. Chang is a member of Sigma Xi, the Phi Tau Phi Scholastic Honor Society,
the Chinese Institute of Engineers, the Photonics Society of Chinese-Ameri-
cans, the Optical Society of America (OSA), and China/SRS (Taipei) National
Committee (a Standing Committee member during 1988–1993) and Commis-
sion H of U.S. National Committee of the International Union of Radio Science
(URSI). In 1987, he was among the recipients of the Young Scientists Award
at the URSI XXIInd General Assembly. In 1993, he was one of the recipients
of the Distinguished Teaching Award sponsored by the Ministry of Eduction of
the Republic of China.


