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Improved Three-Point Formulas Considering the
Interface Conditions in the Finite-Difference Analysis
of Step-Index Optical Devices

Yih-Peng Chiou, Yen-Chung Chiang, and Hung-Chun Chafgmber, IEEE, Member, OSA

Abstract—A general relation, considering the interface condi- when finer grid spacings are used. Besides, the interface is

tions, between a sampled point and its nearby points is derived. required to be in the middle between the sampled points, i.e.,
Making use of the derived relation and the generalized Douglas p = ¢ = h/2in Fig. 1. If the interface is not in the middle

scheme, the three-point formulas in the finite-difference modeling bet th led points. the t i d b
of step-index optical devices are extended to fourth order accuracy etween the sampled ponts, the truncation errors wou e

irrespective of the existence of the step-index interfaces. With nu- large thanO(h?). Vassallo [4] provided improvement of the
merical analysis and numerical assessment, several frequently usedFDM for step-index optical waveguides without averaging

formulas are investigated. the permittivity over meshes. The resulting formulas were
Index Terms—Finite-difference method, generalized Douglas derived from the Taylor series expansion and from matching
scheme, step-index optical waveguides. of interface conditions, and gave more accurate results. The

truncation errors are usualty(h) irrespective of the location
of the interface with respect to the sampled points. If the
interface is in the middle between the sampled points, then the
ITH the rapid progress of computers, in both softwarguncation errors in Vassallo’s formulas aé¥h?). Usually,
and hardware, simulation programs or computer-aideige truncation error of the commonly used three-point FD
design (CAD) tools for the design of optoelectronic deviceschemes can only b@(h?) at best. Formulations with higher
have become more and more convenient and important. Amasyder truncation errors can be obtained when higher order
these CAD tools, the finite-difference method (FDM) is one akrms are retained in the derivation. The generalized Douglas
the most well-known numerical methods, which is widely use@D) scheme [5]-[7] was used in the BPM'’s to increase the
in the mode solvers and beam propagation methods (BPM'agcuracy of the FD formulas. The accuracy was elevated to
Comprehensive reviews can be found in [1] and [2]. O(h*) when the medium is homogeneous, i.e., the refractive

Since the differential equations are directly approximatéddexesn;,_; = n; = n,;1 in Fig. 1. However, interface
with their corresponding difference equations in the FDMonditions were not treated. The accuracy was 6t{k?) at
the efficiency and accuracy of the FDM are greatly affectasest and was reduced &@(h) when the interface is not in the
by its finite-difference (FD) formulas. Various formulationsmiddle between the sampled points or the discretization is
have been proposed to elevate the accuracy and efficiencyhghuniform [7], i.e.,p # g or h_ # h, in Fig. 1. Yamauchi
the modeling. The simplest FD formula is based on the scaktral. [8] derived formulas under nonuniform discretization for
approximation. Stern [3] derived vectorial formulas based ahe GD scheme and improved Vassallo’'s formulasig?)
graded index approximation, in which the dielectric interfacgccuracy irrespective of the location of the interface by means
conditions between different refractive indexes were matcheflevaluating higher order terms through the BPM. The above
by means of averaging the permittivity over meshes. As will bigerivations all placed the interface between the sampled points.
shown later, these formulas haW¢h?) truncation errors where Liisseet al. [9] derived another formulation by placing the
h is the grid spacing an@(%*) denotes that the order i¢h interfaces exactly at the sampled points, izes 0 in Fig. 1.
power ofh. It should be noted that the accuracy is not elevategadley [10] derived quasifourth order equations by taking the

interface conditions and nonuniformity of grid spacings into
consideration. The higher order terms were evaluated through
the BPM and a complicated averaging operator.
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d--~§*6~apﬁi—~q.j

When the firsts terms are retained in (1) and higher order terms
(H.O.T.) are ignored, we have

Cm—1 . .
prn anld)L _ ° z"l: an—J anH—J ¢Z

o g o = = , =~ +0(°). (3)
O o; ¢ e 0, dxm™ g GemH
i ni i Equation (3) can be rewritten in a matrix form as
] TR 17
/ - - —_— —_— —_— JR—
Interfaces d)Lf 1! 21! ?i! ﬁ!
PP, 0 1 = =
Fig. 1. Sketch of interfaces between sampled points. p2</)L 1 21! (3 _1 1)!
3 =
P*¢y 00 1 o T
. S —
of indirectly and inefficiently using the BPM. The derived for- : )
mulas can also be applied to the BPM with little extra compu- _ps(/)(LS*l) ]
tation efforts, compared with the computation in the eigenvalue 0 0 0 0 O 1
problem, in finding the coefficients. i (7)1‘, i
Several formulations are derived in Section I, followed by a p(/%”
description of numerical implementation in Section Ill. In Sec- 2o,
tion IV the formulation is assessed and applications to modal so- ) p3¢§3> + O(h*) (4)
lutions for slab waveguides and multiple-quantum-well waveg- :
uides are numerically demonstrated. Section V gives the con- o (s—1)
clusion. Lp¢;
or denoted as
Il. FORMULATION - = - R
¢, =Mri- ¢+ O(R°) (5)

A general relation between the sampled fig)cind the fields , ,
nearbyg;+1 as shown in Fig. 1 is derived in this section. It igvhere and¢ denote the first and second derivatives, respec-
found that Stern’s [3] and Vassallo's [4] formulations are lowdvely, and¢) denotes thgth derivative. Similarly;,, and
order cases of our derived formulation. Retaining the high# derivatives can be expressed in termggfand its deriva-
order terms and making use of the GD scheme, the truncati/¢s as
error of our formulation can be extended®h*) irrespective

s—m—1 N N
R 3 arnd)‘ qrn-I—J arn-l—;d)
of the existence of the interfaces. m itl g YR 5
q arm Z 4! oI + O(R?) (6)

j=
A. General Formulation Considering the Interface Conditions
or denoted as

Consider the magnetic fielg; at a sampled point and the L
fields nearbyg;_; and¢;, 1, as shown in Fig. 1, wherg;, and Giv1 = Myg-dp+O(R%). @)
¢r representfields at justto the left and and just to the right sides
of the interface, respectively. Using the Taylor series expansidre interface conditions require that
¢, is expressed as

PR = L (8)
. p O PP Py p° P
(/)L_d)z—i_ﬂ or 2! 922 ' 3! 9x8 , /
pj & o ¢or =00y, )
o Jr O0F where
P e
=> T ) o {1 for transverse electric (TE) case
=0 ~ | nip./ni, fortransverse magnetic (TM) case.
When (1) is differentiated. times successively and multiplied (10)

with p™ ., we can express the derivatives@f in terms of the

i Making use of the Helmholtz equation, the relation between the
derivatives ofgp; as

higher order derivatives opr and ¢; can be obtained. The
Helmholtz equation fot is

- amd)h B o) pm+j am—i—j(f)i 82
Dz ; G et @ B = <— + k§n2) ¢ (11)

D
o2
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where/ is the propagation constari is the wave number in Considering the first rows QT:/[i, we have
free space, and is the refractive index. From (8) and (11), we

have pix1 = Vi - ¢ + O(h) (22)

o2 o2 — — ) — —
<@ + k§n3+1> ¢r = <@ + k%nf) oL (12) v_vhereVJr andV _ are the first rows of\/ , andM _, respec-
tively.
or
i P 13 B. Scalar Approximation and Graded-Index Approximation
Or= oLt (13) The simplest three point formula is based on the scalar ap-
wheren = k3(n? — n?,,) andn; andn,; are the refractive proximation, and the vectorial nature is ignored. The _second
indexes of two adjacent regions, as shown in Fig. 1. Repeatg,%nvatlve is the same as that in a homogeneous medium and

the similar process successively, higher order derivativeg:of 1S €xpressed as
can be expressed in terms¢®f and its derivatives as
P o b 2hyiit — 2h_ +hy)di + 2h_dign

, ; (23)
b =00 + 00, (14) hehe(hethe)
and reduced to
” " i—1 — 20; + @;
W=+ 2md (15) g o DA 220t o (24)

h2

when the grid spacing is uniforth = h_ = h, ). Equations
(23) and (24) are good approximations when the index contrast
is low but fail when the index contrast is high. Besides, the vec-
torial nature is not included.
Stern [3] derived a vectorial formulation and similar formula-
or denoted as tion can be derived from the graded-index approximation, which
B _ B was frequently used later in the optical waveguide simulation
¢r=MRL 9. (17)  [11]-[13]. In their derivationh = hy = h,p = q¢ = h/2,
s = 2, and the second derivatives are assumed to be continuous.

From (5), (7), and (17)}; . and its derivatives can be expressegs, the formulation is the same as (24) for TE cases and
in terms of¢; and its derivatives as

¢ = 0(¢%7 + 200 + 2¢)) (16)

77 2713

$i+1 = ﬁ-I—R 'ﬁRL -ﬁm ¢ +O(h*) ¢; = m@q
=M, - ¢, +0(h) (18) < 202 . 2n? ) N
where (n7_y +n)h? ~ (ni +n)p2) "
2n2
e fr— e e —Z o 25
M, =Mip Mp- M- (19) Tz, e (25)

Note that (17) is exact without any truncation error while (5) arfdr TM cases. Since the second derivatives are assumed to be
(7) haveO(h*) truncation errors, which reveals that the truncazontinuous, the truncation error in (22) @&(h?) for s = 2
tion errors will not increase with the interface conditions beinand thus the truncation errors of (24) and (25)@té?)/h? =
included and that the truncation errors are from the neglect@fi°), which means that the truncation errors would not de-
higher order terms of the Taylor series expansions. Also, wherease with the grid size with the existence of the interfaces.
(17) is multiplied with 18, we have theE-field formulation, Equations (24) and (25) may be a good approximation in the
which reveals that th&'-field and theH -field formulations are modeling of structures with graded index or low index contrast
equivalent, and the accuracy and efficiency are the same bt they are not suitable in the modeling of step-index structures.
these two formulations.

The relations between the above-mentioned fields can be@- Improved Formulation witk(22) Truncation Errors

lustrated as Vassallo [4] derived an improved formulation by making use

i E‘ﬂ . E‘E; i Ei@) i (20) of the Helmholtz equation. Equivalently—= 4 in the derivation.
i i i From (22), we have
+R RL Li

where TSE denoteRaylor Series Expansioand MBC denotes bi_1 = aod; + a1, + azd;, + a3¢§3> +O(h*) (26)
Matching the Boundary ConditionSimilarly, ¢; 1 and its
derivatives can be expressed in termgpand its derivatives as

¢ 1= M- - + O(R”). (21) bis1 = bodi + bigh; + bagy; + bsz%(g) + O(h*) (27)
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where the coefficients;’s andb;’s areO(h’) and are given in
the Appendix, is obtained by ignoring> and eliminating
o;

77

. bigi 1+ (boar — aoby)pi — a1¢it1

az by —boay

(28)

Since the coefficients of, and ¢{> are O(h?) and O(h?),

respectively, the approximation in (28) @&h3)/h? = O(h).
Interestingly, when
h_=hy=h (29)
and
p=0, p=h, of p=qg=h/2 (30)

the coefficients would have such relatiop = (h®/30)a; +
O(h*) andbz = (h3/3")b, +O(h*), as shown in the Appendix.
Eliminating ¢; would result in eliminatingbg?’) simultaneously
and the approximation in (28) is tha&h*)/h? = O(h?).

D. Improved Formulation of Higher Order Accuracy

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 18, NO. 2, FEBRUARY 2000

Following the procedure in Section II-C, it can be found that,
usually,¢; = D,¢; + O(h?) and¢; = D24; + O(h). Also,

¢; = D2¢; + O(h?) when (29) and (30) are satisfied. Elimi-
natingdfi in (31) and (32) by the linear combinatid(81) f; —
(32) e1)/(ea f1 — f2e1), we have (35) shown at the bottom of
the page or denoted as

D2¢; =t i1 +todi +trdiga

15] 2 a° o
= <1 +91% +Q2@ +93$> ¢; +O(h*) (36)

which is approximated with

7

D2¢; ~ (1 + g1 Dy + g2 D2)gb; (37)

- D2
T 14+ g D, +g. D2

Sinceg; is O(h? 12 /h?) = O(Rk?), 8/0x = D, + O(h?), and
9% /9%x = D% + O(h), the approximation in (37) and (38) are,
at worst, O(h?). Similarly, when (29) and (30) are satisfied,
the coefficients would have such relatiep = (h°/5!)e; +

77

i

(38)

In this subsection the improved formulation is derived base\ 6y and f; = (h3 /51 f, +O(h®), as shown in the Appendix.

on the GD scheme. Agair,;+; can be expressed in termsdyf
and its derivatives as

bi1 = copi + c1p, + cadhy

EIiminatingd); would resultin eliminatingi>§°) simultaneously.
Besides(/dx = D, +O(h?), 8*/02* = D2+ O(h?), andgy
andg. areO(h?). Therefore, formulas witld(2*) accuracy is
obtained when (29) and (30) are satisfied.

+ead® +ead + e + 0% (31)
Ill. I MPLEMENTATION
, , Substituting (38) into the Helmholtz equation
Git1 = fopi + f10; + f20; v g )
+ f3¢53) + f4</)§,4) + fsd)?f’) +0(h%) (32 ¢ +hkon¢ =579 (39)
- , , ; . . leads to
where the coefficients;’s and f;’s areO(h’) and given in the
Appendix. If the higher order terms containing®, {*, and DZ¢; 22, a2
#;” in (31) and (32) are ignored, then and¢, can be solved 1+91 Dy + g2 D3
as or
(/); ~ f2¢i—1 + (lecj%—_@;jzzd)z - 62¢i+1 Di(/)z + ]C(%TLQ(]_ + a Dm + s Di)(/)z
= S—d)i—l +$0(/)i+8+(/)i+1 :/32(1+gl D, + g2 Di)¢7 (41)
=D, (33) Combining all sampled points together from (41), we have an
algebraic equation
o fidi—1 + (foer —eo f1)di — erbigr [A + kI N*(C-1)]® = 3°Co (42)
e ea fi — faer
or denoted as
=t_¢i_1 +topi +iipit1
= D2¢,. (34) A'® = p>Co (43)
Jigi—1 + (foer — co f1)pi — e1¢ip1
e2fi— foer
v (faer —es fOSY + (frer — ea f)OY + (s er — e5 )9y 4
=¢; + : : — +O(h%) (35)

C2f1

—f261
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whereA’ = A+k3N?(C-TI),N? = diagin?,n3,- -~ n2,- ),
A results from the operatab? + kZn?, C results from the
operator(1 + g; D,. + g2 D?), andIL is an identity matrix. The
matricesA, C, and A’ are all tridiagonal. Note that when the
GD scheme is not adopte@, = I and the formulation reduces
to Vassallo’s [4]. The eigenvalue problem in (43) can be solved
efficiently with the shifted-inverse power method [14].
Substitutings? with 9% /922 in (41) and assuming the enve-
lope approximatioy = ® exp(—jkonz), wheren is the refer-
ence refractive index, we have

Relative error in k.

D2; + k2n*(1+ g1 Do + g2 D)

2
_(9 _ 2jk0ﬁ3 — kam?
022 0z Grid size (um)
(14 g1 Dy + g2 D2)®;. (44)

. . . Fig. 2. Relative error in the transverse wave number with respect to the grid
This formulation can also be applied to the beam propagatigiBe: uniform grid size.

method directly as described in [7] and [8].

IV. NUMERICAL RESULTS
A. Assessment of the Formulation

The investigated structure is a symmetric slab waveguide.
The core and cladding indexes arg... = 3.3704 and
Nelad = 3.2874 for GaAs and Gas2Alg.15AS, respectively.
The waveguide width i©> = 2 um and the wavelength is
A = 1.55 um. The effective index for the TE mode of this wave-
guide isne.y = 3.35795671005961, and the transverse wave
numbers in the core and cladding dtg/ko = \/n2,.. — 2y
= 0.28896709041585 and «,/ky = /n q—n%4 =
0.68457874579999, respectively. In the assessment of the
formulation the magnitudes of the fieldg, and ¢,4; are
assigned with exact values and thep or «, are evaluated Grid size (um)

using (24), (25), (28), and (38). For example _ _ _ , _
Fig. 3. Relative error in the transverse wave number with respect to the grid
D2¢< size: nonuniform grid size.
xz

1+ 91Dy + g2D3)¢h; (49) . . :
O(h*). The distorted behavior ef,, for Az < 7 x 10~2 is due
for our formulation, where = —k2 in the core region and =  to finite digits in the computer.
o2 in the cladding region. The relative error in the transverse Fig. 3 shows the relative error with respect to the average grid
wave number is defined as size for nonuniform grids, i.en;_1 = n; = ni41 = Ncore aNd
h_ # hy inFig. 1. The three sampled points again are all in the

Relative errorin k,

Tcalculated = (

kac, calculated — kx,exact

e T E— (46)  core region. The average grid size is defined as
in the core region, or Az = hothe hy LTk (48)
2 2

Xy, calculated — ¥z, exact

€ =
kO (ncore - nclad)

Qg

(47) where the ratio? = 20 in this casesy, is larger than that in
the case of uniform grids, but still behaves@&:*). It can be
in the cladding region. seen that,, calculated using the five-point scheme is slightly
Fig. 2 showse;,, for the TE case with respect to the gridssmaller than that calculated using théh*) three-point scheme.
size for uniform grids, i.e.n;_1 = n; = nip1 = Neore @Nd ¢, in the cladding region is again of the same order;as
h_ = hy = hin Fig. 1, where 3pt. denotes that three-point Fig. 4 shows the relative error with respect to the grid size
formulation is adopted and 5pt. formulation is adopted. All thior an interface lying between sampled points, thatijs,; =
sampled points are in the core region. It can be seen that the= ncore, 7it+1 = Nclaas - = by = handp = ¢ = h/21in
slopes are two and four f@p(h?) andO(h*) formulations, re- Fig. 1. It can be seen that the truncation error of our formulation
spectively. Note that;, calculated using the five-point schemes alsoO(h*) even if the interfaces exist. The accuracy of our
is slightly larger than that calculated using thé:*) three-point formulation is close to that of the uniform grid size as shown in
schemee,, in the cladding region is of the same orderegs Fig. 2. The transverse wave vector cannot be well approximated
(not shown). The truncation error of our formulation is exactlysing the graded-index approximation whose truncation error is
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T T T Neft, exact=3-32578847351789
n =3.32581388171437
eff, calcul

1
o 09}
£ 08}
— —
o S 0.7}
o
o < o6}
o =
> S 0.5}
=
8 § 0.4}
] =
1 = 0.3}
@
: ir 0.2}
0.1} , x
3 2 1 ? 5
10 10 10 10 ° 08 % 4 =2 0 2 4 6 8 10
Grid size (um T T T

Fig. 4. Relati in th b ith he grid )

'|g.. . Relative error in the transverse wave number with respect to the gri n 3.32578847351789
size: interfaces lying between sampled points. eff, exact

Nyt calou =3-32578998973725
1 ——
only O(h°) and cannot be reduced with smaller grid size dueto 44| e
the existence of the interface. |
As shown in Figs. 2—4, the accuracy is greatly enhanced wher 5
higher-order formulation is adopted. Or on the other side, the &
efficiency is elevated because coarser grids can be used. Fc2
example, the grid size of th@(~*) formulation can be about
ten times larger that of th@(h?) formulation ate,, = 107
All the above results are for TE cases. The TM cases have aIS(g 03r
been assessed, the results being close to those for the TE casic 0-2 ;
for the same parameters. 0.1} |
From the above assessment of the numerical error, the deriva 0
tion in Section Il is confirmed and the truncation error of our
derived formulation is indee@(h*). We have applied the de-
rived formulation to various parameters, which also validates
our derivation.

0.8
0.7}
0.6
0.5 ¢
0.4+

Intens

-0 -8 -6 -4 -2 o] 2 4 6 8 10
(pm)
(b)

Fig. 5. Field profiles for grid size\x = (a) 2um and (b) Lum.

B. Application to Mode Solvers: Slab Waveguides Fig. 6 shows the relative error in the reduced propagation con-
stant with respect to the grid size. The reduced propagation con-

First, a weakly guiding waveguide is investigated. The strustant is defined as [10]
ture is the same as that considered in [10]. The wavelength is

. . . ~ Teff — Tclad

1.55pm and the waveguide width & = 2 zm. The core and n=— (49)
cladding relative permittivities are?_,. = 11.088 andn.j,q = ficore ™ Thclad
11.044, respectively. The exact effective indexrisg cxact = The dashed curve is calculated using@(h") scheme across
3.32578847351789. The transparent boundary condition [15] ighe interface and a®(h?) scheme elsewhere. It can be seen
adopted. that such rough approximation yields worse results for large grid

Fig. 5(@) and (b) shows the field profiles calculatedizes, while the effect of inaccurate sampled points near the in-
using theO(h*) formulation for large grid sizes\x = 2 terfaceislessweighted due to much moXeé?) sampled points

and 1 pm, respectively. The solid curves are the analyfor small grid sizes. If the interface conditions are considered,
ical field profiles and the circles are the results calculatdtie results become better for large grid sizes. It can be seen that
using our formulation. The numerical effective indexes ait@ie truncation error of our formulation is inde€t2*). The

Neft calculated = 3-32581388171437 and 3.32578998973725  grid size withO(h*) truncation errors can be ten times larger or
for Az = 2 and 1m, respectively. In this case the propagatiomore than that witfO(h?) truncation errors, resulting in great
constant and the modal profile can be calculated accuratergguction of the computation effort.

four digits even though only one sampled point is placed in the

core. It seems that our formulation may be more “economi&: Application to Mode Solvers: Multiple-Quantum-Well

than that of Hadley’s [10] which requires a sampled point Yaveguides

the each interface. Our results are accurate to the same orddrhe modal characteristics of multiple-quantum-well (MQW)
as those of [10] with slightly smaller error when the grid sizesptical waveguides have attracted considerable attention be-
are the same. cause of their distinctive features and potential applications in
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g, [T T NI T T
T VT 3.38}
8 . O(h°) and O(h2) |~
& P ‘ ‘ o 3.36}
T e R R l il e S 334
S b IR, ° U
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S IEEY N R 324} Cladding | MQW ' Cladding 1
© 10 [ P SR B R R et L S ]
o P oo 822y 7
© -0 ‘
S 4oL, . 0 05 1 15 2 25 3 35 4 45 5
c 10 10 10 (um)
Grid size (um) (a)
Fig. 6. Relative error in the reduced propagation constant with respect to the
grid size for different three-point formulations. 338 |
3.36 }
photonic devices. Unfortunately, those complicated structures 3 3.34 |
are difficult to analyze using conventional FD techniques 2 3321
since the refractive index varies significantly and the widths of Q L4
wells and barriers are very small and usually not uniform. The & ™ I
equivalent index methods [16] or the finite element methods & 328 |
[17] are often employed. The situation changes when the &’ 3.26 |
formulatiqn of high accuracy is applied. The gr!d size is much 324 | Cladding MQW
more flexible and the accuracy can be much higher than those 300 |
of conventional FD schemes. ‘

_ _The modal characteristics of a complicated MQW waveguide 19 195 2 205 24 215 22
is investigated to show the excellent performance of our formu- (um)

lation. Fig. 7 shows the index distribution. The wavelength is )

A = 1.55 um, and the widths of wells and barriers dbg.; =

0.007 pm and Dy, = 0.012 pm, respectively. The refractive Fig. 7. Refractive index profile of the investigated MQW optical waveguide.
indexes of the wells, barriers, and claddingsragg, = 3.3704,

Nharr = 3.2874, andn j.q = 3.2224 for GaAs, Ga g2Al g.18AS, Nott, exact=2-28736376020217
and Ga gsAlg 32As, respectively. There are 55 wells and 56 Netr, caloy3-28736395412084
barriers in the MQW structure. The exact effective propagation 1
constants ar@es, exact = 3-28736376034 and3.28552369073 0.9
for TE and TM modes, respectively. Only one sampled point _ o8+
is placed at the center of each well or barrier. The grid size is gﬁ 0.7
0.0095um in the MQW region and 0.0&m in the cladding = 06
region. Fig. 8 shows the calculated field distribution which is @ 5
indistinguishable from the analytical one. The calculated effec- 2 04
tive propagation constants atgs, calculated = 3.28736376027 S o3
and3.28552369081 for TE and TM modes, respectively, which 2 ool
are both correct to ten digits even nonuniform grid sizes are used 0'1 I
under such strongly guiding structure. C‘)
-1 6
V. CONCLUSION (um)

We have derived improved three-point formula for the finiteFig. 8. Field profile in the MQW optical waveguide.
difference analysis of step-index optical waveguides. A gen-
eral relation is derived from the Taylor series expansion af&lderived. It is found that the frequently adopted formulations
matching the interface conditions. From the relation, the trunf Stern’s [3] and Vassallo’s [4] are lower-order cases of our de-
cation errors are not from matching the boundary conditions biited formulation.
from the truncation of the higher order terms in the Taylor se- We have assessed the frequently used formulations and our
ries expansion. Also, th&-field and theH -field formulations derived formulation for various parameters. Our formulation is
are actually equivalent. Making use of the the general relationdeedO(h*) in the uniform discretization cases irrespective of
and the Generalized Douglas scheme the improved formulatitie existence of the interfaces. The graded-index approximation
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is not suitable for cases with high refractive index contrast ratio o= p_2 1 ﬁ 1 P*a’n L
since the accuracy is onk(h°). When the discretization is 2T 2 2 4 12
nonuniform, the accuracy is reduced, especially in cases with pg®n 6
) : . ' 6 O(h
high refractive contrast ratio. to\pet 6 +O(R)
The improved formulation has been applied to the mode P pd PP pgtn
solver of slab waveguides and multiquantum waveguides, fs = 6T 2 T T
which shows its preference in accuracy and efficiency. The e @& piPn  Pn
derived formulation can be applied not only to the analysis of + 5 + 6 + 12 + 60 )
optical waveguides, but also to other electromagnetic simula- O(hS
tions for structures with step index. +O(1°)
4 2 2 4
fo=b e T
APPENDIX 24 ?‘)1 2%
The parameterg;’s in (27) are as follows: +6 <1% + %) +O(n°)
2 S5 p3q2 pq4

b0:1+q—277+0(h4)

2 3
b1=p+m+9<q+q6,—n>+0(h4)

+9<M+ﬂ+ 7 >+O(h6). (53)

2 24 12 120
by = p_2 + ﬁ + Opg + O(h®) Replacingp, ¢, andn,; 41 with —¢, —d, andn;_1, respectively,
23 2 ) ) 5 e;'s can be obtained. Specifically, when= 0 andg = h, f;'s
o= 4 2L g (21 1) L omt).  (s0) become
6 2 2 6 Ky hin? .
Replacingp, ¢, andn,.; with —c, —d, andn,;_,, respectively, fo=1+4 ="+ + 0
a;'s can be obtained. Specifically, when= 0 andg = h, b;'s B h3n  hdn? 6
become fr=0{h+ ="+ 755 + O(R®)
h?p h?  h'n 6
b0=1+7+0(h4) f2:?+ﬁ+0(h)
h3n 3 hiny 6
= (nt20) oy Rt (5 + ) + o0
h? ht 6
b223+0(h4) f4:ﬂ+0(h )
h3 4 (P 6
53=9<E)+0(h) fo—9<120 + O(h%)
h 1 o 4
= b+ 0. (51) = o/ +O0). (54)
Or whenp = h/2 andg = h/2, b;'s become Orwhenp = h/2 andg = h/2, f;'s become
h2n _ @ htn? 6
h Bn o (h b s _ b W ko
w4 g+ (5475 o SN
W2 h? Y C B BT
bo=—T+0 -+ O(h*) 2 1 48 ' 3840
B3 . _ h?  Rin  hip
b3zﬁ(1+9)+0(h) f2—z+a+1—92
h? h h477 6
= b+ O(hY). (52) +6 <Z t 96 ) TOUD)
. ] h3 h()n h3 h()n
The parameters;’s in (27) are as follows: - i 6
p ;'S in (27) [ 12+192+9<12+320>+O(h)
2 4,2
an |, an 6 ht
f0=1+7+ﬂ+0(h) f4:E(1+9)
2 ~
rgn | pPam h°
h=p+ 5 T o1 f5=240(1+9)
3 5,2
e, n 6 Rt
+6 <q % T 120 ) +0(n7) = S fi+ O (55)
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