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On the Application of Coupled Mode Theory for
Modeling Fiber Bragg Gratings

Martin McCall , Member, OSA

Abstract—We remove some ambiguities associated with the cou-
pled mode description of light propagation in fiber Bragg gratings
(FBG’s). We show, in particular, that different methods employed
in the literature lead to physically distinct results. The significant
distinctions are discussed both for interferometric systems and in-
tensity-only spectral measurements. Analysis of the reflection spec-
trum of a suitably designed double-grating structure is shown to
result in a novel form of spectral hole, similar to the well-known
effect derived from discontinuous phase gratings.

Index Terms—Bragg gratings, coupled mode theory.

I. INTRODUCTION

F IBER Bragg gratings (FBG’s), or gratings recorded along
the core of photosensitive fiber, are currently showing con-

siderable potential as passive integrated devices in photonics.
Gratings within fibers offer the possibility of chromatic and
environmentally sensitive reflectivity which is of significance
both to the sensor and optical communications communities.
A single uniform grating has limited application, however, as
just a single Bragg stop band is defined, and, moreover, the
side-bands are rather high resulting in a low rejection ratio.
Hence, considerable effort has now been directed at modi-
fying the simple grating structure to improve or specialize its
characteristics. This research has moved in several directions.
Coupling into cladding modes in long-wavelength gratings
has, for example, introduced additional degrees of freedom
so that temperature/strain deformations can be distinguished.
Several cascaded gratings of different wavelength introduce
several stop bands for wavelength division multiplexing,
while chirped gratings give spatially dispersed reflectivity for
temporal shaping and improved spectral characteristics [1],
[2]. Another idea has been the introduction of abrupt phase
discontinuities within the grating, to produce sharp intraband
spectral features [3], [4]. This has been most successfully
employed in so-called quarter wavelength shifted distributed
feedback lasers, where the narrow resonance provides single
mode operation. As applications of this concept now move
on to the consideration of multiple discontinuities [6], it is
especially important to obtain a sound theoretical description.
Despite its well-documented limitations, coupled mode theory
(CMT) remains the most widely used tool for analyzing simple
grating structures. Discontinuities of grating phase, pitch and
amplitude fit in well with this prescription, as they effectively
define a series of uniform gratings which can separately be
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Fig. 1. Interaction geometry for FBG’s.

treated using CMT. It is our intention in this paper to ana-
lyze critically how different literature formulations of CMT
applied to Bragg gratings arenot equivalent and can lead to
physically distinct results, due to the omission, in some cases,
of dephasing terms. For pitch discontinuities it is shown that
under suitable conditions an apparently novel form of intraband
gap spectral hole results. For phase discontinuities a similar
anomaly arises where inequivalent complex coupling constant
and phase matrix methods are employed. Although in this case
all reflectivity/transmission calculations yield identical results
using the different methods, interferometric systems sensitive
to the phase difference between the incident and scattered
waves yield distinct phenomena.

In Section II, we formulate the standard CMT description and
give the general solution with arbitrary starting point on the ini-
tial values. Through a dephasing transformation it is shown how
the various previous formulations relate to one another, and how
they are applied to multiple gratings. We also compare the com-
plex-coupling-constant and phase matrix descriptions of grating
phase discontinuities. In Section III, we calculate various re-
sponse functions of systems in which the physical significance
between the various methods is exposed. Finally, in Section IV,
we conclude with a few applications suggestions.

II. FORMULATION

Referring to Fig. 1, the standard coupled wave formulation
for forward/backward wave amplitudes, of propagation
constant propagating in a single-mode fiber within which is
written a Bragg grating of wavenumber , is given by

(1)

where is the detuning from Bragg resonance,
is the grating coupling

constant, being the amplitude of the dielectric modulation,
the index modulation, the effective mode index and the
free-space wavelength. The phase ofcodes the grating phase.
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Fig. 2. Mach–Zehnder response function versus grating dilation factors = �L=L. (a) Solid line: Including dephasing inversion matrixM (L). (b) Broken
line: Omitting the dephasing inversion matrixM (L): Parameters:� = 1:5�m, �n = 10 ; n L = 3 mm.

Defining the column vector the gen-
eral solution to (1) may be expressed as

(2)

where

(3)

and being given by

(4)

(5)

and We have here, unlike some au-
thors ([5], [7], [8], [10], though not [9]), emphasized the depen-
dence of the scattering matrixon the point at which the am-
plitudes are presumed known. We prefer the form given
in (2)–(5), as in this form it is clear that moving the initial point
from to is not described by replacing with in
the solution when is given. Usually, however, in
which case the above reduces to the well-known form given in
the previous literature (in, e.g., [5]). In the above notation the
resultant scattering matrix of gratings in series is given by

(6)

where and The above solution also emphasizes
the following necessary property for an arbitrary point
(where for a single grating of length

(7)

as may be verified by direct calculation from (2) to (5). By ap-
plying the condition

(8)

after which the grating reflectivity and transmission are easily
calculated.

Some authors ([8], [10]–[12]) have solved this problem using
the transformation where

(9)

In this frame, equation (1) takes the autonomous form

(10)

The solution is

(11)

where

(12)

where and were defined previously.
The two scattering matricesand are related by

(13)

Thus when considering multiple gratings, it is clear that sand-
wiched between and is the matrix

(14)

This matrix, which is evidently only relevant to gratings of
dissimilar pitch (so that is often apparently ig-
nored in calculations ([8], [10], [11]) and it is presumed that
multiple gratings are described by the product How-
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Fig. 3. Grating reflectivity spectrum. Solid line: Including the inversion dephasing matrixM (L). Broken line: Omitting the inversion dephasing matrix
M (L): Parameters as for Fig. 2.

ever, as shown in Section III, this procedure leads to scattered
amplitudes which differ from those calculated when the
together with the final inversion is included.

A similar, but distinct anomaly occurs when considering two
identical gratings delineated by a phase discontinuity. The pres-
ence of phase discontinuities within a Bragg grating effectively
divides the structure into several subgratings. As noted above
(1) grating discontinuities may be accounted for by complexi-
fying the grating coupling constant ([5], [8], [9]). If the phase
change at a discontinuity at is 2 (the factor of two is for
convenience), then the resultant scattering over the lengthof
the grating is described by

(15)

where for the second grating, so that

(16)

is unaffected.
An alternative approach used ([7], [10], [11]) is to keepreal

and account for phase discontinuities via phase matrices of the
form

(17)

the resultant scattering matrix for several discontinuities then
being given by

(18)

However, as discussed below, this also leads to scattered am-
plitudes which differ in phase with respect to those calculated
by complexifying .

Fig. 4. Two gratings of dissimilar pitch.

III. RESULTS

The simplest context within which these issues are exposed is
that of a single grating (Fig. 1), for which the scattering
matrices of (3) and (12) differ by the detuning inversion matrix.
We contrast the two methods by calculating the output of an
equal path Mach–Zehnder interferometer, in which the incident
and transmitted waves are interfered

and compare this with The detuning can
equivalently be induced by either changing the wavelength, or
by dilating the grating. A fractional change in the grating length
of creates a similar deformation of the grating period

This can be induced either by strain or temperature
increase and produces the same detuning as a change in wave-
length of As well as sensing, we
also note the relevance of these considerations to Mach–Zehh-
nder-based interferometric add–drop filters ([15]). Fig. 2 shows
the intensity as a function of the strain using the two methods.
Outside the stopband, with the detuning omitted [see Fig. 2(b)],
the response is nearly periodic, while with the detuning matrix
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Fig. 5. Reflection spectra for two gratings of dissimilar pitch.� = 0:75� ; other parameters as for Fig. 2: (a) with intermediate dephasing matrixN (L=2)
and (b) without intermediate dephasing matrixN (L=2):

at large detuning, the output is a constant value given by con-
structive interference. This is also clear from looking at the large
detuning limit when the scattering matrix be-
comes the identity.

We note that, in this case, both methods yield the same grating
transmission and reflection spectra which for completeness we
give in Fig. 3. This shows the spectrum at zero dilation, though
as noted above dilation and wavelength changes are equivalent.

We now turn to the case of two gratings of dissimilar pitch
(see Fig. 4). Choosing parameters as for the above calcu-
lations, but with the second grating with a different period

we obtain, for the two calculation methods, the
reflection spectra illustrated in Fig. 5, the spectrum showing the
expected reduction in finesse. The spectra are almost identical,
and appear to be so for large parameter ranges. However, as
noted above, the two methods differ by the intermediate matrix

(19)

This is similar to the phase discontinuity matrix equation (17),
which is known to yield spectral holes whenever
Thus, in this case, we expect a spectral hole to appear whenever

(20)

Detailed algebraic considerations show this to be the case. With
similar parameters as before, but with m and

m (which is the condition (20) for a grating with
mm, with taking the typical value of 1.4486),

without dephasing terms [see Fig. 6(b)] no spectral hole is seen,
while with the intermediate dephasing matrix [Fig. 6(a)], a spec-
tral hole occurs at the average Bragg wavelength

m. Otherwise, the spectra for the two calcula-

tion methods are very similar. This method of producing intra-
band spectral holes is apparently novel, and may have signifi-
cant fabricational advantages over the traditional method using
phase discontinuities. Moreover, the concept is applicable to
other periodic media (e.g., chiral thin films) and is currently un-
dergoing further theoretical and experimental investigation [13],
[14].

We finally consider a single grating phase discontinuity lo-
cated at —see Fig. 7.

For the complex-coupling-constant method, setting
to be the respective matrix elements of

and we have for the matrix elements of the resultant
matrix

(21)

For the phase matrix method, and are as above, but
no longer contains the grating phase and is denotedThe

matrix elements of the resultant matrix, in this case are

(22)

The inequivalence of the two formulations is shown from the
fact that

(23)

provided The two formulations thus yield
output amplitudes Evidently calculations
of the reflectivity and transmission

will be unaffected, but any setup in
which the transmitted/reflected amplitudes are interfered with
the incident wave, will yield distinct results. As for the case of
a single grating, we illustrate by calculating the transmission



240 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 18, NO. 2, FEBRUARY 2000

Fig. 6. Reflection spectra for two gratings of slightly dissimilar pitch for which the condition1=� � 1=� = 1=L is fulfilled (see text).� = 0:5177 �m and
� = 0:5179 �m other parameters as for Fig. 2: (a) Solid line: with intermediate dephasing matrixN (L=2); (b) Broken line: without intermediate dephasing
matrix . Note that the spectral hole is slightly detuned from the Bragg resonance for grating 1.

Fig. 7. Single grating phase discontinuity.

resulting from combining with in an equal path
Mach–Zehnder interferometer (MZI)

(24)

In practice the phase discontinuity may be produced by a uni-
form “gap” between the two gratings, the length of the gap de-
termining the phase difference between the two gratings. It is
thus relevant to explore the intensity as a function of the
phase of the discontinuity, as the latter may be induced via en-
vironmental effects (e.g., temperature, or strain) which change
the length of the gap.

The results for the two methods for a phase discontinuity
placed at the midpoint are shown in Figs. 8 and 9. In this case we
plot the response as a function of the phase of the discontinuity.
Fig. 8 shows the reflection characteristic illustrating the well-
known appearance of a spectral hole . The curve is the
same for both methods. The Mach–Zehnder response (Fig. 9),
however, shows quite distinct characteristics for the complex-
coupling-constant method, and the phase matrix method. Sim-
ilar results are obtained when interfering the reflected beam with

the incident beam, or interfering the reflected beam with the
transmitted beam.

IV. CONCLUSION

We have formulated precisely the general solution to the
Bragg grating problem, giving due regard to form of the solu-
tion under spatial translations and noting variations within the
literature. We have demonstrated that modeling phase disconti-
nuities in fiber-Bragg gratings using phase matrices, can lead
to erroneous results in any experiment sensitive to the phase
of the transmitted or reflected beams. The correct method is to
code phase differences between gratings as a phase constant
in the grating coupling constant,. Some authors have used
combinations of methods (e.g., in [8] the authors work solely
in the frame, but use complexfor phase discontinuity). We
have demonstrated that these distinctions, though apparently
trivial, result in distinct results when analysing the transmission
of a MZI. Such results are of potential significance in sensor
applications ([15]). An issue in the use of Mach–Zehnder fiber
sensors is to relate the measured transmission tothe locationof
an environmental change within one arm of the interferometer.
The inclusion of a grating in one arm, within which phase
continuities exist may be able to address this problem, for
which the correct calculation of the transmission function is
highly significant.

The apparently novel method of producing intraband spectral
holes discussed in this paper may have significant advantages
over phase discontinuity methods. Many Bragg gratings are
produced holographically and it is relatively simple to change
recording parameters such as interaction angle or wavelength,
whereas phase discontinuity methods require considerable
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Fig. 8. Reflectivity versus phase of discontinuity for a phase discontinuity at the mid-point of grating. Incident wavelength is for Bragg resonance� = 1:5�m.
(a) Solid line: Complex grating coupling constant method. (b) Broken line: Phase matrix method. Parameters as for Fig. 2.

Fig. 9. Equal-path Mach–Zehnder response versus phase of discontinuity placed at mid-piont of grating. Incident wavelength is for Bragg resonance� = 1:5�m.
(a) Solid line: Complex grating coupling constant method. (b) Broken line: Phase matrix method. Parameters as for Fig. 2.

positional accuracy. Furthermore, ultraviolet (UV) curing
provides a very convenient postprocessing method of changing
the pitch of part of a grating structure. We also note that (20)
indicates that the spectral hole is induced for asmall change
in the grating pitch. This could thus form the basis of a novel
sensitive sensor in which an initially uniform grating is locally
dilated by strain/temperature variations.

We will explore these issues in a further publication.
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