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On the Application of Coupled Mode Theory for
Modeling Fiber Bragg Gratings

Martin McCall, Member, OSA

Abstract—\We remove some ambiguities associated with the cou- T —
pled mode description of light propagation in fiber Bragg gratings A (0) ------ A+(L)
(FBG's). We show, in particular, that different methods employed ~
in the literature lead to physically distinct results. The significant - 4(2)=0
distinctions are discussed both for interferometric systems and in- A (0)
tensity-only spectral measurements. Analysis of the reflection spec-
trum of a suitably designed double-grating structure is shown to

result in a novel form of spectral hole, similar to the well-known z=0 z=1
effect derived from discontinuous phase gratings.
Index Terms—Bragg gratings, coupled mode theory. Fig. 1. Interaction geometry for FBG'’s.
I. INTRODUCTION treated using CMT. It is our intention in this paper to ana-

] ] lyze critically how different literature formulations of CMT

F IBER Bragg gratings (FBG's), or gratings recorded alongpjied to Bragg gratings amot equivalent and can lead to

the core of photosensitive fiber, are currently showing copysically distinct results, due to the omission, in some cases,
siderable potential as passive integrated devices in photongSgephasing terms. For pitch discontinuities it is shown that
Gratings within fibers offer the possibility of chromatic anq,nger suitable conditions an apparently novel form of intraband
environmentally sensitive reflectivity which is of significanceyap spectral hole results. For phase discontinuities a similar
both to the sensor and optical communications communitiggomaly arises where inequivalent complex coupling constant
A single uniform grating has limited application, however, agng phase matrix methods are employed. Although in this case
just a single Bragg stop band is defined, and, moreover, e reflectivity/transmission calculations yield identical results
side-bands are rather high resulting in a low rejection ratigsing the different methods, interferometric systems sensitive
Hence, considerable effort has now been directed at mogl- the phase difference between the incident and scattered
fying the simple grating structure to improve or specialize itg4yes yield distinct phenomena.
characteristics. This research has moved in several directionsy, section 11, we formulate the standard CMT description and
Coupling into cladding modes in long-wavelength gratinggiye the general solution with arbitrary starting point on the ini-
has, for example, introduced additional degrees of freedqpg) yalues. Through a dephasing transformation it is shown how
so that temperature/strain deformations can be distinguishgh various previous formulations relate to one another, and how
Several cascaded gratings of different wavelength introduggsy are applied to multiple gratings. We also compare the com-
several stop bands for wavelength division multiplexing|ey-coupling-constant and phase matrix descriptions of grating
while chirped gratings give spatially dispersed reflectivity foEhase discontinuities. In Section Ill, we calculate various re-
temporal shaping and improved spectral characteristics [4}onse functions of systems in which the physical significance
[2]. Another idea has been the introduction of abrupt phaggyeen the various methods is exposed. Finally, in Section IV,

discontinuities within the grating, to produce sharp intrabange conclude with a few applications suggestions.
spectral features [3], [4]. This has been most successfully

employed in so-called quarter wavelength shifted distributed
feedback lasers, where the narrow resonance provides single
mode operation. As applications of this concept now move Referring to Fig. 1, the standard coupled wave formulation
on to the consideration of multiple discontinuities [6], it ifor forward/backward wave amplitudesi*, of propagation
especially important to obtain a sound theoretical descripticfPnstant3 propagating in a single-mode fiber within which is
Despite its well-documented limitations, coupled mode theoWitten a Bragg grating of wavenumbar = 27/ A, is given by
(CMT) remains the most widely used tool for analyzing simple 4
i i inuiti i i d [At . 0 ke~ [ At

grating structures. Discontinuities of grating phase, pitch and ol { _} — { R } { _} (1)
amplitude fit in well with this prescription, as they effectively dz [ A —Rer 0 A

K is the detuning from Bragg resonance,

define a series of uniform gratings which can separately Qv%ereéﬁ — a5
|k| = (728¢/BA3) = (mwén/Ioner), is the grating coupling
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Fig. 2. Mach—Zehnder response function versus grating dilation facters L/ L. (a) Solid line: Including dephasing inversion matfix—!(L). (b) Broken
line: Omitting the dephasing inversion mattif —*(L). Parameters\ = 1.5um, énee = 1073, negeL = 3 mm.

Defining the column vectad () = [A1(2), A= (»)]¥, the gen- as may be verified by direct calculation from (2) to (5). By ap-

eral solution to (1) may be expressed as plying the conditionA=(L) = 0
A(2) = (10, 2) All) @ a0 =~ L 4 0) ®
where after which the grating reflectivity and transmission are easily
o—i08(z—10)/2 —i68(2+10)/2 calculated.
— p c q . .
S(lo,2) = [ PP 2 i5B( o)/ 2y } (3)  Some authors ([8], [10]-{12]) have solved this problem using

the transformatiomd = M - A, where

p(z — lp) andq(z — ly) being given by 5p82/2 0
6[3 M= |:C 0 6—i6,8z/2:| (9)
plz —lo) = {COSh[A(Z —lo)] +1i A sinh[A(z — ZO)]} (4) In this frame, equation (1) takes the autonomous form
& (882 ok N
(2 ~10) =i 5 Snh[AG— D) © w5 il 4 a0
A# i) =0y BEE T The solution is
andA = [|x|? — (68/2)%]*/2. We have here, unlike some au- Az —1) = S(z — DA(l) (11)

thors ([5], [7], [8], [10], though not [9]), emphasized the depenyhere

dence of the scattering matrkon the point, at which the am-

plitudes A(l,) are presumed known. We prefer the form given S(z) = { p*(z) q*(z) } (12)

in (2)—(5), as in this form it is clear that moving the initial point q*(z) p*(2)

from z = 0 toly is notdescribed by replacing with » — [y in wherep(z) andq(z) were defined previously.

the solution whem4(0) is given. Usually/, = 0, however, in 1o scattering matrice® and$ are related by

which case the above reduces to the well-known form given in . N

the previous literature (in, e.g., [5]). In the above notation the S(L,2) =M™ (2) - S(z = 1) - M(1). (13)

resultant scattering matrix @ gratings in series is given by Thus when considering multiple gratings, itis clear that sand-

wiched betweers; ;1 (711 — z ) andS;(z; — z_1 ) is the matrix
Nijyr(zi) = Miga(zi) - M (z). (14)

wherez, = 0andzy = L. The above solution also emphasizes s marix, which is evidently only relevant to gratings of

the following necessary pro.perty for an arbitrary point ! gissimilar pitch (so thaé3;, # 86:), is often apparently ig-

(where0 < I < L), for asingle grating of length nored in calculations ([8], [10], [11]) and it is presumed that

S(0,L) = S(I,L) - 5(0,1) (7) multiple gratings are described by the prodfigt: S»- S; . How-

5(0,L) = Sn(zn—1,2n) - - - S2(21, 22) - S1(20,21)  (6)



238 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 18, NO. 2, FEBRUARY 2000

1

08+

Reflectivity |r|2
o
o
T
L

o
'S
T

1

1 1 1 i 1 A

0 1 i
1498 1498.5 1499 1499.5 1500 1500.5 1501 1501.5 1502
Free space wavelength, nm

02

Fig. 3. Grating reflectivity spectrum. Solid line: Including the inversion dephasing madrix (L). Broken line: Omitting the inversion dephasing matrix
M~1(L). Parameters as for Fig. 2.

ever, as shown in Section |ll, this procedure leads to scattered s —

amplitudes which differ from those calculated whentg 1, 4°(0) 4°(1)

together with the final inversion/ ' (L), is included. A(1)=0
A similar, but distinct anomaly occurs when considering two _‘(a . e e e

identical gratings delineated by a phase discontinuity. The pres- A A

ence of phase discontinuities within a Bragg grating effectively ! 2

divides the structure into several subgratings. As noted above z=0 z=1/2 z=1L

(1) grating discontinuities may be accounted for by complexi-

fying the grating coupling constant ([5], [8], [9]). If the phasé9- 4. Two gratings of dissimilar pitch.
change at a discontinuity at= L is 2¢ (the factor of two is for

convenience), then the resultant scattering over the lebgth IIl. RESULTS

the grating is described by The simplest context within which these issues are exposed is
S, L, $) - 5(0,1,0) (15)  thatofasingle grating (Fig. 1), fav/ ~!( L) which the scattering
where for the second grating,— xe~2% so that matrices of (3) and (12) differ by the detuning inversion matrix.
B _ B ivg B We contrast the two methods by calculating the output of an
Wz =D —aqlz—1L¢) =1 A€ sinh[A(z = )] (16) equal path Mach—Zehnder interferometer, in which the incident

p(z — 1) is unaffected. and transmitted waves are interfered
An alternative approach used ([7], [10], [11]) is to keepeal |AT(0) + AT(L)|?
;2gnaccount for phase discontinuities via phase matrices of the _ |6_i6’aL/2A+(O) n GMIQL/QAJF(L)P

‘ and compare this withA*(0) + A*(L)|?. The detuning can
b, — [CZ% 0 } (17 equivalently be induced by either changing the wavelength, or
3 —ich; e . . N .
0 % by dilating the grating. A fractional change in the grating length

th ltant tteri trix f | di tinuities th of s = §L/L creates a similar deformation of the grating period
€ resultant scattering matrix for several discontinuities then_ SA/A. This can be induced either by strain or temperature

being given by increase and produces the same detuning as a change in wave-
N length of6A = A2 [A+2LA(1—1/s)]7!. As well as sensing, we
11 5Giszis) - @5 | - S(0,20). (18)  also note the relevance of these considerations to Mach—Zehh-
j=1 nder-based interferometric add—drop filters ([15]). Fig. 2 shows

However, as discussed below, this also leads to scattered #ime-intensity as a function of the strain using the two methods.
plitudes which differ in phase with respect to those calculat€dutside the stopband, with the detuning omitted [see Fig. 2(b)],
by complexifyings. the response is nearly periodic, while with the detuning matrix



MCCALL: COUPLED MODE THEORY FOR MODELING FBG'S 239

1'2 T T T T T T T

Reflectivity |r|2
o o
[} o]
T T
1 1

o
~
T
L

0.2 B

AN

1 1 1 1 L 1 1
&98 1498.5 1499 1499.5 1500 1500.5 1501 1501.5 1502
Free space wavelength, nm

Fig. 5. Reflection spectra for two gratings of dissimilar pitdh.= 0.75A, other parameters as for Fig. 2: (a) with intermediate dephasing niétriX L/2)
and (b) without intermediate dephasing mathx »(L/2).

at large detuning, the output is a constant value given by cdien methods are very similar. This method of producing intra-
structive interference. This is also clear from looking at the lardgmnd spectral holes is apparently novel, and may have signifi-
detuning limit(|63| > |x|) when the scattering matri be- cant fabricational advantages over the traditional method using
comes the identity. phase discontinuities. Moreover, the concept is applicable to
We note that, in this case, both methods yield the same gratisther periodic media (e.g., chiral thin films) and is currently un-
transmission and reflection spectra which for completeness dergoing further theoretical and experimental investigation [13],
give in Fig. 3. This shows the spectrum at zero dilation, though4].
as noted above dilation and wavelength changes are equivalentVe finally consider a single grating phase discontinuity lo-
We now turn to the case of two gratings of dissimilar pitcbated at: = [—see Fig. 7.
(see Fig. 4). Choosing parameters as for the above calcuFor the complex-coupling-constant method, setting
lations, but with the second grating with a different perio@p, 2, ¢:1.2) to be the respective matrix elements ${0,/,0)
(A2 = 0.75A1), we obtain, for the two calculation methods, thendS(l, L, ¢), we have for the matrix elements of the resultant
reflection spectra illustrated in Fig. 5, the spectrum showing tineatrix S
expected reduction in finesse. The spectra are almost identical, (9, q) = (p1P2 + ¢ @2, @1P2 + P 2). 1)
and appear to be so for large parameter ranges. However, as

noted above, the two methods differ by the intermediate matrix0r the phase matrix methogh,, p; andg, are as above, but
(53— 801 L )4 0 g2 no longer contains the grating phase and is dengied@he
N12(L/2) = ¢ 0 Hi6B—8A1) /4 | - (19) matrix elements of the resultant matri, in this case are
. qupae’ + pigee™™). (22)

Lo i Lo o
This is similar to the phase discontinuity matrix equation (17), (p:9) = (P12 +ai Goe

which is known to yield spectral holes whenever = /2. The inequivalence of the two formulations is shown from the
Thus, in this case, we expect a spectral hole to appear whendast that

1 1 1

— —— = 20 -

Ay A L (20) S=¢.5 (23)
Detailed algebraic considerations show this to be the case. With
similar parameters as before, but with = 0.51774 um and provided ¢ = G2 %%, The two formulations thus yield

Ay = 0.51761 pm (which is the condition (20) for a grating with output amplitudesd(L) = & - A(L). Evidently calculations
nexL = 3 mm, with n.g taking the typical value of 1.4486), of the reflectivity (= |A~(0)/AT(0)]?) and transmission
without dephasing terms [see Fig. 6(b)] no spectral hole is seén, |A+(L)/A+(0)|?) will be unaffected, but any setup in
while with the intermediate dephasing matrix [Fig. 6(a)], a spewshich the transmitted/reflected amplitudes are interfered with
tral hole occurs at the average Bragg wavelengthn.:(A; + the incident wave, will yield distinct results. As for the case of
As) = 1.4998 um. Otherwise, the spectra for the two calculaa single grating, we illustrate by calculating the transmission
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Fig. 6. Reflection spectra for two gratings of slightly dissimilar pitch for which the conditjon, —1/A, = 1/L is fulfilled (see text)A; = 0.5177 gm and
A5 = 0.5179 um other parameters as for Fig. 2: (a) Solid line: with intermediate dephasing matekL/2), (b) Broken line: without intermediate dephasing
matrix . Note that the spectral hole is slightly detuned from the Bragg resonance for grating 1.

¢ the incident beam, or interfering the reflected beam with the
transmitted beam.
4°(0) A (L) IV. CONCLUSION
- 4°(1)=0 We have formulated precisely the general solution to the
A_(O) - - - - Bragg grating problem, giving due regard to form of the solu-
A A tion under spatial translations and noting variations within the
literature. We have demonstrated that modeling phase disconti-
z=0 z=L/2 z=L nuities in fiber-Bragg gratings using phase matribesan lead

to erroneous results in any experiment sensitive to the phase
of the transmitted or reflected beams. The correct method is to
code phase differences between gratings as a phase constant
in the grating coupling constant, Some authors have used
4 N 5 combinations of methods (e.g., in [8] the authors work solely
I(¢) =1AT(0) + A~ (D)|". (24)  in the A frame, but use complexfor phase discontinuity). We

In practice the phase discontinuity may be produced by a uhiave demonstrated that these distinctions, though apparently
form “gap” between the two gratings, the length of the gap déivial, result in distinct results when analysing the transmission
termining the phase difference between the two gratings. Itd§ a MZI. Such results are of potential significance in sensor
thus relevant to explore the intensify¢) as a function of the applications ([15]). An issue in the use of Mach—Zehnder fiber
phase of the discontinuity, as the latter may be induced via esensors is to relate the measured transmissitimettocationof
vironmental effects (e.g., temperature, or strain) which change environmental change within one arm of the interferometer.
the length of the gap. The inclusion of a grating in one arm, within which phase

The results for the two methods for a phase discontinuitpntinuities exist may be able to address this problem, for
placed at the midpoint are shown in Figs. 8 and 9. In this case which the correct calculation of the transmission function is
plot the response as a function of the phase of the discontinukiighly significant.
Fig. 8 shows the reflection characteristic illustrating the well- The apparently novel method of producing intraband spectral
known appearance of a spectral hgle- w /2. The curve is the holes discussed in this paper may have significant advantages
same for both methods. The Mach—Zehnder response (Fig.®er phase discontinuity methods. Many Bragg gratings are
however, shows quite distinct characteristics for the compleproduced holographically and it is relatively simple to change
coupling-constant method, and the phase matrix method. Sireeording parameters such as interaction angle or wavelength,
ilar results are obtained when interfering the reflected beam witthereas phase discontinuity methods require considerable

Fig. 7. Single grating phase discontinuity.

resulting from combiningd* (L) with AT(0) in an equal path
Mach—Zehnder interferometer (MZI)
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Fig. 9. Equal-path Mach—Zehnder response versus phase of discontinuity placed at mid-piont of grating. Incident wavelength is for Bragg\resarignce
(a) Solid line: Complex grating coupling constant method. (b) Broken line: Phase matrix method. Parameters as for Fig. 2.

positional accuracy. Furthermore, ultraviolet (UV) curing We will explore these issues in a further publication.
provides a very convenient postprocessing method of changing

the pitch of part of a grating structure. We also note that (20)

indicates that the spectral hole is induced fosraall change ACKNOWLEDGMENT

in the grating pitch. This could thus form the basis of a novel

sensitive sensor in which an initially uniform grating is locally The author would like to thank Dr K. Weir for a useful dis-
dilated by strain/temperature variations. cussion.
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