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Abstract—This paper presents a theoretical investigation on
the dispersion in graded-index silica glass fibers under overfilled
launching with equal excitation of modes. This theory incorpo-
rates both chromatic effect and modal contribution which takes
not only the modal delay into account but also the distributed loss
and mode-coupling. Random microbends are considered to be the
most dominant source of coupling. All index perturbations and
intrinsic core diameter variations are assumed to be negligible,
but they could readily be included without changing the basic
structure of the model. The 3-dB bandwidth is analyzed through
the study of the fiber transfer function which introduces the
wavelength and modal effects as two separate filter functions. The
formal derivation of the chromatic transfer function is analytical.
On the other hand, the modal transfer function is obtained by
numerically solving the power flow equation in the frequency
domain using Crank–Nicholson method. As an application, the
results are illustrated showing, in particular, the influence of the
fiber core/outside diameters, for the first time.

Index Terms—Bandwidth, Crank–Nicholson method, differen-
tial modal attenuation, dispersion, graded-index optical fibers,
mode-coupling, optical communications, power flow equation.

I. INTRODUCTION

T HE GROWING demand in data transmission, raised in
particular by the Internet, will require the use of optical

fibers as transmission media instead of coaxial cables, even at
short distance. Coaxial cables are extremely lossy, susceptible
to electromagnetic interference (EMI), and show a dramatic
limitation in their capacity for digital transmission. On the
other hand, optical fibers show a very low attenuation, a
great potential for high-speed transmission and a complete
immunity to EMI. This is true for single-mode fibers but also
for the multimode versions, so either type of fibers can be
employed in replacement of the metallic cables. However,
more attention is being given to multimode fibers (MMF’s)
rather than single-mode fibers for use in local area networks
(LAN’s). Multimode fibers are easier to make and their large
dimensions impose less stringent requirements on cabling,
connecting, splicing and handling compared to the single mode
version. Moreover, the large core region of multimode fibers
added to their large numerical aperture allows for efficient
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light coupling from semiconductor lasers, which offers large
mechanical tolerances in transceiver development. It is clear
that in the short-range applications where many junctions and
connections between adjacent sections are often necessary, the
multimode version is the most appropriate in consideration of
whole system cost.

Despite the above advantages, the use of multimode fibers
has been resisted for some years by fiber-optic link designers in
favor of single-mode fibers (SMF’s) since Epworth discovered
the potentially catastrophic problem of modal noise [1]. Modal
noise in laser-based MMF links was recently more completely
addressed and theoretical as well as experimental proofs showed
that long-wavelength operation of MMF’s is robust to modal
noise [2], [3]. This explains the spectacular regain of interest
for MMF’s as the best solution for the cabling of LAN’s. The
question that needs answer now in view of increasing the use-
fulness of multimode fibers concerns the improvement of their
dispersion characteristics. Because MMF’s propagate a large
number of modes having different velocities, they produce a
signal response inferior to that of single-mode fibers. For stan-
dard 62.5/125 m MMF’s, the minimum bandwidths are only
specified to be 200 and 500 MHzkm [4] in the 850 and 1300
nm transmission windows, respectively, under uniform over-
filled-excitation condition [5]. Even though these specifications
do satisfy the information rate of many classical short-range
links, it is clear that a 2-km-long campus backbone cannot be
realized for operation at the speed of gigabit Ethernet. Until
wavelength-division-multiplexing (WDM) technology becomes
available and inexpensive, the potential MMF capacity for dig-
ital communication needs a greater exploitation to meet user re-
quirements for higher data rates and to support emerging mul-
timedia applications. To enable the design and utilization of
MMF’s with such enhanced speeds, the development of an accu-
rate bandwidth model is of prime importance. Through the dis-
persion modeling more likely performance limits can be estab-
lished, thereby preventing eventual overdesign of systems and
the resulting cost.

Since the mid-1970’s, much work has been directed to
the investigation of MMF’s and their ability for high speed
transmission. So far, different factors have clearly been iden-
tified to influence the information-carrying capacity, namely,
the material dispersion (in combination with the spectrum
of the exciting source) [6], [36], [7], the launching condi-
tions [8], [9], as well as the mode-dependent characteristics
(i.e., delay [6], [36] attenuation [10], and coupling-coeffi-
cient [10]–[12]). Unfortunately, the achievements, so far ac-
complished, are not quite complete to enable precise band-
width prediction if an arbitrary operating condition is to
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be considered. To our knowledge, none of dispersion eval-
uation models reported in the previous literature incorpo-
rates the involved parameters together. This might explain,
among others, why measured bandwidths in MMF’s seldom
match exactly with theory. The most interesting description
of pulse broadening in graded-index (GRIN) MMF’s was
certainly that of Olshansky and Keck [6]. This dispersion
model provided essential guidelines for the development of
GRIN fibers. But because this theory treated only the partic-
ular case of uniform overfilled launching (EOFL), and addi-
tionally neglects the differential mode attenuation (DMA) as
well as the mode-conversion, it needs reconsideration. The
analysis of the mode-conversion was given in [12], but it
ignores the DMA and no longer associates the contribution
of material dispersion. Consequently, these results can effi-
ciently be applied only at long enough transmission length
under fiber operation at a zero width wavelength region.
This is not practically the case since most MMF systems
use broad-band sources such as light emitting diodes (LED’s)
or Fabry–Perot (FP) lasers. Recent publications are also re-
ferring to vertical-cavity surface-emitting lasers (VCSEL’s).
It is the purpose of the present work to give for the first time
a more general approach to the analysis of the bandwidth.
This model is based on aspects of the models developed
in previous works, but includes most items involved in the
determination of the aggregate dispersion. It can be used
at any wavelength under any operating condition. Moreover,
this study properly allows for a quantitative evaluation of
the influence of the fiber geometry, which is an important
figure of merit in relation to the ease of connecting and
handling, as mentioned earlier.

The 3-dB bandwidth is analyzed through the study of the fiber
transfer function which introduces the wavelength and modal ef-
fects as two separate filter functions. The formal derivation of
the chromatic transfer function is analytical, while the modal
transfer function is obtained by numerically solving the power
flow equation in the frequency domain. To make it easy to use
our theory for the description of any GRIN MMF, the general
formalism is first displayed together with a careful presentation
of the latent assumptions and approximations. Particular param-
eter-values are subsequently chosen for computer simulations
based on studying samples of silica glass fibers fabricated by
Plasma Optical Fiber. Illustrative results are reported with spe-
cial focus spent on analyzing the influence of the fiber core and
outer diameters.

II. THEORY

The first transmission optical fibers consisted of a high refrac-
tive index core surrounded by a lower refractive index cladding.
The index step between the core and cladding causes light to
be trapped by total reflection at the core-to-cladding boundary.
Within the requirement of a lower index for the cladding, the
profile may in general take any form. However, the specific
shape of the profile has a considerable effect on the distribu-
tion and the characteristics of the propagated light and there-

from influences the performance parameters of the fiber (dis-
persion, loss ). The power-law or so-called-profile grading
is of particular importance for minimized dispersion and has be-
come commonly used at this purpose. Therefore, the multimode
GRIN fibers whose dispersion will be examined here have a re-
fractive index profile defined by

for
for

(1)

where
offset distance from the core center;

free space wavelength of the fiber excitation light;

refractive index exponent ;

refractive index in the center of the core;

refractive index contrast between the core center
and the cladding;

core radius (i.e., the radius at which the
index reaches the cladding value

.

It is to be noted that the core grading becomes parabolic for
and converges to the step-index profile (uniform core)

for .
It is anticipated that the well-known Sellmeier equation will

be used to evaluate both the refractive indices of the cladding
and that of the core central region. This equation involves sev-
eral parameters (known as Sellmeier constants) that are depen-
dent on the dopant and its concentration. Because this relation-
ship may present a certain degree of nonlinearity, it may not
exactly be true that the index profile will obey (1) with a single

. This behavior is usually check by measuring the differen-
tial mode delay (DMD) as a function of the lateral displacement
. The results of these tests at 1300 nm supplied to us by the

manufacturer shows one single optical region for the core. We
confirmed this by achieving single-fittings of (1) to measured
index profiles on PCVD preforms. We believe that the circular
symmetric profile as defined by (1) is a good representation of
the refractive index. Nevertheless, it should be outlined that the
index exponent may slightly vary with wavelength, always
due to the eventually nonlinear Sellmeier coefficients. As a con-
sequence of this, a profile conceived to be optimal at a given
wavelength, for example 1300 nm, may well be far from op-
timal at another wavelength, for example 850 nm. The-dis-
persion is imposed by the dopant and its concentration, so this
impairment is not easy to overcome. A possible solution would
consist of implementing the so-called multiple-index profiles
as proposed in [13], but the fiber fabrication will become more
complicated. This aspect of the investigation is not treated in
this paper but could be the subject of a future analysis.

A. Formulation for Fiber Dispersion Analysis

Multimode optical fibers described by (1) support a large
but finite number of modes which are particular solutions of
the Maxwell’s equations. Each mode propagates at its own ve-
locity resulting from its particular propagation constant. From
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the WKB analysis the modal propagation constant was approx-
imately derived as [12]

(2)

where is the principal mode number and is the total
number of mode groups given by

(3)

The principal mode number (or mode group number) appearing
in (2) is defined as , in which the parameters
and are referred to as radial and azimuthal mode number, re-
spectively. Physically, and have the meaning that they count
the number of maximum intensities that may appear in the ra-
dial and azimuthal direction in the field intensities of a given
mode. In a strict sense, the mode numberis a discrete integer
parameter, which takes values ranging from unity to the total
number of mode groups. However, very oftencan be treated
as a continuous variable. This approximation is of great interest
because it allows one to replace the discrete mode spectrum by
a modal continuum. As a result, the WKB method can readily
be used and mode sums can be converted to integrals that are
easier to handle. A mode-continuum theory was presented in
[14] for parabolic-index fibers. In this analysis, the validity of
the mode-continuum was essentially related to the spectral ex-
tent of the exciting source. In other words, the large number of
guided modes generally believed to be the main condition seems
actually not required but even only two of them may constitute
a continuum. Here we will suppose the laser spectrum to have a
Gaussian distribution of the form

(4)

where is the central wavelength of the spectrum and
stands for the rms spectral linewidth. Following the approach
of [14], we found that the condition for the validity of the con-
tinuum approximation for the more general power-law profiles
defined by (1) is

(5)

where and is the material group index
defined by in which the prime
means derivative with respect to wavelength.

To get a clear idea on whether (5) is or is not fulfilled under
practical circumstances, a numerical example must be given.
For a typical parabolic or a nearly parabolic-index fiber with

m, nm, , the minimum
linewidth is found approximately to be 0.8 nm. This condi-
tion may fail in highly coherent transmission systems using
quantum-well light sources, but should be largely satisfied in
current multimode fiber links which mostly employ LED’s or
FP lasers. The linewidth for LED’s is approximately 15 nm,
which is comfortable. The linewidth for FP lasers anda for-

tiori that of emerging VCSEL’s is located between 1 and 3 nm,
which is also sufficient.

It must be recognized that little explanation was given in [14]
about the basic concept that withstands the mode-continuum
theory. More particularly, the authors did not specify whether
their criterion should be viewed as a necessary and/or sufficient
condition. Although the desired results are obtained here for the
mode-continuum approximation to be applicable, we envisage
to reconsider this subject in another paper. For now it is con-
venient if we carry out the present work within the assumption
that guided modes in fiber form a continuum. We will implic-
itly suppose this throughout the rest of the development without
giving any further explanation.

In a strict sense, a signal propagated through an optical
fiber will inevitably be nonlinearly distorted to some extent
[15]. In practice, both linear and nonlinear distortions will
be present. This occurs in highly coherent systems, when the
signal bandwidth is comparable to the source bandwidth or
larger [16]. Here, we consider only the case of large enough
linewidth sources and regard a multimode fiber characterized
by the -class index profile displayed in (1) as linear in its
input-output power relationship [17]. In this condition, the
ratio of the baseband spectra of the output and input light is
signal-independent and is called the baseband power transfer
function. It determines the degree to which the input signal can
be linearly distorted during propagation. For SMF’s, a formula
of the baseband power transfer function was previously derived
and can be expressed as [18], [19]

(6)

where is the length of fiber, the angular baseband frequency,
is the fiber loss at position, and is the propaga-

tion delay per unit length. Relation (6) is valid within the as-
sumption that the electrical angular frequencyis much smaller
that the optical angular frequency , and is also much smaller
than the spectral frequency range . The first condi-
tion is largely fulfilled in actual communication systems. The
second condition may equally be expected to be satisfied if the
rms spectral width is as large as required for the validity of
the mode-continuum approximation. It is of interest to precise
that the power spectral density involved in (6) is not required to
present a Gaussian shape, but it cana priori have any form. The
only assumption behind is that it should be time-in-
dependent.

Equation (6) can readily be modified and extended to the de-
scription of multimode fiber dispersion. In this case, we must
introduce the light coupling efficiency, , into each
mode and also take into account the fact that both loss and delay
now depend on modes. Subsequently, the result of this operation
must be integrated in order to incorporate the contribution of all
propagated modes. In so doing, we obtain
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(7)

where is the modal delay per unit length,
is the modal loss, the factor denotes the degeneracy of level

and the function is arbitrary introduced to
account for the mode mixing effect.

To evaluate (7), we will consider that the dependence on
wavelength of three modal quantities, namely, the launching
efficiency, the mode-mixing function as well as the distributed
loss is negligible in the transmission window of interest. Within
this simplifying assumption, which should be fairly realistic
in practice, , , and can
be approximated by their respective values at the central
wavelength . Because the modal delay time is
more sensitive to the dependence of the refractive index with
wavelength, it is more accurately assessed by a Taylor series
expansion, i.e.,

(8)

where is, by definition, the chromatic
dispersion of mode , and can be de-
fined as the modal dispersion slope. Note that the condition for
(8) to be valid is , which is largely satisfied even
for broadband LED’s. Substituting (8) into (7) and assuming
that and can be, respectively, replaced by
averaged values and , yields

(9)

with

(10)

(11)

Relations (9)–(11) show that the transfer function of multi-
mode fibers can be modeled by a product of two filter functions

and describing the
chromatic and intermodal dispersions. Equation (9) addition-
ally expresses the latent idea that the two capacity-limiting
factors can be considered as independent effects despite the
mode-coupling. The chromatic part results from the fact that
the delay time of each propagated mode depends on wave-
length. The modal part, however, depends on less controlled
variables. Indeed, observation of (11) shows that the excitation
conditions, difference in delays among the modes, the dis-
tributed loss as well as the power mixing between modes are

simultaneously involved in the determination the intermodal
dispersion. It seems convenient to refer
and to as chromatic and modal transfer
functions, respectively, and discuss both separately.

B. Chromatic transfer function

The power spectral density of the exciting source
has to be specified to proceed to the derivation of the chromatic
transfer function as defined in (10). Of course, for an arbitrary
spectral shape the integral can only be handled numerically. For-
tunately, it turns out that most of injection-lasers used in optical
fiber communications have a Gaussian lineshape of the form
given in (4) [20]. Using this type of distribution, the integral (10)
can be calculated exactly. In general, the spectrum of current
VCSEL’s departs more or less from a Gaussian shape. There-
fore, it seems more prudent to have recourse to the numerical
integration for accurate bandwidth assessment in VCSEL-based
MMF systems. The solution of (10) for the perfectly Gaussian
linewidth case is [19], [21]

(12)

in which and have been introduced as abbreviations for

(13)

(14)

Relations (12)–(14) are the same as those describing chromatic
dispersion in single-mode fibers (SMF’s) except that the mate-
rial dispersion and the dispersion slope have to
be considered as averaged quantities which include the contri-
bution of each propagated mode. We have to mention, however,
that, after computation, we have not recorded any significant
difference between these averaged values compared to the usual
material dispersion and dispersion slope. This appears to be a
general result within the weak guidance rule ( ), which
a posterioridemonstrates the validity of our assumptions. An-
other comment that should be made from (12) to (14) is that for
a fiber operated at a zero material dispersion wavelength, the
chromatic contribution to bandwidth is not necessarily negli-
gible because of the presence of the dispersion slope. Therefore,
this term cannot systematically be ignored. It should be men-
tioned that when operating far from the zero dispersion region,
in particular at wavelength like 850 nm, is much larger than

and (12) can be simplified into , which
means that the contribution of the dispersion slope [i.e.,
term in (10)], is negligible.

C. Modal Transfer Function

The modal transfer function described by (11) can also be
written as

(15)
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with

(16)

where the normalized mode group number has
been introduced and . It is worth noting that the
modal loss appearing in (16) as well as in (7) and (11) can be
approximated by in which

stands for the total modal attenuation.
The function defined by (16) can be viewed

as the modal power in Fourier domain. Unfortunately, (16) is
unusable as it stands because if quantities such as the modal
excitation efficiency, modal loss and modal delay can be esti-
mated using WKB analysis, we know little about the so-called
mode-mixing function. By assuming that the mode-conversion
effect is negligible for distances much shorter than the coupling
length (i.e., length from which mode-coupling begins to im-
pact the propagation [12]), the condition
(with ) must be imposed. Another assumption that can
be reasonably made is that the temporal power distribution of
each guided mode has a Gaussian shape. This follows from
the preliminary hypothesis that nonlinear effects are negligible.
In this case, the impulse response of a given mode should re-
flect the input Gaussian pulse but which is uniformly broad-
ened due to chromatic dispersion. Owing to the properties of
Fourier transforms, the mode-mixing function for an arbitrary
is Gaussian in turn, and can be expressed as

with . This is for now the
maximum knowledge we can have about . Be-
cause the width is essentially unknown, the formal calcula-
tion of formula (15) cannot be achieved by the aid of (16), at
least if account has to be taken of the mode-conversion process.
Fortunately, there exists an alternative way of evaluating the
modal power. The power flow in propagated modes is best de-
scribed by the following partial differential equation incorpo-
rating not only modal velocities, but also distributed loss and
mode-conversion effects [12], [22]

(17)

where is the mode coupling coefficient normalized to
, and is the modal attenuation (in the absence of

coupling effect). We will suppose the total power at position
to be normalized such a way that

(18)

Equation (17) is in principle invalid when the mode parameter
reaches its extremities corresponding to the lowest and highest

order modes. These are described by the so-called boundary
conditions that will be specified further. Let us now discuss the

mode-dependent parameters, i.e., modal delay, modal attenua-
tion and mode-coupling coefficient, before proceeding to the so-
lution of (17).

1) Modal Delay: The delay time of the guided modes can
be derived from (2) using the definition

where is the speed of light in vacuum.
The calculation yields approximately

(19)

in which is the profile dispersion parameter given by

(20)

2) Modal Attenuation:Modal attenuation originates from
conventional loss mechanisms that are present in a usual fiber,
that is, absorption [23], Rayleigh scattering [10], [23] and loss
on reflection at the core-cladding interface [24]. These different
loss mechanisms act on each mode in a different manner, which
causes the attenuation coefficient to vary from mode to mode.
For example the fiber boundary has a strong effect on modes
near cut-off but little on the fundamental ones. But, contrary to
what can be thought, the lower-order modes have not necessarily
the slowest attenuation, in the general case. Indeed, the mea-
surements show that the mode-dependent attenuation as a func-
tion of normalized mode numberexhibits a minimum which
is sometimes shifted from the origin [23]. This occurs when the
dopant material whose concentration is higher in the fiber center
is highly scattering or absorbing. However, the results reported
in [23] indicate that if the numerical aperture is small enough or
if a long wavelength is used, in which case the scattering effect
is minimized, the MDA is gradually increasing.

In a strict sense, a proper model for each of the main loss
mechanisms mentioned above is required to accurately describe
the MDA. This is not an easy task, the more so as such models
will inevitably introduce a certain number of parameters which
may be difficult to put on correct numerical values. We believe
that as it is a common practice to systematically measure a fiber
attenuation in the standard transmission windows, it should be
the same for the MDA since it appears to have a strong effect on
the characteristics. Such measured data could readily be incor-
porated in the simulation of the fiber characteristics by fitting
an appropriate function. Since silica glass fibers are used on the
long wavelength side around 850, 1300, and 1550 nm, for which
the MDA should be increasing with increased mode order, we
suggest to use the following functional form:

(21)

where is the attenuation of low-order modes (i.e., intrinsic
fiber attenuation), is the th-order modified Bessel function
of the first kind, and is a weighting constant. This empirical
formula has been set up by noticing that most measured MDA
data displayed in the literature for long wavelengths conform to
the shape of modified Bessel functions, but the particular form
of the function does not matter here provided that it can be made
suitable for fitting the measurements. Let us precise that it is the
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difference in modal attenuation (i.e., differential mode attenu-
ation, DMA) that determines the impact of distributed loss on
fiber dispersion. The first term in (21) leads to an overall factor

to the solution and can be ignored in frequency
response simulations. It is also worth mentioning that during
propagation, modes with fastest power loss may be stripped off
or attenuated so strongly that they no longer significantly con-
tribute to the dispersion. In other words, the differential mode
attenuation is a filtering effect, which may yield a certain band-
width enhancement depending on the launch conditions and the
transmission length.

3) Mode Coupling: Cross-coupling among guided modes in
MMF’s may result from internal as well as external causes. In-
ternal sources of mode-coupling include imperfections such as
core noncircularity [25] and refractive index fluctuations [26]
caused by preform fabrication and fiber drawing process. In
principle, mode-mixing from core diameter variations should
be negligible because perturbations due to the fiber fabrica-
tion process extend over many centimeters so that the phase
matching condition is unsatisfied for power transfer between
modes belonging to different mode groups. On the other hand,
because in this paper we deal with modern silica glass fibers
made on using the high-performance PCVD method, we will
also neglect the effect of refractive index variations and con-
sider only external perturbations to be the most dominant source
of coupling. This is the case whenever fibers are used such a
way that they are subjected to external forces. This may occur
whether from coating, cabling, packaging, storage drums, etc.
Fiber winding on drum, for example, forces the fiber to partially
conform to the crookedness of the drum surface, which give rise
to small deformations (microbends) that cause the coupling. An
interesting and valuable study of this subject was previously pre-
sented by Olshansky [12], [27]. We adopt here the same analysis
together with the selection rules of neighboring mode group ap-
proximation, but we modify the form of the curvature spectrum
to include the fiber external diameter. In so doing, we found the
following functional expression for the normalized mode-cou-
pling coefficient:

(22)

with

(23)

where can be labeled mode-coupling constant,is the rms
height of the deformation, is the total fiber radius, is a fit-
ting parameter introduced in the purpose of covering a large
range of sources of perturbations. It is worth mentioning that the
index fluctuations could be included without altering the basic
structure of the model. As indicated above, the fluctuations of
the refractive index can be regarded as an extra mode-coupling
source [26], likewise only (22) needs be properly modified. The
problem is that this will inevitably introduce new parameters
whose numerical values would be difficult to find. As a matter
of fact, there is for instant no practical way of separating the
index fluctuations from the microbending effects. Because the

measured refractive index profiles supplied to us by the manu-
facturer show smooth contours with no particular defects such
as dips or peaks we believe that the index fluctuations can be ne-
glected here as an approximation. However, it is worth noticing
that since the numerical value of the coupling constantwill
be deduced from a fitting procedure of a measured attenuation,
an eventual presence of nonconsidered source of perturbation
will partially be corrected.

Inspection of (22) indicates that there is a significant dif-
ference in the mode conversion coefficient between step-index
fibers and parabolic or nearly parabolic-index fibers. We see
that for the mode-coupling coefficient increases linearly
with mode order , while it reduces as for . This
means that in nearly parabolic-index fibers, higher-order modes
have the greater sensitivity to microbending than lower-order
ones, but the situation is reversed in step-index fibers. This is the
reason why these generally show stronger mode-mixing effect
than the graded-index type because, owing the fast attenuation
of high-order modes, they are stripped off during propagation,
or are not excited at all as in low-numerical-aperture launch sys-
tems. It should be mentioned that the different behavior between
SI and GI fibers with regard to microbending was previously
confirmed by experiment [28]. But, because the refractive index
is never perfectly parabolic in GI fibers, the measured coupling
coefficient versus mode group number slightly departs from a
linear characteristic.

A number of interesting implications can be foreseen from
(22) regarding fiber design and practical utilization. Indeed, the
mode-coupling coefficient is seen to depend strongly on the
fiber core radius , the fiber outer radius, and the refractive
index contrast . These parameters thus suggest three pos-
sible ways of designing fibers with high or low susceptibility
to mode-coupling from microbends. An increase of the core di-
ameter and a reduction in the outer diameter or the numerical
aperture will increase the strength of the coupling. The influ-
ence of the core diameter [24] and that of the numerical aperture
[29] have been qualitatively verified. Formula (22) also indi-
cates that if one considers different fibers drawn from the same
preform such a way that the ratio between the core and outer di-
ameters remains constant, the thin one will be more sensitive to
microbends and are expected to exhibit higher bandwidth. How-
ever, one must be careful when acting on a fiber geometry to
gain more bandwidth by mode mixing. Indeed, the presence of
mixing means not only power flow among guided modes during
propagation, but also power transfer from guided to unguided
modes causing extra loss. On the other hand, reducing the index
contrast will increase the difficulty of obtaining low-loss inter-
connection of cable segments and also will reduce the fiber’s
ability of gathering light, in particular if the light source is in-
coherent. These coupling loss penalties which are expected to
increase with the strength of coupling must be weighted with
the benefit of enhanced bandwidth.

4) Numerical Method:Now that the forms of the functions
, , and are known, one can proceed to

the solution of the power flow equation. It should be mentioned
that in certain simplified cases it can be solved exactly [11],
[12]. In the more general situation where all the parameters are
mode-dependent, no simple analytical solutions are available
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and the modal transfer characteristics can be obtained only using
a numerical procedure. The numerical integration consists of
discretizing the and variables to form a rectangular lattice.
At each point ( ) of the grid the derivatives are approximated
by an appropriate finite difference which determines the choice
of method. A variety of such schemes are given in the literature.
Here, we will adopt the Crank–Nicholson implicit procedure
which yields a stable solution that converges more rapidly than
ordinary difference methods. Our choice for Crank–Nicholson
scheme is additionally motivated by the fact that this method
has already been successfully applied to fibers [30]–[32].

Let and be the segmentation steps of the variablesand
, respectively. The power flow equation with

can be replaced by a set of finite-difference equations with
where and .

By applying the Crank–Nicholson implicit scheme to (17), it
is transformed into

(24)

where is the discretized form of the right hand side of (17),
obtained by using ordinary numerical differentiation formulas.
The calculation leads to the following relationship:

(25)

with

(26)

where

(27)

The unknowns can be computed from (25) and employed
in the determination of the modal transfer function by approxi-
mating (15) by any numerical integration method. We will use
Simpson’s rule in the present analysis. It should be mentioned,
in passing, that once the are known, the mode-mixing func-
tion as defined in (16) can be tabulated, but this is out of the
scope of this work.

For the computation of (25), initial and boundary conditions
have to be specified. A variety of light-coupling methods can
be applied to multimode fibers [8], [9]. As a general rule, the
mode excitation can be simulated by computing the launching
efficiency as overlap integral of the electrical field of each fiber
mode with the electrical field of the incident light (“overlap
integral method”). But, although the numerical model presented
here has been developed for any excitation, we will restrict
ourselves to the case of overfilled launching (OFL) with equal
power coupled into each mode at the input end of the fiber.

Within this consideration, the initial power distribution ,
which is equivalent to the launching efficiency ,
can be formally set to unity for each mode. The advantage of
the full excitation over restricted launching is that the large
number of propagating modes provides a better modal noise
immunity [2]. The reader is to be aware that the uniform OFL
assumption should be fairly realistic when using LED-based
transmitters but it should be viewed as an approximation for
laser- and VCSEL-based systems. In both cases the overlap
integral method should be used for more accuracy.

The boundary conditions are chosen as follows. To determine
the highest boundary condition, we consider that leaky modes
do not transport significant power, which should be a realistic
assumption, i.e.

for (28)

The lowest boundary condition is more difficult to establish. It
was often derived by considering that the lowest-order modes
are unsubjected to coupling-induced losses [12]. This criterion
can be a good approximation under full launching with equal
power coupled into modes, but it may be rough or even may
not hold true in a number of cases including, for example, when
only the fundamental modes are being excited. We will refine
this boundary model and describe the fundamental modes by
their own propagation equation given as

(29)

III. RESULTS AND DISCUSSION

We will analyze the dispersion characteristics of ternary
graded-index fibers with a GeO–F–SiO core and a F–SiO
cladding. These fibers are fabricated by Plasma Optical Fiber
by the high-performance PCVD method. A small amount
of fluorine (0.04 mol-%) is uniformly doped over the core
and cladding regions. The core center has a 13.5 mol-% of
germanium which is gradually decreased in the lateral direction
to form the desired grading. These MMF’s exhibit a numerical
aperture (NA) of nearly 0.2. On the other hand, their refractive
index profile shows a smooth shape (i.e., no dips or peaks) and
can be approximated with a single-factor varying between
1.9 and 2.02. To enable computer evaluations, it is assumed
that the refractive indices of the core and cladding materials
follow three-term Sellmeier functions of wavelength [33]. For
the 3-dBo bandwidth prediction, an exciting source of rms
spectral width of nm is considered. Of course, the
parameters of both the distributed loss and mode-coupling
must be specified, as well. The functional expression of the
modal attenuation is fitted to the measurements presented in
[30] for and . The resulting plot is reported
in Fig. 1 showing that the proposed MDA fitting function
is quite appropriate. As indicated earlier, the mode-coupling
parameters (, , and ) depend on the nature of the pertur-
bation source that gives rise to the power conversion. Here,
we deal with nylon-coated fibers that are classically wound in
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Fig. 1. Mode-dependent attenuation (MDA) as a function of normalized mode
orderx: The dots represent the measurements of [31], while the solid curve is
the fitted MDA formula (21) with� = 9 and� = 7:35. Note that the curve is
slightly shifted vertically according to the common attenuation of 0.55 dB/km
that we measured.

one layer on 30 cm-diameter supporting drums. It is therefore
reasonable to adopt Olshansky’s assumptions [26] and choose

. Further on, we formally set to 1 m, and evaluate the
coupling constant by fitting the theoretical attenuation with the
measurement. We obtained km which yields
for a 93/125 m fiber operated at a 1300 nm wavelength, a
predicted attenuation of 1.24 dB/km. This result was recorded
at a transmission length of 2014 m and is in agreement with
the measured value supplied by Plasma Optical Fiber. As can
be noticed some of the parameters have been estimated by
reference to data from twenty years ago that may be suspected
as too old sources. During the simulations, we have verified
that the modal attenuation and mode coupling are not extremely
sensitive phenomena but can reduce or strengthen to some
degree without greatly altering the dispersion. For this reason,
we believe that the above numerical values should apply to a
wide range of fibers including our modern samples.

The dispersion of the fibers core material is reported in Fig. 2.
The result shows a zero crossing around 1300 nm, so in this re-
gion the chromatic dispersion effect should not be significant
and the 3-dBo bandwidth should be mostly affected by inter-
modal dispersion. This is the reason why the 1300 nm-wave-
length region is particularly attractive, the more so as it cor-
responds to a local minimum in the fiber loss versus wave-
length curve. At the two remaining low-loss transmission win-
dows of 850 and 1550 nm, the material dispersion is seen to
be as high as 94 and 20 ps/nmkm, respectively. Therefore at
850 and 1550 nm, the bandwidth will be affected not only by
intermodal dispersion but also by chromatic dispersion, more
or less strongly depending on the spectral extent of the driving
source. To qualitatively confirm this, the 3-dBo bandwidths are
reported in Fig. 3 as functions of the refractive index exponent

Fig. 2. Material dispersion of the core as a function of wavelength [33].

Fig. 3. 3-dBo baseband bandwidth of a 2014-m-long fiber as a function of
refractive index exponent for wavelengths� = 850, 1300, and1550 nm. All
three curves are based on the results of analysis presented in [6].

for the three standard wavelengths. These plots are based on Ol-
shansky and Keck’s theory which neglects distributed attenua-
tion and mode-coupling effects [6]. The characteristic feature
of the grading is the well-known peaked bandwidth due to in-
termodal dispersion. With our choice of parameter-values, the
maxima are located around-factors of 2.06, 1.97, and 1.94,
for 850, 1300, and 1550 nm wavelengths, respectively. By im-
plementing these optimum values in the fiber-core grading, the
intermodal dispersion will be minimized and the peak height
will be governed mostly by chromatic dispersion.

In an attempt to assess the accuracy of the nu-
merical calculation, a series of frequency response
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Fig. 4. Frequency responses for a 2014-m-long fiber with� = 1300 nm
and varying index exponent of� = 1:8, 2, 2:2. These results are based on
the present analysis in which distributed loss and mode-coupling effects are
neglected.

simulations has been car-
ried out without including the differential attenuation and
mode-coupling effects. Some of these results are displayed
in Fig. 4 for wavelengths of 1300 nm and for varying index
exponent of 1.8, 2, and 2.4. The corresponding curves indicate
3-dBo baseband bandwidths of 183, 1200, and 150 MHz,
respectively. These numbers exactly match with those obtained
using Olshansky and Keck’s theory as displayed in Fig. 3,
except in the case for which Olshansky and Keck’s
analysis gives 1279 MHz instead of 1200 MHz. We believe that
this slight discrepancy is to be connected to the approximations
made by Olshansky and Keck, rather than being a cause of an
eventual inaccuracy of the present model. As a matter of fact,
the results given in [6] neglect a term proportional to the square
spectral width in the intermodal dispersion formula. This term
which is the source contribution to intermodal dispersion is
quite small when the first term in (25) of [6] is high enough,
but it becomes significant for refractive index exponents
approaching the optimum value.

Frequency responses are displayed in Figs. 5 and 6 showing
the influence of the fiber core diameter. The index exponent is
taken to be 2.02 and will be maintained to the same value in all
subsequent simulations. Curves in Fig. 6 are plotted for a fixed
outside diameter, whereas results in Fig. 5 are obtained for a
constant ratio between the core and outside diameters. For com-
parison a curve is reported in Fig. 5 representing the frequency
response predicted when the fiber’s operation is coupling-free.
As a general rule, the two figures confirm that more bandwidth
can be gained by mode-coupling. This principle follows from
the fact that the mixing process forces the total light energy
to propagate at an average speed [34]. Since no extra mode
is excited during propagation, the average speed is less than
without coupling, which explains the reduction of the modal
dispersion. Fig. 5 shows that when the core/cladding diameter
ratio (i.e., ) is maintained to a fixed value, the baseband

Fig. 5. Influence of the core diameter on the frequency response at� = 1300

nm for a 2014-m-long fiber with fixed ratio between the core and outer diameters
(a=b = 0:8).

Fig. 6. Influence of the core diameter on the frequency response at� = 1300

nm for a 2014-m-long fiber with fixed outside diameter2b = 125 �m.

bandwidth diminishes with an increasing core diameter. On the
other hand, in the case of fixed outer diameter (Fig. 6), an in-
creasing core diameter improves the bandwidth. These trends
agree well with (21) from which the coupling is seen to be-
come more or less stronger depending on how the core and
outer diameters are varied. It should be noticed that the band-
width can substantially be increased through the mode-mixing
effect. For a 80/125-m fiber, for example, the frequency re-
sponses (see Fig. 5) indicate a 3-dB bandwidth of 725 MHz
under mixing-free operation against 1900 MHz in the presence
of mode mixing. This roughly corresponds to a threefold en-
hancement. In other words, the fiber geometrical dimensions
provide a possible method of designing fibers with a poten-
tially-large capacity for digital transmission. However, as al-
ready mentioned, the benefit of enhanced bandwidth must be



YABRE: THEORY OF DISPERSION IN GRADED-INDEX OPTICAL FIBERS 175

Fig. 7. Frequency responses of a 80/125�m fiber showing the effect
of differential mode attenuation (DMA) in presence and in absence of
mode-coupling (M.C.):� = 1300 nm,z = 2014 m.

weighted with the extra power penalty caused by a strong mode-
mixing. The reader must also be advised that international stan-
dards and the need to be compatible with the existing infrastruc-
ture may put some constraints on the choice of the fiber dimen-
sions.

Finally, we have reported frequency responses in Fig. 7
showing the influence of the differential mode attenuation
in absence and in presence of mode-coupling. It is shown
that the DMA has little effect on the bandwidth itself, at
least over the length of fiber considered here. The frequency
responses, however, appear to be affected to a certain degree
on the high-frequency side. This effect is seen to be more
or less significant depending on whether the mode-mixing
phenomenon is or is not involved. This different behavior can
be easily understood in connection with the fact that in the
presence of mixing the filtering effect of the DMA is held up
due to infrequent coupling of energy into modes that might
have been lost otherwise.

It is convenient to end the above discussion by a general
and important observation from the frequency response simu-
lations. It can be noticed that the curves do not roll off mo-
notonously from the zero-frequency value but show a number
of bumps whose amplitudes are relatively constant over a cer-
tain range of frequency. These bumps appear above the 3-dB
cutoff frequency and are likely to present more pronounced and
broadened heights in the absence of mode-mixing. These waves
are seemingly not numerical artifacts since similar results were
recorded in the measurements on fiber samples of 4.4 km in
length [35]. The comparison of these experiments with theory
will be reported later when all the parameter-values required in
the simulations will become available to us. For now the fol-
lowing important comment can be made. Obviously, the bump
regions cannot be included in the transmission bandwidth of
single large-band channels owing to the strong attenuation with
respect to the zero-frequency level. However, some of them are
large and flat enough to allow for the transmission of passband

channels, such as formed in subcarrier multiplexing (SCM) sys-
tems. These passband channels could be mixed together with
the baseband signal in order to increase the data transmission
capacity. This can be developed into a veritable technique for
achieving the performance of gigabit Ethernet while still op-
erating under overfilled launching. This finding brings more
about the interest of determining the transfer function instead
of directly calculating the bandwidth from the moments of the
impulse response. From the present analysis, the existence of
frequency ranges suitable for passband modulation are demon-
strated. Unfortunately, the results are seen to depend on fiber di-
mensions as well as all items that affect the frequency response
as described earlier. The most unpredictable parameter in the
field is certainly the mode-mixing because the microbend pat-
tern is susceptible of changing due to a change in external condi-
tions. But, this problem can be prevented by adaptive allocation
of the passband channels.

IV. CONCLUSION

The dispersion behavior of graded-index optical fibers is the-
oretically described including both chromatic and modal disper-
sions. We have shown that, within some reasonable conditions
that should remain satisfied under usual circumstances, the two
sources of dispersion can be considered to be independent ef-
fects. Accordingly, the transfer function has been separated into
two parts regarded as chromatic and modal frequency responses.
By assuming that the potential driving source has a Gaussian
spectrum, the chromatic transfer function is derived analytically,
while the modal transfer function is obtained on numerically
solving the power flow equation incorporating distributed loss
and mode-conversion process.

Frequency responses are reported which are mainly fo-
cused on the analysis of the influence of the fiber geometry.
The simulation results show that an increased core diameter
may reduce or increase the strength of mode-coupling de-
pending on the relative values of the core and outside di-
ameters. Considering fibers having different core diameters
but similar core/cladding ratio (which is the case if they are
drawn from the same type of PCVD preform), the analysis
predicts the thick ones to be less susceptible to mode-cou-
pling from microbends, leading to less bandwidth under over-
filled launching condition. On the other hand, if the fiber
size is maintained constant, an increasing core diameter en-
hances the bandwidth. As a result, a large core diameter
combined with a reasonable outside diameter is desirable.
But, in changing a fiber geometrical dimensions, one must
consider the tradeoff relation between increased bandwidth
and loss. This aspect is worth being investigated in further
work.

Because the present dispersion model has the merit of incor-
porating all the main mechanisms involved, it offers the possi-
bility of accurately predicting the information-carrying capacity
of GRIN fibers, provided that correct parameter values are used.
For the moment, owing to the difficulty of practically realizing
the full and uniform launching condition, the experiment has not
been done yet, but is planned for the future. Further extensions
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of this work equally seem desirable: The introduction of the dis-
tributed loss and mode-coupling will cause both the optimum
index exponent and the bandwidth-distance product to become
length dependent. One foreseeable consequence of this is that
the traditional characterization of MMF dispersion by a con-
stant bandwidth-distance product will no longer be meaningful.
Instead, the accurate determination of the bandwidth against
length characteristic is actually of interest for the manufacturers
and users of fiber-optic systems. In this way, on can deduce
sample lengths over which gigabit Ethernet could comfortably
be implemented. This is the first aspect being investigated with
the aid of the present full theory. The second aspect is relative to
the effect of different launching of the fiber. The present anal-
ysis was carried out under the assumption that a large number of
modes are excited at the fiber input. A variety of launching tech-
niques have been recently suggested in view of overcoming the
intermodal dispersion [8], [9]. It can be easily imagined that for
such alternatives based on restricted launching, the bandwidth
advantage that can be obtained from the coupling of a large
number of modes may no longer be true. Under restricted launch
condition, indeed, mode-coupling may significantly limit the
baseband bandwidth depending on the transmission length. As
a matter of fact, even if a few low-order modes are initially ex-
cited, the power will gradually tend to spill out into higher order
modes as light propagates down the fiber, thereby reducing the
modal bandwidth at more or less long term. This trend should be
resisted by the speed averaging effect of the coupling, but only
the quantitative study will allow for drawing clear conclusions.
Moreover, since both the restricted launching and the traditional
use of fiber provide a bandwidth enhancement, it would be of
interest to comparatively analyze these methods in order to pro-
vide guidelines for the best choice of technique for various LAN
and interconnect systems.
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