2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Journal of Lightwave Technology
Volume 18 Number 3, March 2000

Table of Contents for this issue

Complete paper in PDF format

Distributed Beat Length Measurement in Single-Mode Optical Fibers Using Stimulated Brillouin-Scattering and Frequency-Domain Analysis

Torsten Gogolla and Katerina Krebber

Page 320.

Abstract:

We present a method for distributed measurement of beat length,differential group delay, strain, and temperature in long length single-mode optical fibers. Toward this aim, we employ the polarization state sensitive effect of stimulated Brillouin scattering (SBS). The distributed measurement is realized by applying frequency-domain analysis. We present the analytical relationships between the Brillouin interaction of two counterpropagating waves in the fiber and the polarization states. Experimental results confirm the ability of the method to measure distributed beat length.

References

  1. C. D. Poole, R. W. Tkach, A. R. Chraplyvy and D. A. Fishman, "Fading in light wave systems due to polarization mode dispersion", IEEE Photon. Technol. Lett., vol. 1, pp.  68-70, 1991.
  2. E. Iannone, F. Matera, A. Galtarossa, G. Gianello and M. Schiano, "Effects of polarization dispersion on the performance of IM-DD communication systems", IEEE Photon. Technol. Lett., vol. 10, pp.  1247-1249, 1993.
  3. C. D. Poole and T. E. Darcie, "Distortion related to polarization mode dispersion in analog lightwave systems", J. Lightwave Technol., vol. 11, pp.  1749-1759, 1993.
  4. A. Galtarossa, G. Gianello, C. G. Someda and M. Schiano, "In-field comparison among polarization-mode-dispersion measurement technique", J. Lightwave Technol., vol. 14, pp.  42-49, 1996.
  5. B. L. Heffner, "Automated measurement of polarization mode dispersion using Jones matrix eigenanalysis", IEEE Photon. Technol. Lett., vol. 4, pp.  1066-1069, 1992.
  6. F. Curti, B. Daino, G. De Marchis and F. Matera, "Statistical treatment of the evolution of the principal states of polarization in single-mode fibers", J. Lightwave Technol., vol. 8, pp.  1162-1166, 1990.
  7. C. D. Poole and D. L. Favin, "Polarization-mode dispersion measurement based on transmission spectra through a polarizer", J. Lightwave Technol., vol. 12, pp.  917-929, 1994.
  8. N. Gisin, R. Passy, J. P. Von der Weid and J. C. Bishoff, "Polarization-mode-dispersion measurements with all-fiber interferometer", in Proc. OFC'94, San Jose, CA, 1994,paper WK15, pp.  138-139. 
  9. A. Galtarossa, F. Corsi and L. Palmieri, "Experimental investigation of polarization mode dispersion properties in single-mode fibers using a new backscattering technique", in Proc. Conf. Optic. Fiber Commun., Tech. Dig. Ser. 1998, Piscataway, NJ, Feb. 1998, pp.  343-355. 
  10. T. Horiguchi and M. Tateda, "Optical-fiber-attenuation investigation using stimulated Brillouin scattering between a pulse and a continuous wave", Opt. Lett., vol. 14, no. 8, pp.  408-410, Apr.  1989.
  11. T. Horiguchi and M. Tateda, "BOTDA-Nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: Theory", J. Lightwave Technol., vol. 7, pp.  1170-1176, Aug.  1989 .
  12. T. Kurashima, T. Horiguchi and M. Tateda, "Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers", Opt. Lett., vol. 15, no.  8, pp.  1038-1040, Sept.  1990.
  13. X. Bao, J. Dhliwayo, N. Heron, D. J. Webb and D. A. Jackson, "Experimental and theoretical studies on a distributed temperature sensor based on brillouin scattering", J. Lightwave Technol., vol. 13, pp.  1340-1348, July  1995.
  14. X. Bao, D. J. Webb and D. A. Jackson, "Combined distributed temperature and strain sensor based on Brillouin loss in an optical fiber", Opt. Lett., vol. 19, no. 2, pp.  141-143, Jan.  1994.
  15. K. Shimizu, T. Horiguchi and Y. Koyamada, "Measurement of distributed strain and temperature in a branched optical fiber network by use of Brillouin optical time-domain reflectometry", Opt. Lett., vol. 20, no. 5, pp.  507-509, Mar.  1995.
  16. H. Ghafoori-Shiraz and T. Okoshi, "Fault location in optical fibers using optical frequency domain reflectrometry", J. Ligthwave Technol., vol. LT-4, no. 3, pp.  316-322, 1986.
  17. D. Garus, T. Gogolla, K. Krebber and F. Schliep, "Distributed sensing technique based on Brillouin optical-fiber frequency-domain analysis", Opt. Lett., vol. 21, no.  17, pp.  1402-1404, Sept.  1996.
  18. D. Garus, T. Gogolla, K. Krebber and F. Schliep, "Brillouin optical-fiber frequency-domain analysis for distributed temperature and strain measurements", J. Lightwave Technol., vol. 15, pp.  654-662, Apr.  1997.
  19. T. Gogolla and K. Krebber, "Fiber sensors for distributed temperature and strain measurements using Brillouin scattering and frequency-domain methods", in Proc. Conf. EnviroSense'97, June 1997, pp.  168-179. 
  20. E. Geinitz, S. Jetschke, U. Röpke, S. Schröter and R. Willsch, "Improvement of distributed Brillouin sensing by compensation for systematic errors", in Proc. Conf. OFS-11, May 1997.
  21. A. Fettweis, Elemente nachrichtentechnischer Systeme, Stuttgart Germany: 1990.
  22. S. C. Rashleigh, "Origins and control of polarization effects in single-mode fibers", J. Lightwave Technol., vol. LT-1, pp.  312-331, 1983.
  23. M. A. Farahani and T. Gogolla, "Spontaneous Raman scattering in optical fibers with modulated probe light for distributed temperature Raman remote sensing", J. Lightwave Technol., vol. 17, pp.  1379-1391, Aug.  1999 .
  24. S. C. Rashleigh and R. Ulrich, "Polarization mode dispersion in single-mode fibers", Opt. Lett., vol. 3, no. 2, pp.  60-62, Aug.   1978.
  25. L. Thévenaz, "Evaluation of local birefringence along fibers using Brillouin analysis", in Proc. OFMC'97 , Teddington, U.K., 1997, pp.  82-85.