2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Journal of Lightwave Technology
Volume 18 Number 3, March 2000

Table of Contents for this issue

Complete paper in PDF format

Dynamic Stimulated Brillouin Scattering Analysis

A. Djupsjöbacka, G. Jacobsen and B. Tromborg

Page 416.

Abstract:

We present a new simple analysis-including the effect of spontaneous emission-of the (dynamic) influence of stimulated Brillouin scattering (SBS) on the detected receiver eye diagram. It applies in principle for general types of modulation formats such as the digital formats of amplitude shift keying (ASK), frequency shift keying (FSK), and phase shift keying (PSK). The analysis is formulated for a determination of the signal power depletion and intersymbol interference (ISI) caused by the combined effect of fiber dispersion, fiber attenuation and nonlinear fiber effects such as the effect of self-phase modulation (SPM) and SBS. The analysis allows a quantification of the dithering influence on the SBS threshold. Representative numerical examples are presented for two single-channel ON-OFF modulated 10-Gb/s systems utilizing Franz-Keldysh and Mach-Zehnder-type modulators.

References

  1. S. Kawanishi, H. Takara, K. Uchiyama, I. Shake and K. Mori, "3 Tbit/s (160\hbox Gbit/s× 16$ ch) OTDM-WDM transmission experiment", in Proc. OFC'99 ,, Postdeadline paper PD1,
  2. N. S. Bergano, C. R. Davidson, C. J. Chen, B. Pedersen, M. A. Mills, N. Ramanujam, H. D. Kidorf, A. B. Puc and M. D. Levonas, "640 Gb/s transmission of sixty-four 10 Gb/s WDM channels over 7200 km with 0.33 (bits/s/)/Hz spectral efficiency", in Proc. OFC'99,, Postdeadline paper PD2,
  3. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed.   New York: Academic, 1995.
  4. R. W. Boyd, Nonlinear Optics, New York: Academic, 1992.
  5. S. Rae, I. Bennion and M. J. Carswell, "New numerical model of stimulated Brillouin scattering in optical fibers with nonuniformity", Opt. Commun. , vol. 123, pp.  611-616, 1996.
  6. R. W. Boyd, K. Rzazewski and P. Narum, "Noise initiation of stimulated Brillouin scattering", Phys. Rev. A, vol. 42, pp.  5514-5521, 1990.
  7. L. Chen and X. Bao, "Analytical and numerical solutions for steady state stimulated Brillouin scattering in a single-mode fiber", Opt. Commun. , vol. 152, pp.  65-70, 1998.
  8. R. W. Tkack, A. R. Craplyvy, F. Forghieri, A. H. Gnauck and R. M. Drosier, "Four-photon mixing and high speed WDM systems", J. Lightwave Technol., vol. 13, pp.  841-849, 1995.
  9. "ITU Recommendations G.957, G.692",
  10. R. H. Inns and I. P. Batra, "Saturation and depletion in stimulated light scattering", Phys. Lett., vol. 28A, pp.  591-592, 1969.
  11. R. W. Lucky, J. Salz and E. J. Weldon Jr., Principles of Data Communication, New York: McGraw-Hill, 1968, ch. 8.
  12. K. Yonenaga and S. Kuwano, "Dispersion-tolerant optical transmission system using duobinary transmitter and binary receiver", J. Lightwave Technol. , vol. 15, pp.  1530-1537, 1997.
  13. O. Sahlén, "Optimization of DFB lasers integrated with Franz-Keldysh absorption modulators", J. Lightwave Technol., vol. 12, pp.  969-976, 1994.
  14. A. Djupsjöbacka, "Residual chirp in integrated-optic modulators", IEEE Photon.s Technol. Lett., vol.  4, pp.  41-43, 1992.
  15. E. M. Dianov, B. Ya. Zel'dovich, A. Ya. Karasik and A. N. Pilipetskii, "Feasibility of suppression of steady-state and transient stimulated Brillouin scattering", Sov. J. Quantum Electron., vol. 19, pp.  1051 -1053, 1989.
  16. G. Grosso and A. Höök, "Generation of short pulses by stimulated Brillouin scattering in optical fibers", J. Opt. Soc. Amer. B, vol. 10, pp.  946-951, 1993.