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Design Equations for the Reflectivity of Deep-Etch
Distributed Bragg Reflector Gratings

K. J. Kasunic

Abstract—This paper reports a computationally efficient, grid-
independent method for calculating the reflectivity of deep-etch B
distributed Bragg reflector (DBR) gratings. The method employs
Gaussian beam propagation in conjunction with a Fabry—Perot c
model that includes the effects of multiple reflections in multiple
cavities. We include both grating pitch and number of Bragg pairs Laser DBR

in our analysis. We obtain very good agreement with results gen- Lﬂ_ﬂ_ﬁ

erated by a Helmholtz equation solver.

Index Terms—Distributed Bragg reflector (DBR) lasers, grat-
ings, numerical modeling, optical diffraction, optical reflection,
optical waveguide components, optoelectronic devices, semiconFig. 1. Schematic of the deep-etch DBR grating, including a slab-waveguide
ductor lasers. semiconductor laser with modal field radius,,. Surface A is the second
surface of the tooth used in (1), surface B is the first surface of the tooth (and
the second surface of the gap), and surface C is the first surface of the gap. A
wave of unity amplitude is incident on surface C from the left, and is reflected
(as shown by the arrow) with amplitude.

S aresult of recent interest in one-dimensional (1-D) pho-

tonic bandgap (PBG) structures [1], [2] and IOW'thrEShOlgccount for diffractive beam expansion from the waveguide,

edge-emitting lasers for photonic integrated circuit applicatiowe then decompose the resulting field into components based

[11-5], deep-etch distributed Bragg reflectors (DBR's) havgy, nronagation distance. This allows a calculation of Gaussian

been us.ed in various config_urations. Consistin_g of semicogéam size, which we use in an overlap integral to obtain the
ductor/air layers, these gratings have a large index contrag, niing efficiency for each component reflected back into
resulting in high reflectivity over a large wavelength an e waveguide. The modal reflectivity is a function of the

angular range with few grating pairs. Unfortunately, the evaly, ., o each coupling term multiplied by its associated field
uation of the reflectivity of these structures currently require$) mponent

the use qf an electromagnetic Maxwell equation solver such-l-0 illustrate our approach, we consider a deep-etch Bragg
as the finite-difference (FD) model employed by Jambunath Pating consisting of semiconductor teeth with indexand

and Singh [4]. These solvers typically require significa a : . PR :
4 e . 9 gaps (typically) consisting of air with index, (Fig. 1). We use
computational resources; they are further limited by grid si fe specific example of a single-mode waveguide with field ra-

and spacings as to maximum grating pitch and number gf,s, “reflected by a Bragg pair consisting of one gap and

grating pairs. The purpose of this paper is to report a CompuUlgys to0th. Excluding diffraction and waveguide coupling, the

tionally efficient, grid-independent method for calculating th?eflected amplitude: due to thesecondsurface in the tooth is
reflectivity of deep-etch DBR gratings. Our method allows thgiven by [6]

rapid evaluation of different design configurations, includin
the effects of wavelength, modal field size, grating pitch, and oo ‘
number of grating pairs. w= Z (1= bHa™(=b)ymLteime (1)

I. INTRODUCTION

II. THEORY . . . .
wherem is a counter for the number of multiple reflections in-

We model the geometry shown in Fig. 1, where a slab-wavguded in the single Fabry—Perot cavity formed by the todth,
guide semiconductor laser is fabricated with a deep-etch Bragig . d. is the phase shift incurred for an on-axis ray for one
grating on one end. Our analysis employs Gaussian be%ﬂnd-trip of atooth with thickness,, a = (ns—na)/(ns+nq)
propagation in conjunction with a Fabry—Perot model thg the Fresnel reflection coefficient at the semiconduetoair
includes the effects of multiple reflections in multiple cavitie§nterface (surfaces A and C in Fig. 1), anis the Fresnel coeffi-
Specifically, we first calculate the reflected field due to @jentatthe air~ semiconductor interface (surface B). Note that,
DBR grating using classical plane wave techniques [6]. &g |ater include diffraction effects, we do not use the well-known

analytic sum for (1). Also note that, for more than 1 Bragg pair,
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Fig. 2. Modal reflectivityR as a function of gap width, for one grating pair (gap and tooth). Refractive indicesrae = n, = 3.6 andn, = 1.0, the field
radiusw;o = 0.36 pm, and the free-space wavelength = 0.98 pm.

from which the reflectivityR, = |r,|? is obtained. To include reflected component multiplied by it's efficiengy7,, [7], [8]

the effects of the air gap, we first interpref as the equiva- in coupling back into the waveguide

lent Fresnel coefficient of the second surface of the gap. The -

;g:ffé(]ed amplitudey due to the gap’s second surface is there- y=a+ Z Y (5)
m=1

nd 4 A similar procedure has been followed by Karioja and Howe [9]
v= Z (1 - a®)ry(—a)" e () and Sidorin and Howe [10] for the case of a single Fabry—Perot
m=1 cavity formed by the air gap in extremely-short external cavity
giving the reflectivity R, = |r,|2 = |a + v|2 for one Bragg (ESEC) lasers. Their methods, however, do not decompose the
. . . jeld as in (4), and are thus not applicable to the case of multiple
pair. We see that, even by truncating the sums in (1) and {:@vities such as the deep-etch DBR
to 10 terms or so, the effect of multiple reflections in multiple To obtain expressions for the, V\'le note that due to the
cav_ities is to_quickly increase the number_of terms which Wi”near relation betweed andd, (or“da) the decomposition in
.be included in (3). Note that the phasg thicknasa the gap. 4) allows us to use the well-known Gaussian-beam formula for
is the same as that in the tooth, as typically occurs for gratin field radi f h {111
fabricated with ordep = 1, 3, 5, etc. € field radiusw,,, of each component [11]
This procedure can be repeated for an arbitrary number of 3
half-pairs. To include another tooth, for example, we ugse Wi = wiot] 1+ <ng‘0)
(rather tham, ) in (3) as the reflectivity of the second tooth sur- TWig
face (and subsUtu_t@_for a? in the c_alculatlon of2at_h|rd _amph- where ), is the free-space wavelength and = d,, =
tudew. The reflectlwtyR_c |s.then given byb-+w|”. L|keW|_se, a 8. /4mn, , is the physical thickness of either the tooth or gap
fourth Fabry—Perot cavity (in the form of a gap) can be include sociated with a phase thicknes$ oA useful simplification
usingr. in the field summation, and making sure to take intﬂ] our model is the use of,, for all m. As shown below, this

(6)

account the alterngtm@-{; sequence. ._resultsin small errors for the present case of high index contrast
To account for diffractive effects, we first decompose (3) intBatween tooth and gap, ds < d, for a givens
it's individual components based on phase From (6), we obtain the power coupling efficiency for each
- - component [7]
v = Z Um = Z Cvmleinlé (4) Ty = Tom (7)
m=1 m=1 m m

with real coefficients’,, ,,, for the mth-component of (3). The where we clearly can assume a transverse displacefmen?
modal reflectivity R = |y|? is then given by the sum of eachbetween waveguides,,, incorporates the effects of Gaussian
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Fig. 3. Peak modal reflectiviti®,, as a function of gap width for number of grating pairs = 0.5, 1.0, and 1.5. Each filled dot corresponds to an odd-integer multiple
(p =1,3,5 ...) of quarter-wavelengths in air. The lines connecting the points are merely to show trends for the peaks, and do not imply a continuity of results
between points. Except far, = 3.269, all conditions are the same as in Fig. 2. The plane-wave results (not shown) are horizontal lifes with.965, 0.892,

and 0.687 for 1.5, 1.0, and 0.5 grating pairs, respectively.

beam curvature [see [7], (7)], an@,. is the power coupling  The peak values of Fig. 2 are replotted in Fig. 3 along with the
efficiency in the absence of curvature effects [7] peak reflectivities for the cases of a single air gap (0.5 grating
pairs) and a gap/tooth/gap (1.5 grating pairs) configuration. The
figure clearly shows the trend toward higher reflectivity as we
Nom = M (8) increase the number of 1/2-pairs. An interesting feature of the
Wiy, + W plots is how quickly the reflectivity saturates with number of
pairs. Also note that there are differences between our results
wherewso = wyo as we are coupling back into the same Wavéﬂ’md those shown in Fig. 2 of [4]. Because of the fix_ed phase_
guide. thickness of the teeth used by Jambunathan and Singh, a di-
rect comparison can only be made for fhe= 5 case. Nev-
ertheless, we obtain substantially higher reflectivities with our
model, which we have independently verified (see Table I) with
We have used (1)—(8) to calculate the modal reflectivity two-dimensional (2-D) Helmholtz solver [13]. This verifica-
of various deep-etch DBR structures, including the effection is expected, as the first-order Gaussian beam we use is
of grating pitch, number of grating pairs, wavelength, anan analytical solution to the scalar Helmholtz equation in the
modal field radius. Our results for grating pitch are shown iparaxial approximation. It is not clear why the time-dependent
Fig. 2, where the modal reflectivity is plotted as a functioenvelope method of [4] gives different results.
of gap widthd, for the case of 1 Bragg pair and an input The effects of mode size and wavelength are shown in Fig. 4
wave of magnitude unity. The results clearly show the periodior the case of one grating pair. The figure shows the expected
peaks occuring at gap widths corresponding to odd-integicrease in reflectivity for smaller mode sizes (longer wave-
multiplesp = 1,3,5, etc., of one-quarter of the free-spacéengths), for which diffractive beam expansion reduces the cou-
wavelengthy, = 0.98 um. In the absence of diffraction losseling back into the waveguide mode. For the extreme case of
(all n,, = 1.0), these results match exactly those obtained,,/\ = 0, the reflectivity reduces to 32%. This is not shown
using, for example, % 2 matrix techniques [12]. As expectedn the results given in Fig. 4 of [3]. Our figure also shows the
the inclusion of diffraction reduces the modal reflectivity aasymptotic approach to the plane wave reflectivity of 92% for
d, increases. Also of interest is thecreasein the minimum large mode sizes. The small amount of overshoot seen near
reflectivity for large gaps. While not shown in the figure, ouRw;o/A = 1.4 for thep = 3 grating is numerical errof~
grid-independent method allowed us to verify that these twiol%) associated with truncation of the summation in (1) and
trends converge at very largk, to a reflectivity of 32%, cor- (3) to ten terms.
responding to the Fresnel coefficient at the air/semiconductorAll results shown here were obtained usiathematica
interface. This is clearly due to the very weak coupling of thinough other approaches are certainly possible. Sources of
reflected fields back into the waveguide mode. error in our calculations are threefold. First, we truncate the

I1l. RESULTS AND DISCUSSION
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Fig. 4. Modal reflectivityR as a function of mode diameter. The refractive indiees,, and\, are the same as in Fig. 2.

TABLE | IV. CONCLUSION
COMPARISON OF 2, FOR GAUSSIAN BEAM

MODEL AND HELMHOLTZ SOLVER

This paper shows the development of a computationally effi-
cient, grid-independent method for calculating the reflectivity of

p | Gaussian | Helmholtz deep-etch DBR gratings. Our analysis employs Gaussian beam
N 0.904 propagation in conjunction with a Fa_bry—l_:’erot model th_a_t in-
i i cludes the effects of multiple reflections in multiple cavities.

31 0.798 0.822 We envision our technique to be useful for a rapid evaluation
of diffraction losses for low-order gratings, as it is a simple

5 0713 0.712 matter to modify the refractive indexes, wavelength and modal

71 0651 0.651 field radius to examine these effects. This paper obtains very
good agreement with results generated by a Helmholtz equa-

91 0607 0.607 tion solver.
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