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Design Equations for the Reflectivity of Deep-Etch
Distributed Bragg Reflector Gratings

K. J. Kasunic

Abstract—This paper reports a computationally efficient, grid-
independent method for calculating the reflectivity of deep-etch
distributed Bragg reflector (DBR) gratings. The method employs
Gaussian beam propagation in conjunction with a Fabry–Perot
model that includes the effects of multiple reflections in multiple
cavities. We include both grating pitch and number of Bragg pairs
in our analysis. We obtain very good agreement with results gen-
erated by a Helmholtz equation solver.

Index Terms—Distributed Bragg reflector (DBR) lasers, grat-
ings, numerical modeling, optical diffraction, optical reflection,
optical waveguide components, optoelectronic devices, semicon-
ductor lasers.

I. INTRODUCTION

A S a result of recent interest in one-dimensional (1-D) pho-
tonic bandgap (PBG) structures [1], [2] and low-threshold

edge-emitting lasers for photonic integrated circuit applications
[1]–[5], deep-etch distributed Bragg reflectors (DBR’s) have
been used in various configurations. Consisting of semicon-
ductor/air layers, these gratings have a large index contrast,
resulting in high reflectivity over a large wavelength and
angular range with few grating pairs. Unfortunately, the eval-
uation of the reflectivity of these structures currently requires
the use of an electromagnetic Maxwell equation solver such
as the finite-difference (FD) model employed by Jambunathan
and Singh [4]. These solvers typically require significant
computational resources; they are further limited by grid size
and spacings as to maximum grating pitch and number of
grating pairs. The purpose of this paper is to report a computa-
tionally efficient, grid-independent method for calculating the
reflectivity of deep-etch DBR gratings. Our method allows the
rapid evaluation of different design configurations, including
the effects of wavelength, modal field size, grating pitch, and
number of grating pairs.

II. THEORY

We model the geometry shown in Fig. 1, where a slab-wave-
guide semiconductor laser is fabricated with a deep-etch Bragg
grating on one end. Our analysis employs Gaussian beam
propagation in conjunction with a Fabry–Perot model that
includes the effects of multiple reflections in multiple cavities.
Specifically, we first calculate the reflected field due to a
DBR grating using classical plane wave techniques [6]. To
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Fig. 1. Schematic of the deep-etch DBR grating, including a slab-waveguide
semiconductor laser with modal field radiusw : Surface A is the second
surface of the tooth used in (1), surface B is the first surface of the tooth (and
the second surface of the gap), and surface C is the first surface of the gap. A
wave of unity amplitude is incident on surface C from the left, and is reflected
(as shown by the arrow) with amplituder :

account for diffractive beam expansion from the waveguide,
we then decompose the resulting field into components based
on propagation distance. This allows a calculation of Gaussian
beam size, which we use in an overlap integral to obtain the
coupling efficiency for each component reflected back into
the waveguide. The modal reflectivity is a function of the
sum of each coupling term multiplied by its associated field
component.

To illustrate our approach, we consider a deep-etch Bragg
grating consisting of semiconductor teeth with index and
gaps (typically) consisting of air with index (Fig. 1). We use
the specific example of a single-mode waveguide with field ra-
dius reflected by a Bragg pair consisting of one gap and
one tooth. Excluding diffraction and waveguide coupling, the
reflected amplitude due to thesecondsurface in the tooth is
given by [6]

(1)

where is a counter for the number of multiple reflections in-
cluded in the single Fabry–Perot cavity formed by the tooth,

is the phase shift incurred for an on-axis ray for one
round-trip of a tooth with thickness
is the Fresnel reflection coefficient at the semiconductorair
interface (surfaces A and C in Fig. 1), andis the Fresnel coeffi-
cient at the air semiconductor interface (surface B). Note that,
to later include diffraction effects, we do not use the well-known
analytic sum for (1). Also note that, for more than 1 Bragg pair,
this formulation allows the use of unique indices for each pair.
The field reflectance of an isolated tooth is then given by

(2)
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Fig. 2. Modal reflectivityR as a function of gap widthd for one grating pair (gap and tooth). Refractive indices aren � n = 3:6 andn = 1:0; the field
radiusw = 0:36 �m, and the free-space wavelength� = 0:98 �m.

from which the reflectivity is obtained. To include
the effects of the air gap, we first interpret as the equiva-
lent Fresnel coefficient of the second surface of the gap. The
reflected amplitude due to the gap’s second surface is there-
fore [6]

(3)

giving the reflectivity for one Bragg
pair. We see that, even by truncating the sums in (1) and (3)
to 10 terms or so, the effect of multiple reflections in multiple
cavities is to quickly increase the number of terms which will
be included in (3). Note that the phase thicknessδ in the gap
is the same as that in the tooth, as typically occurs for gratings
fabricated with order etc.

This procedure can be repeated for an arbitrary number of
half-pairs. To include another tooth, for example, we use
(rather than in (3) as the reflectivity of the second tooth sur-
face (and substitutefor in the calculation of a third ampli-
tude The reflectivity is then given by Likewise, a
fourth Fabry–Perot cavity (in the form of a gap) can be included
using in the field summation, and making sure to take into
account the alternating- sequence.

To account for diffractive effects, we first decompose (3) into
it’s individual components based on phase

(4)

with real coefficients for the th-component of (3). The
modal reflectivity is then given by the sum of each

reflected component multiplied by it’s efficiency [7], [8]
in coupling back into the waveguide

(5)

A similar procedure has been followed by Karioja and Howe [9]
and Sidorin and Howe [10] for the case of a single Fabry–Perot
cavity formed by the air gap in extremely-short external cavity
(ESEC) lasers. Their methods, however, do not decompose the
field as in (4), and are thus not applicable to the case of multiple
cavities such as the deep-etch DBR.

To obtain expressions for the we note that due to the
linear relation betweenδ and (or the decomposition in
(4) allows us to use the well-known Gaussian-beam formula for
the field radius of each component [11]

(6)

where is the free-space wavelength and
is the physical thickness of either the tooth or gap

associated with a phase thickness of. A useful simplification
in our model is the use of for all As shown below, this
results in small errors for the present case of high index contrast
between tooth and gap, as for a given .

From (6), we obtain the power coupling efficiency for each
component [7]

(7)

where we clearly can assume a transverse displacement
between waveguides, incorporates the effects of Gaussian
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Fig. 3. Peak modal reflectivityR as a function of gap width for number of grating pairs = 0.5, 1.0, and 1.5. Each filled dot corresponds to an odd-integer multiple
(p = 1; 3; 5 . . .) of quarter-wavelengths in air. The lines connecting the points are merely to show trends for the peaks, and do not imply a continuity of results
between points. Except forn = 3:269; all conditions are the same as in Fig. 2. The plane-wave results (not shown) are horizontal lines withR = 0:965; 0.892,
and 0.687 for 1.5, 1.0, and 0.5 grating pairs, respectively.

beam curvature [see [7], (7)], and is the power coupling
efficiency in the absence of curvature effects [7]

(8)

where as we are coupling back into the same wave-
guide.

III. RESULTS AND DISCUSSION

We have used (1)–(8) to calculate the modal reflectivity
of various deep-etch DBR structures, including the effects
of grating pitch, number of grating pairs, wavelength, and
modal field radius. Our results for grating pitch are shown in
Fig. 2, where the modal reflectivity is plotted as a function
of gap width for the case of 1 Bragg pair and an input
wave of magnitude unity. The results clearly show the periodic
peaks occuring at gap widths corresponding to odd-integer
multiples etc., of one-quarter of the free-space
wavelength m. In the absence of diffraction losses
(all these results match exactly those obtained
using, for example, 2 2 matrix techniques [12]. As expected,
the inclusion of diffraction reduces the modal reflectivity as

increases. Also of interest is theincreasein the minimum
reflectivity for large gaps. While not shown in the figure, our
grid-independent method allowed us to verify that these two
trends converge at very large to a reflectivity of 32%, cor-
responding to the Fresnel coefficient at the air/semiconductor
interface. This is clearly due to the very weak coupling of the
reflected fields back into the waveguide mode.

The peak values of Fig. 2 are replotted in Fig. 3 along with the
peak reflectivities for the cases of a single air gap (0.5 grating
pairs) and a gap/tooth/gap (1.5 grating pairs) configuration. The
figure clearly shows the trend toward higher reflectivity as we
increase the number of 1/2-pairs. An interesting feature of the
plots is how quickly the reflectivity saturates with number of
pairs. Also note that there are differences between our results
and those shown in Fig. 2 of [4]. Because of the fixed phase
thickness of the teeth used by Jambunathan and Singh, a di-
rect comparison can only be made for the case. Nev-
ertheless, we obtain substantially higher reflectivities with our
model, which we have independently verified (see Table I) with
a two-dimensional (2-D) Helmholtz solver [13]. This verifica-
tion is expected, as the first-order Gaussian beam we use is
an analytical solution to the scalar Helmholtz equation in the
paraxial approximation. It is not clear why the time-dependent
envelope method of [4] gives different results.

The effects of mode size and wavelength are shown in Fig. 4
for the case of one grating pair. The figure shows the expected
decrease in reflectivity for smaller mode sizes (longer wave-
lengths), for which diffractive beam expansion reduces the cou-
pling back into the waveguide mode. For the extreme case of

the reflectivity reduces to 32%. This is not shown
in the results given in Fig. 4 of [3]. Our figure also shows the
asymptotic approach to the plane wave reflectivity of 92% for
large mode sizes. The small amount of overshoot seen near

for the grating is numerical error
associated with truncation of the summation in (1) and

(3) to ten terms.
All results shown here were obtained usingMathematica,

though other approaches are certainly possible. Sources of
error in our calculations are threefold. First, we truncate the
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Fig. 4. Modal reflectivityR as a function of mode diameter. The refractive indices,w ; and� are the same as in Fig. 2.

TABLE I
COMPARISON OFR FOR GAUSSIAN BEAM

MODEL AND HELMHOLTZ SOLVER

number of terms included in (1), (3), and (5). Second, the
mode size for the th reflection is typically larger than
allowed by the grating depth. That is, a mode size may be
on the order of 10 m after multiple reflections through
the cavities. For a first-order grating, on the other hand,
with a gap width of 0.25 m and depth-to-width ratio of
approximately 10, some light will not be reflected back to
the laser. Fortunately, the remaining field amplitude is small
for these reflections, thus resulting in small error. Finally,
the approximation used with (6) results in an overestimate
of the beam size, and thus an underestimate of the reflec-
tivity. As shown in Table I, our Helmholtz model indicates
that numerical errors due to all sources are on the order
of 3% ( versus 0.798 for ) for the con-
ditions of Fig. 3. A comparison with experimental results
will also reveal other sources of error, including scattering
losses from rough surfaces, the effects of tooth curvature,
and other manufacturing imperfections.

IV. CONCLUSION

This paper shows the development of a computationally effi-
cient, grid-independent method for calculating the reflectivity of
deep-etch DBR gratings. Our analysis employs Gaussian beam
propagation in conjunction with a Fabry–Perot model that in-
cludes the effects of multiple reflections in multiple cavities.
We envision our technique to be useful for a rapid evaluation
of diffraction losses for low-order gratings, as it is a simple
matter to modify the refractive indexes, wavelength and modal
field radius to examine these effects. This paper obtains very
good agreement with results generated by a Helmholtz equa-
tion solver.
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