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Forces on a Rayleigh Particle in the Cover Region of
a Planar Waveguide

L. N. Ng, B. J. Luff, M. N. Zervas, Member, IEEE, and J. S. Wilkinson

Abstract—We report on the optimization of a waveguide
structure for the maximization of the radiation forces exerted on
a Rayleigh particle in the cover region. The two main radiation
forces involved are the transverse gradient force which attracts
a particle into the waveguide and the combined scattering and
dissipative forces which drive the particle forward along the
channel. The dependence of these forces on parameters including
the incident wavelength, the surrounding medium embedding the
particles, and the polarizability of the particles is discussed. Both
dielectric and metallic gold spheres of radius 10 nm are considered
in the model. Special emphasis is devoted to the maximization of
the transverse gradient force due to the optical intensity gradient
at the waveguide surface, and the wavelength dependence of the
polarizability of gold nanoparticles.

Index Terms—Chemical sensor, optical forces, optical planar
waveguide, optical trapping, Rayleigh particles.

I. INTRODUCTION

I T is well known that the foremost requirement to achieve
optical trapping is to create a region of strong intensity gra-

dient. Many researchers have achieved this by exploiting the in-
tensity gradient from a tightly focused Gaussian beam [1]–[6].
The beam must be focused to a small spot as this ensures rapid
divergence, producing a strong intensity gradient in the axial di-
rection [7], [8]. This is known as a single beam Gaussian trap or
optical tweezer [8]. Since 1970 when Ashkin [1] observed that
Mie dielectric particles can be trapped and manipulated using
a focused Gaussian beam, much effort has been devoted to ex-
ploring new techniques for trapping as well as manipulating par-
ticles in the Rayleigh and atomic regimes. For instance, Svo-
boda and Block demonstrated the trapping of Rayleigh gold
spheres with a radius of 18 nm using a Gaussian trap [5]. Of
particular interest is the use of the evanescent field as the prop-
agating wave. This idea was first proposed by Cook and Hall
for use in an atomic mirror in 1980 [9]. By tuning and detuning
the frequency relative to the resonant frequency, an atom can
either be attracted into or expelled from the region of high in-
tensity [10]. Subsequently, the manipulation of Mie dielectric
and 0.5 m gold particles in the evanescent region of a prism
[11] and channel waveguide [12] were reported by Kawata and
coworkers. Following that, a nanometric optical tweezer was
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proposed by Novotny, Bian, and Xie, with the intensity gradient
generated by the strong evanescent field around a 5-nm radius
metal tip [13]. More recently, Taguchi and coworkers reported
the levitation of polystyrene particles and yeast cells against
gravity using the evanescent field at a tapered spherical polished
end of a fiber [14].

Optical trapping offers a powerful, nonmechanical, nonde-
structive, and highly precise technique which finds extensive
application particularly in the fields of cell sorting [15]–[17],
cloud physics, aerosol science, and light scattering [18]. For
instance, trapping of a particle may help improve accuracy
in the recording and analysis of data as in the case of ob-
serving condensation or evaporation [18]. In recent years,
growing interest has developed in using an optical trap as
a probe for optical near-field microscopy (SNOM) to scan
the surface of a sample. This idea was originally proposed
by Kawata in 1994 [19]. A recent report on SNOM [20]
has shown that image enhancement can be improved by as
much as a factor of two thereby making it a valuable tool for
carrying out sensitive measurements particularly on nanos-
tructures.

Much of the theoretical work which has been reported
to date mainly describes particles in the Mie regime. Anal-
ysis based on a Gaussian trap using both a geometrical ray
approach [1], [7], [21] and a full EM model are well es-
tablished [22], [23]. The latter has also been used to cal-
culate forces in the evanescent field [24]. For particles in
this regime, the origin of radiation forces can be explained
by the reflection and refraction of light in the particle due
to a momentum transfer between incident photons and the
particle. In the Rayleigh regime, however, light induces a
dipole in the particle which oscillates and reemits secondary
radiation. In both cases, the total force can be decomposed
into two main components: 1) the scattering and dissipative
forces which act in the direction of wave propagation and
2) the gradient force which is proportional to the intensity
gradient and acts in the direction toward or away from a
high intensity region depending on the polarizability of a
particle. To date, published work relating to forces exerted
on Rayleigh particles have been presented mainly to handle
configurations including a Gaussian standing wave [25], a
focused Gaussian beam [26], and an evanescent field [27],
[28] on an infinite slab structure.

The main contribution of this paper is the derivation of
a normalized transcendental equation which can be used to
optimize a planar waveguide with respect to parameters in-
cluding thickness of the waveguide, incident wavelength, and
the refractive indexes of the cover, guide and substrate, such
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Fig. 1. Schematic representation of an asymmetric planar waveguide. Radiation forces acting on a sphere of radiusr are decomposed into gradient force in the
transverse direction and a forward force in the direction of wave propagation.

that a Rayleigh particle can be trapped in the transverse di-
rection and driven in the forward direction by maximum
radiation forces. The motivation for this work is to pro-
vide optimized waveguide designs where the strength of the
trapping force is maximized thereby reducing the probability
that particles escape the trap due to Brownian motion and
other spurious influences. For simplicity, only the transverse
electric (TE) polarization is considered; although a similar
procedure could be applied to the transverse magnetic (TM)
polarization, it is expected that little more physical insight
would result. For comparison purposes, the metallic and di-
electric spheres used throughout this paper are of radius

nm, and all calculations and derivations are based on
MKS units. Maximizing the gradient force can be achieved
by maximizing both the intensity gradient in the cover region
and the polarizability of a particle. Consideration of these
two factors in relation to the gradient force provides results
which will be useful for the manipulation of particles on
planar waveguides with potential interest in particle sorting
at surfaces and for their interrogation using evanescent field
sensing techniques. In particular, colloidal metallic nanopar-
ticles which exhibit resonance in the visible region are of
great interest in the preparation of surfaces for surface-en-
hanced Raman spectroscopy [29].

In Section II, optimization of a waveguide to maximize
the intensity gradient in the cover region, which leads to
a maximum transverse gradient force, is derived in detail.
Comparison is then made against a set of practical waveguide
indexes. In Section III, the transverse and axial forces on
a dielectric and a gold nanoparticle in the evanescent fields
are discussed with particular emphasis on the wavelength-

dependent polarizability of the latter. Finally, conclusions and
future prospects are outlined in Section IV.

II. OPTIMIZING THE INTENSITY GRADIENT AND INTENSITY

IN THE COVER

For the purpose of completeness, we begin the derivation
from the well-known dispersion equations of a slab waveguide.
The waveguide configuration considered here is as illustrated in
Fig. 1 where a particle interacts with the field in the cover re-
gion. In our case, the direction of wave propagation is taken as
the direction and only the TE mode is considered. Refractive
indexes of the cover, guide and substrate regions, respectively,
are designated as , , and and the waveguide thickness
is . For the most common practical case of an asymmetrical
waveguide where , most of the power is confined in the
guide and the substrate. This results in a very small proportion
of the wave propagating in the cover region. A particle in this re-
gion would then experience a very small intensity gradient and
hence a weak force, rendering optimization of the intensity gra-
dient very important for practical application. The distribution
of evanescent power in the cover region is also strongly influ-
enced by waveguide thickness. It is convenient for analysis to
normalize the thickness to the incident wavelength, so we de-
fine .

All the physical parameters of the waveguide, and the wave-
length of light employed, have a direct effect on the magnitude
of the gradient force. For this reason, optimization of the inten-
sity gradient with respect to these parameters is essential and is
discussed in Section II-B after expressions for normalized wave-
guide parameters corresponding to the structure are presented.
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A. Normalized Waveguide Parameters

The dispersion relation, also known as the characteristic
equation, of a TE mode for a planar waveguide structure is well
known and is given here in a form consistent with the analysis
by Parriauxet al. [30], [31], as

(1)

where denotes the th order of a mode while
normalized parameters and are defined as

(2)

(3)

and are related by an asymmetry parametervia

(4)

where is

(5)

denotes the effective index of the propagating mode
which is related to propagation constant of the modeand
wavenumber , where , by

(6)

In addition to the normalized waveguide thickness , which
is convenient for the generation of normalized design curves, an
effective waveguide thickness convenient for the derivation
of optimized intensity gradients is defined as follows:

(7)

This effective thickness represents the apparent waveguide
thickness, taking into account evanescent field penetration into
the substrate and cover.

Since we are considering a purely one-dimensional (1-D)
problem, with no variation in the direction (i.e., ),
analysis based on a 1-D wave equation is appropriate. By
solving Maxwell’s equations and applying the appropriate
boundary conditions at and , referring to Fig. 1,
an expression for the evanescent field in the cover where

, is given for the TE polarization as [32]

(8)

where

(9)

is the decay constant in the cover and represents
the phase term. The constant forth order mode, , is nor-
malized such that it corresponds to a total mode power of 1 W
per meter in the direction and is given as [32]

(10)

where

(11)

denotes the decay constant in the substrate,

(12)

is the transverse propagation constant in the guide region,
is the angular frequency and is the permeability of free
space.The gradient force pulling a nanoparticle onto the wave-
guide surface results from the exponential decay of the fields
into the cover region described in (8). As the evanescent field
decays from a maximum on the surface of a waveguide, both
intensity and intensity gradient are greatest at the guide-cover
interface where . Optimization of a waveguide by care-
fully selecting the incident wavelength, waveguide thickness
and indicies allows one to maximize both the intensity and the
intensity gradient at the interface. Knowing the dispersion rela-
tion and full expressions for the evanescent fields, expressions
for the maximized intensity gradient may be derived, from
which optimized waveguide designs result.

B. Derivation of an Optimized Intensity Gradient in the Cover

Using the field expression in (8), the transverse intensity gra-
dient at the interface where , was derived and is given here
as

(13)

where is the modal power density in W/m and is the per-
mittivity of free space.

From (13), it is shown that the intensity gradient at the guide-
cover interface is explicitly wavelength dependent due to the
term which is proportional to . Hence, in order to obtain a
maximized intensity gradient, it is necessary to null the deriva-
tive of with respect to , such that

(14)

By applying

(15)
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where , and using (1) and (13), a normalized tran-
scendental equation is derived, where

(16)

This expression which is derived for the first time to our knowl-
edge, is the main result of this paper. Notice that unlike the ex-
pression of intensity gradient in (13), the transcendental equa-
tion in (16) can be fully written in terms of the normalized thick-
ness , which is evident from the dispersion relation in (1).
Hence, the transcendental equation has the advantage of ex-
pressing a set of normalized parameters which can be applied to
any wavelength desired. The maximized value of intensity gra-
dient at the interface, , can be calculated by simply
substituting the solutions of optimum and for a set of
refractive indexes, obtained from (16), into (13).

By expressing the solutions of the transcendental equation in
(16) as and , the optimum condition of in
(1) to achieve maximized intensity gradient, can be reexpressed
as

(17)

where NA is the numerical aperture. Based on
(16) and (17), the numerical results showing optimum value of
waveguide thickness normalized to wavelength associated with
a range of numerical aperture (NA) for three different cover
media of water ( ), ethylene glycol ( ), and
a solution of index are shown in Fig. 2. The existence
of a maximum in the intensity gradient at a waveguide surface
is due to the combination of two phenomena. First, as the wave-
guide thickness is reduced the surface intensity increases until
cutoff is approached, when it decreases again. Second, effective
index reduces with the waveguide thickness resulting in a re-
ducing exponential decay constant for the evanescent field. For
a given power in the mode, the maximum absolute intensity gra-
dient at the surface is found at the optimum thickness given by
(17).

Note that, for a particular NA, the optimum decreases
with a larger cover index. This can be explained by the fact
that as the cover index increases, the field is increasingly drawn
into the cover. As a result, the maximized intensity gradient is
achieved at a smaller value of . All three curves show a
general decrease in optimum with larger NA. This is be-
cause, by considering the same total mode power, as the NA
increases (i.e., ), more power is confined in the guide
resulting in a smaller wave penetration into the cover and sub-
strate. Consequently, a thinner waveguide or a longer wave-
length is required to achieve a maximized intensity gradient in
the cover.

For the purpose of comparison in later sections note from
Fig. 2 that, for , the maximized intensity gradient at
the interface for NA corresponds to an optimum value
of .

Fig. 2. Design curves fort , n , andn to obtain maximum surface
intensity gradient for cover indexesn = 1:33, 1.43, and 1.5.

C. Intensity Gradient, Evanescent Power, and Surface Intensity
for a Specific Case

In this section, the analysis is based specifically on a set of pa-
rameters which is most closely associated with K–Na ion-ex-
changed waveguides in soda lime glass substrates with refrac-
tive indexes of and , respectively. In this
case, the NA . The cover medium is assumed to be
water, which has a refractive index of . The wave-
length dependence of these refractive indexes in real materials
is neglected in this analysis. For light to be guided in this asym-
metrical waveguide, the condition has to
be satisfied which results in a corresponding normalized wave-
guide thickness in the range for operation in
the single moded region. As approaches the substrate index,

, or as becomes close to the cutoff value of approxi-
mately 1.3, most of the power is traveling in the substrate. On
the other hand, as increases toward the guide index, greater
wave penetration into the cover results in a larger value of
to satisfy the condition for single-moded operation.

For the given set of indexes, the variation of the surface inten-
sity gradient, total evanescent power, and intensity in the cover
region of a waveguide is illustrated in detail, in Section II-C1.

1) Intensity Gradient in the Cover:Based on (13), the vari-
ation of the intensity gradient at the interface (where )
with normalized thickness for the given set of indexes is shown
in Fig. 3. The following features are observed.

1) The intensity gradient has a negative value reflecting the fact
that the intensity is decaying away from the interface

2) It is wavelength-dependent and decreases with wavelength
as mentioned in Section II-B.

3) Near cutoff, which occurs at for this case,
the effective index is close to the substrate index and a very
small proportion of the evanescent field penetrates into the
cover region, resulting in a small intensity gradient.
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4) As increases above cutoff, an increase in field pene-
tration into the cover leads to a rapid increase in intensity
gradient as indicated by the steep gradient in Fig. 3.

5) For all wavelengths, the intensity gradient exhibits a max-
imum at an optimum normalized thickness of approximately
1.7. Hence, for this set of indexes, excellent agreement is
found in comparison with the results found using the tran-
scendental equation.

6) Above the optimum value, where the effective index now
approaches the guide index, the mode is now increasingly
confined in the guide region resulting in a decrease in field
penetration into the cover and hence a smaller intensity gra-
dient.

The purpose of optimizing the intensity gradient is to ensure
that a nanoparticle is driven by maximum transverse gradient
force toward the waveguide. On the other hand, since the for-
ward forces is proportional to the intensity, maximizing the for-
ward forces exerted on a particle would require the maximiza-
tion of the light intensity in the cover region, which is discussed
in Section II-C2).

2) Power and Intensity Distribution in the Cover:From the
definition of the integral of the average Poynting vector, the total
power per unit waveguide width in the cover can be written
as

(18)

where the subscripts in both and correspond to the first
order mode, i.e., . In (18), is 1 W/m while both
terms and are dependent upon , as described
by (1) and (7), respectively. The relationship between evanes-
cent power and surface intensity which is greatest at the
guide-cover interface can be written as

(19)

The variation of total evanescent power and surface intensity
with normalized waveguide thickness , as shown in Figs. 4
and 5, respectively, show similar behavior to the intensity gra-
dient. However, by comparing the figures for total evanescent
power and surface intensity, one clear distinction can be drawn;
unlike the total evanescent power in the cover,, the surface
intensity is explicitly wavelength dependent, due to the pres-
ence of the term in the numerator of (19) which is propor-
tional to . A point to note from the intensity gradient and
intensity plots in Figs. 3 and 5, respectively, is that both exhibit
a similar trend with wavelength. Using (19) and (13), the max-

Fig. 3. Intensity gradient at the guide-cover interfacex = 0 for a given set of
indexes:n = 1:33, n = 1:52, andn = 1:51.

imum intensity gradient can be expressed in terms of maximum
intensity at the interface by

(20)

Clearly, a proportional relationship between and exists.
This is explained by the fact that, as the total power in the cover
region is a constant for a specific normalized thickness, a larger
surface intensity at the interface ( ) will result in a faster
decay and hence a stronger gradient. Sinceand are max-
imum at , a particle would experience maximum trans-
verse and forward forces, respectively, at the guide-cover inter-
face.

III. M AXIMIZATION OF RADIATION FORCESEXERTED ON A

NANOPARTICLE IN THE COVER REGION

A. Gradient, Dissipative, and Rayleigh Scattering Forces

A second important factor that influences the radiation
forces exerted on a Rayleigh sphere is the particle polar-
izability. Derivation of the forces by extending Maxwell’s
equation and applying the semiclassical model which is mod-
ified to suit the case of a waveguide configuration, and the
behavior of the polarizability are addressed in detail in this
section.

When a Rayleigh particle is subjected to an applied field,
it becomes polarized. A separation of charges, specifically be-
tween electrons and nuclei, takes place which results in an in-
duced dipole created in the particle. The force acting on each
charge is described by the Lorentz equation which for the case
of an electron, is given by [33]

(21)

and for a nucleus

(22)
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Fig. 4. Total power in the cover region for a given set of indexes:n = 1:33,
n = 1:52, andn = 1:51.

Fig. 5. Intensity at the guide-cover interfacex = 0 for a given set of indexes:
n = 1:33, n = 1:52, andn = 1:51.

where
denotes the elementary charge;

the velocity of the charge;

is the binding force between the opposite charges.

Based on the semiclassical model by Stenholm [33] where the
center-of-mass motion is considered, the force, in MKS units,
acting on an induced dipole is given as

(23)

where the subscript corresponds to an electron, subscript
corresponds to a nuclei, andis the atomic electric dipole op-
erator. Based on the same assumptions as Stenholm [33], which
neglect both the total time derivative of the periodic function

and the correction term to the electromagnetic force ,
the final approximate expression for the force is given as [33],
[34]

(24)

The above dipole operator for a particle,, which is dependent
on the surrounding medium, applied field and the polarizability
of a particle, may be expressed as [25], [35]

(25)

where is the permittivity of the cover medium. As-
suming a complex polarizability

(26)

where

(27)

is the phase in the complex polarizability, we express the time
averaged force as shown in (28) at the bottom of the page. De-
riving (28) reveals that the average force consists of two main
force components; 1) a real part which depends on the spatial
variation of the intensity [25], [33], [34]

(29)

known as the gradient force, as it varies with the gradient of light
intensity and 2) an imaginary component relating to the spatial
variation in the phase given by

(30)

known as the dissipative force.
So far we have assumed that attenuation in the propagation di-

rection does not exist. However, for the purpose of investigating
the magnitude of the loss required in the waveguide to produce
a backward gradient force to counteract the forward force, we
assume a decay factor of in (8) which describes the atten-

(28)
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Fig. 6. Relative permittivity of gold.

Fig. 7. Real part of polarizability� of a gold sphere versus wavelength for
cover indexesn = 1:33, 1:43, 1:5, and1:7.

uation of field in the direction. The damping term may be
included as the imaginary part of the propagating constant of a
mode where . In this analysis, the effect of this loss
upon , [see (9)], is not taken into account.

As the evanescent field in the cover is assumed to decay both
in the transverse direction and along the direction of wave prop-
agation, using (20) and (29) results in two orthogonal gradient
forces, of which the first varies transversely according to

(31)

Fig. 8. Imaginary part of polarizability� of a gold sphere versus wavelength
for cover indexesn = 1:33, 1:43, 1:5, and1:7.

while the second component acts in the direction where

(32)

Based on (8) and (19), the dissipative force in (30) can be solved
and is given by

(33)

A further contribution to the forces, neglected so far in this
analysis due to simplifying assumptions made in deriving (24),
is the scattering force, often known as the “light pressure” [36].
This force acts along the direction of wave propagation and may
be expressed as [5], [35], [37]

(34)

which is proportional to the sixth order of the radius of a sphere.
Note that the presence of in (34) results from consid-

ering the effective index of a propagating mode rather than a
free-space wave. From (31) to (34), it is clear that all these force
components are strongly dependent upon the polarizability of a
particle. Hence, in addition to optimizing the waveguide struc-
ture, radiation forces can be maximized by maximizing the po-
larizability of a Rayleigh particle.

B. Polarizability of a Particle

In the electrostatic approximation, the equivalent molecular
polarizability of a particle, , is given as [5]

(35)
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where is the complex permittivity of the particle,
which is related to its refractive index via . The
volume of a sphere, given by may be used, pro-
vided that the imaginary part of the indexsatisfies the con-
dition ; for example, dielectric materials have an
imaginary value close to 0. However, in cases where this con-
dition is not met, correction for the attenuation of the field re-
quires an integral representation ofinstead [5], to account for
the skin depth.

In the following sections the polarizabilities of dielectric and
metallic particles of radius 10 nm in a range of surrounding
media will be discussed.

1) Polarizability of a Dielectric Particle: Away from reso-
nances, dielectrics are assumed to be lossless, with refractive
index consisting of a dominant real part, which is weakly depen-
dent upon wavelength, and a negligible imaginary part. Latex
particles are often used in experimental work and provide a
convenient example for calculations and for comparison with
metallic nanoparticles. Application of (35) to a latex sphere
of index 1.59 and radius 10 nm in surrounding cover media
of index 1.33, 1.43, and 1.5, results in a purely real and posi-
tive polarizability of m , m , and

m , respectively. As is positive, the gradient
forces in (31) and (32), are expected to move the Rayleigh par-
ticle in the negative and directions toward the high intensity
region.

However, when a dielectric particle has a smaller index than
the surrounding medium, the polarizability will be negative
causing a positive gradient force to act on the particle which
will expel the particle from the high intensity region.

2) Polarizability of a Metallic Particle: In the wavelength
range of interest, however, metallic particles are absorbing and
have a strongly wavelength dependent complex refractive index
which results in a complex polarizability. Experimentally mea-
sured values of the relative permittivity of gold [38] are shown
in Fig. 6. Based on this data, the wavelength dependent param-
eters and applying to a gold sphere of radius nm
in a range of cover media are illustrated in Figs. 7 and 8, re-
spectively. It is evident from these plots that the polarizability
exhibits a strong resonance peak in the visible region. Based on
these plots, the peak occurs at 550 nm for and 530
nm for , coinciding with the condition in (35) where the de-
nominator of the expression for polarizability approaches zero.

In addition, with an increase in the cover index of the sur-
rounding medium, there is an evident shift in the peak to longer
resonant wavelength and an increase in magnitude. Since polar-
izability and radiation forces as given in (31)–(34), are propor-
tional, the variation in both and would affect the way in
which these forces vary.

The polarizability of a gold nanoparticle in a surrounding
medium of higher refractive index, , is shown in Figs. 7
and 8, though it should be noted that this cover index would not
allow waveguiding in the structure with refractive indexes mod-
eled in Section II-C. Under these circumstances, the real part of
the polarizability becomes negative over a narrow wavelength
range. This implies that for cover media of high index, the par-
ticles may either be drawn into regions of high intensity or ex-
pelled from them by tuning the incident wavelength.

Fig. 9. Transverse gradient force exerted on a gold sphere at the guide-cover
interfacex = 0 for cover indexn = 1:33 versust .

On the other hand, remains positive over the entire wave-
length range under all conditions. This implies that the dissi-
pative force in (33), whose value depends on, is always a
positive force in the forward direction.

C. Numerical Results for Forces on Optimized Waveguides

1) Transverse Gradient Force at the Guide-Cover Inter-
face: The transverse gradient force, based on (31) and as
shown in Fig. 1 as , acts in the direction of the intensity
gradient with the maximum force occuring when the intensity
gradient is a maximum. We have seen from Section II-C1)
that in a waveguide cover, this occurs at the guide-cover
interface where . Using (31), the transverse gradient
force experienced by a particle in this region, defined in terms
of the maximum surface intensity is given as

(36)

By considering both a gold and a latex sphere of radius
nm, where is positive with water as a cover medium (i.e.,

), variation in the transverse gradient force at the in-
terface with is shown in Figs. 9 and 11, respectively. Com-
paring these plots with Fig. 3 shows that these forces vary with

in a way similar to the intensity gradient with
an optimum value occuring at . At this waveguide
thickness, both the intensity gradient and transverse force at the
interface are maximized. Further, the fact that gold particles ex-
hibit resonance in the visible region, while latex particles in the
Rayleigh regime do not, is clearly shown by comparing Figs. 10
and 12. Hence, information on both, which relates to the op-
tical properties of a sphere, and the intensity gradient for a given
set of waveguide indexes, are contained in these plots where the
influence of both factors on the gradient force is clearly shown.
Note also that a gold sphere experiences a force of a magnitude
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Fig. 10. Transverse gradient force exerted on a gold sphere at the interface at
optimumt corresponding to each cover indexesn = 1:33, 1:43, and1:5
versus wavelength.

Fig. 11. Transverse gradient force exerted on a latex sphere at the guide-cover
interfacex = 0 for cover indexn = 1:33 versust .

approximately ten times larger than that for a latex sphere, due
to its greater polarizability as discussed in Section III-B.

At this point, it is clear that one procedure to maximize the
gradient force on a particle in the cover is first to select a wave-
length which ensures maximum real part of the polarizability.
Second, determining the optimum value of the normalized
thickness , based on the derived transcendental equation
as shown in Fig. 3, the corresponding waveguide thickness
for achieving the maximum trapping force can be obtained.
Hence, for the particular set of indexes considered, given that
the maximum gradient force is achieved at and

Fig. 12. Transverse gradient force exerted on a latex sphere at the interface at
optimumt corresponding to each cover indexesn = 1:33, 1:43, and1:5
versus wavelength.

peaks at nm due to particle resonance, the waveguide
thickness required for maximization of the force is nm.

2) Axial Forces at the Guide-Cover Interface:Unlike the
gradient force, forward axial forces, primarily the dissipative
and Rayleigh scattering forces as denoted by and ,
respectively, in Fig. 1, exist even in the absence of an inten-
sity gradient. In the cover region, these forces act in the forward
wave propagating direction and are greatest at the guide-cover
interface (i.e., ) where maximum intensity occurs.
For axial trapping to occur, the existence of a backward axial
force is required to balance the forces in the forward direction.
The backward force due to waveguide losses, given as
in (32), is found to be negligibly small for practical values of
loss and is therefore neglected here. However, superposition of
additional waves propagating in different directions may allow
stable trapping to be achieved on waveguide surfaces [2].

From (33) and (34), the forward dissipative and scattering
forces exerted on a particle located at on the guide-cover
interface are given as

(37)

(38)

The maximum forward forces at the interface exerted on a gold
sphere are shown against normalized thickness in Fig. 13 for
the Rayleigh scattering force and Fig. 14 for the dissipative
force. The magnitude of the scattering force is approximately
100 times smaller than the dissipative force. On the other hand,
for the case of latex spheres, which are assumed lossless so that

, the only forward force acting on them is the scattering
force component which is shown in Fig. 15.
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Fig. 13. Scattering force exerted on a gold sphere at the guide-cover interface
for cover indexn = 1:33 versust .

Fig. 14. Dissipative force exerted on a gold sphere at the guide-cover interface
for cover indexn = 1:33 versust .

3) Discussion: Integrated optical waveguides may be used
for trapping and propelling nanoparticles and potentially for
simultaneous measurement of their optical properties. Col-
loidal gold nanoparticles of radius of order 10 nm are of
particular interest for studies of surface enhanced Raman
spectra (SERS) of species attached at their surfaces. Com-
pared with conventional focused beam optical traps, gradient
forces tend to be weaker for a given input power because the
substantially reduced peak intensity in the evanescent field
and because the spotsize is generally larger than the spotsize
of a focused Gaussian beam, especially if the waveguide is
designed to connect efficiently to optical fiber. As the du-
ration for which a particle stays trapped depends strongly

Fig. 15. Scattering force exerted on a latex sphere at the guide-cover interface
for cover indexn = 1:33 versust .

Fig. 16. Sum of scattering and dissipative force exerted on a gold sphere at the
guide-cover interface at optimumt corresponding to each cover indexes
n = 1:33, 1.43, and 1.5.

upon the gradient force, it is important to be able to design
waveguides for maximum trapping force per unit power. In
Section II we developed a transcendental equation which en-
ables straightforward optimization of the intensity gradient
in the evanescent field of a planar optical waveguide and
in Section III we gave numerical examples of the trapping
forces on 10-nm particles in this evanescent field normalized
to modal power per unit width of such an optimized wave-
guide. These results may be useful viewed in the light of
published results for the maximum gradient force on a gold
nanoparticle in a focused Gaussian trap. Reference [4] gives
this force on an 18 nm gold sphere in water in a Gaussian
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beam focused to a beam radius of m at a wavelength
of 1047 nm to be pN/mW; this resulted in an
average nanoparticle escape time of 5 s. Assuming that a
channel waveguide is realized with a lateral spotsize ofm,
typical of potassium ion-exchanged waveguides, our results
in Fig. 10 show that a gold sphere of the same size would
experience a gradient force of approximately pN/mW
in water for the optimized waveguide at the optimum wave-
length. In another example, gold Mie particles of radius 250
nm have been shown to move forward along an unspeci-
fied channel waveguide carrying a modal power of order 80
mW at 1047 nm at a velocity greater than m/s [12]. Our
calculations based on Fig. 16, for an optimized waveguide
with a lateral spotsize of m at this wavelength show that
a 40-nm radius gold sphere would be propelled forward at
a velocity, given by Navier–Stokes law, of m/s for a
modal power of 125 mW. This velocity would tend to in-
crease with the square of the particle radius, due to the finite
skin depth of the particle. The use of a wavelength close
to the particle resonance at approximately 550 nm would
lead to a velocity of 1 m/s for a reduced modal power of
0.3 mW. The forward forces are expected to be useful for
positioning particles at a surface but stable trapping may be
achieved by establishing a standing wave in the waveguide
to counteract the forward forces and set up periodic gradient
force traps along the direction of the waveguide [12]. The
use of optimized waveguide designs at the wavelength of
particle resonance is expected to lead to stable traps where
the intensity of Raman spectra generated at the surface of
the particle is also optimized.

Comparison of the forces on metallic nanoparticles with those
on latex spheres is useful to illustrate differences in their be-
havior. The variation of the total forward forces at the interface
with wavelength at optimum , corresponding to each par-
ticular set of indexes, as shown in Fig. 16 for gold and Fig. 17
for latex, clearly reflects the wavelength dependency ofand
of the polarizability. In the case where water is the surrounding
medium ( ), the total forward force exerted on a gold
sphere as shown in Fig. 16 exhibits a resonant peak at a wave-
length close to nm. Since where the latter
peaks at exactly the same wavelength (refer to Section III-B2
and Fig. 8), the dominance of over in the total for-
ward force is clearly shown.

Some other interesting points are worth noting. First, the for-
ward force on a Rayleigh gold sphere, exceeds that of a latex
sphere where

(39)

This can be explained by the smaller polarizability and absence
of the dissipative force component for a latex sphere. Hence,
a gold sphere is expected to be propelled forward in the
direction at a velocity much greater than a latex sphere. Second,
by comparing the maximum gradient and forward forces, we
find that in the case of a gold sphere,

(40)

Fig. 17. Scattering force exerted on a latex sphere at the guide-cover interface
at optimumt corresponding to each cover indexesn = 1:33, 1.43, and
1.5.

while for the case of a latex sphere,

(41)

For instance, at nm, the gradient force exerted on
a latex sphere is N as compared to N
for the forward force, a difference in magnitude of . There-
fore, wheareas a gold sphere is driven by equally strong trans-
verse and axial forces, a latex sphere experiences a forward force
which is insignificant compared to the gradient force acting on
it. Finally, as the plots for forward force suggest a maximum
at and a peak at nm for a Rayleigh
gold sphere, an optimized forward force is exerted on it at a
corresponding waveguide thickness of 901 nm. This is slightly
smaller than the thickness required for optimizing the gradient
force, described in Section III-C1.

IV. CONCLUSION

Movement and trapping of nanoparticles in the evanescent
field of optical waveguides is of potential interest for particle
sorting and mixing and for the optical interrogation of trapped
particles at surfaces. These applications require a thorough un-
derstanding of the interactions of particles with the evanescent
field of a waveguide. In this paper we have presented a de-
tailed study which quantifies the various forces acting upon di-
electric and metallic particles in the cover region of a homoge-
neous planar waveguide, in the case of the TE polarization, for
the first time. The particles are drawn toward or repelled from
the surface of the waveguide by a gradient force whose direc-
tion and magnitude depends upon the real part of the polariz-
ability of the particle and the intensity gradient in the evanes-
cent field. The particles also experience a force in the direction
of modal propagation due to the sum of dissipative and scat-
tering forces. A minor gradient force contribution in this direc-
tion, due to waveguide losses, was found to be negligible for
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practical cases. The total power in the cover region and the sur-
face intensity at the guide-cover interface in a planar waveguide
were studied in terms of a normalized waveguide thickness, and
a transcendental equation has been derived which allows op-
timization of the waveguide using simple normalized design
curves, as shown in Fig. 2, yielding a maximum intensity gra-
dient at the guide-cover interface. Numerical results are given
for a specific set of waveguide indexes, and the normalized
waveguide thickness at which the maximum intensity gradient
occurs agrees well with that determined using the transcendental
equation. For the set of indexes considered, where the guide,
substrate and cover indexes are , , and

, respectively, the optimum normalized waveguide
thickness is found to be approximately 1.7. The polarizabilities
of latex and gold nanoparticles in a range of surrounding media
are given and the gradient, dissipative, and scattering forces
upon these at the surface of a waveguide are described. Numer-
ical results for each of these force components are presented in
each case for the waveguide parameters described previously
and, finally, the resultant transverse and forward forces on these
nanoparticles on optimized waveguides are shown as a function
of wavelength, allowing the wavelength and waveguide design
to be selected.
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