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New Full-Vectorial Numerically Efficient Propagation
Algorithm Based on the Finite Element Method

S. S. A. Obayya, B. M. A. Rahmaenior Member, IEEEand H. A. El-Mikati

Abstract—A new full-vectorial beam propagation algorithm  scalar, semi-vectorial and full-vectorial BPM approaches based
based on the versatile finite element method, in order to accurately on the popular finite difference method (FDBPM) have been re-
characterize three-dimensional (3-D) optical guided-wave devices, ported [5]-[7]. Due to the inefficient discretization associated

is presented. The computationally efficient formulation is based . . . . .
on the two transverse components of the magnetic field without with finite differences, the FDBPM needs large computational

destroying the sparsity of the matrix equation. The robust per- resources especially in simulating nonuniform optical waveg-
fectly matched layer (PML) boundary condition is incorporated uides. Due to its numerical efficiency and versatility, some BPM
into the formulation so as to effectively absorb the unwanted algorithms have been formulated based on the finite element
radiation O‘ththOf the Comg’tgtal‘lt'ona;' O.'olma'”' Th‘t*. efficiency ?}”.d method [8], [9]. However, most of these finite element-based
precision of the Proposed ful-vectonar propagalion approach 1S - gpy algorithms are solving the less accurate, albeit simpler,

demonstrated through the analysis of single optical waveguide, X .
directional couplers, and electrooptic modulator. scalar wave equation which cannot accurately model the wave

Index Terms—Beam propagation method (BPM), directional propagation in three-dimensional optical waveguides with hy-

couplers (DC's), finite element method (FEM), optical waveguides, brid fields. A full ve_ctorlal approac_h |s_part|cula_rly necessary to
photonic devices. calculate the polarization conversion in the optical guided-wave

devices or systems. Recently, a vectorial BPM algorithm based
on the finite element method has been reported [10], however,
the algorithm is solving for the three magnetic field components
ODAL solutions are very useful for the characterizatioand is not incorporating a robust boundary condition to effec-
of uniform optical waveguides, and many semi-analytively absorb the outgoing radiations.
ical and numerical modal solution approaches have been rein this paper, a new full-vectorial BPM algorithm based on the
ported. It has been shown that the vector finite element methadmerically efficient finite element method (VFEBPM) is pre-
(VFEM) is an accurate and powerful method to find the mod&ented. This algorithm considers only two transverse magnetic
solutions for a wide range of optical waveguides [1]. Manfield components, hence itis more numerically efficient than the
photonic devices may consist of a few butt-coupled uniforivectorial propagation algorithm which considers all the three
guided-wave sections, such as the directional coupler or mojagnetic field components [10]. Recently, a robust perfectly
timode-interference (MMI)-based devices. By accurately cahatched layer (PML) boundary condition [11] has been intro-
culating the even and odd supermode propagation constagdtsed to the finite element based BPM formulations, but either
the VFEM is capable of calculating the coupling length, howsonsidering a simple scalar formulation [12] or Erfield for-
ever, the VFEM cannot directly estimate the power couplingulation [13], which considers all the three field components. In
efficiency between coupled guides. Earlier, it has been sho#hie present work, the PML boundary condition is incorporated
that a combination of the VFEM and the least squares bound&@ythe newly developed full-vectorial FE-based BPM approach.
residual (LSBR) method can accurately characterize directiodsd it will be shown later on, the sparsity of the global matrices is
couplers [2], or MMI-based devices [3], i.e., devices with a firetained as no matrix inversion is needed, hence, a numerically
nite number of longitudinal discontinuities. However, to desigefficient sparse matrix solver is used which is the main advan-
three-dimensional (3-D) photonic devices with arbitrary axidfge of the present formulation. In Section II, the main theory of
variations, a more versatile numerical approach, like the bedie new full-vectorial BPM algorithm will be presented. To test
propagation method (BPM), is mandatory. Feit and Fleck [4] ikhe accuracy of the proposed BPM, it will be applied to some op-
troduced the fast-Fourier transform (FFT)-based BPM to simtical waveguide devices and the results, presented in Section lll,
late axially nonuniform structures, however, their approach vgll be compared with those obtained from other rigorous vec-
only suitable for weakly guiding waveguides. Since then, margrial methods.

I. INTRODUCTION

Il. THEORY
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wherek andn are the free space wavenumber and the refrafast oscillating-phase, then, (1) for the transverse slowly varying
tive index, respectively, and the del operaf@r,used in (1) is envelopey),, takes the form

defined as
9V \\
P P —2 Qt — 2jnokn™? LA N2V (Ve - )
. . . . 4 Z
VS letag, T, T SVethag, @ G (T x 0 i) x4+ B (1-n0d) B =0

()
with <., z,,, ande_ are the unit vectors associated withy, and
z directions, respectively, and,, «,,, anda . are parameters as-whereny is the reference index of refraction. If the waveguide
sociated with the PML boundary condition. Since the waves atess section is divided into a number of first-order triangular
assumed to propagate indirection, the parameter. will be elements, the application of Galerkin's procedure to (5) results
set to unity, while the other PML parameters have to be detén-
mined such that the wave impedance of the PML layer placed ) .
around the computational domain is exactly the same as that 0T/ nga Ve a 2jnok/ Nyn—2 Oy 1y
the adjacent medium inside the computational domain. Hence,/ 4 22 A 2

the PML medium will perfectly matches the computational do- - —2ar
main medium which will allow the unwanted radiations to leave N VelNin (Ve - ) dA + ln Ni(Ve - Wy)ne dl
the computational domain freely without any reflection. This o )
necessary condition can be derived as [11] + /A(VtNi) X i An" (Vi x W) - .} dA
1 1 — ¢ Ny ¥ i {n "2 (Ve x U,) i} dl
— —_ l
a-"’?:y_l_; Te _1_,~o_m (3)
I ozon T omo + k2 / Ni(1—n"n2) U, dA=0 6)
A

wherew, g9, and 1o are the angular frequency, the free space . . . L
permittivity and permeability, respectively, white. and o, where/; is the weight function which is assumed the same as

the shape function at thgh node(i = 1,2,3), A is the ele-

are the electric and magnetic conductivity profiles of the PML, X . .
9 yp ment area/ is the element boundary, andq is the unit vector

;isrgzgt“{ﬁéyr" g_f] parabolic electric conductivity profile is asi_n the directi_on of the (_)utV\_/ard nor_mal t_o the ele_ment_boundary.
' The evaluation of the line integrations involved in (6) is manda-
tory in order to account for the interface boundary conditions
o 3\” 1 <i> (4) between elements with different materials. The second line in-
tegral appearing in (6) is proportional to the longitudinal elec-
tric field componentsE.., which is continuous everywhere, and
where ) is the wavelengthd is the width of PML (kept con- hence, its contribution along all the inter-element boundaries
stant in all directions)p is the distance inside the PML mea-Will cancel, even when the adjacent elements have different re-
sured from the PML-computational domain interface, #his fractive indices. On the other hand, the first line integral in
the allowable theoretical value of the reflection coefficient 46) has to be calculatedhut onlyalong the interfaces between
the PML-computational domain interface, which is set to a vefy/0 elements with different refractive indices, as it accounts for
small value during the simulations. The parametersinda, the discontinuity of the transverse magnetic field derivatives. It
are set in different regions as follows. Inside the orthodox cori@n be shown that only the first line integral of (6) is respon-
putational domain, both, and«, are set to unity, while for Sible for both polarization dependence and coupling. Hence,
PML regions faced normally with direction,« is set as indi- working with transverse magnetic field formulatlon_ls more ad-
cated in (4) whilev, is set to unity, and the situation is reversegf@ntageous not only because of the more economical use of the
for PML regions normally faced witly direction. For corners, computational resources, but also, as it rigorously enforces the
bothc,, ande, are set as indicated in (4). With these PML arinterf_ace boundary con.ditions. Hence, the spurious nonphysical
rangements in different regions, any radiation wave will freef§elutions are not permitted to propagate: a problem commonly
leave the computational domain whatever the angle it hits tAESeS with most of the vector formulations.
PML-computational domain boundaries, and this kind of PML Performing the integrations involved in (6) and collecting
boundary condition has been used with the scalar one-dimédpe contributions from all elements leads to the following non-
sional FDBPM [14] to show its effectiveness over the tranfaraxial vector wave equation:
parent boundary condition [15]. However, the incorporation of

the PML boundary condition into the full-vectorial BPM formu- d*{he} d{h}
- T ) [M] 5 25nok[M]
lation is, to best of our knowledge, presented here for the first dz z
time. + (K] - ngk*M]) {he} = {0} (7)

Using the zero divergence condition of the magnetic field,
V - H = 0, and decomposing the transverse magnetic fielshere{h} represents a column vector containing all the nodal
vector,Hy, into a slowly z-varying vector envelope),, and a values of the slowly varying transverse magnetic field compo-
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nents,{0} is a null column vector, andV] and [K] are the with
global element matrices assembling the contributions from all

elements, which can be expressed as (Al = —2jnok[Llm + 02z {[K]m — ngh* Ml } - (18)
[Maz] (0] }
M] = 8
M] Z [ [0]  [My,] ®) [Blo = —2jn0k[Llm + (6 — 1)Az {[K],, — n2k*[M],,,}
(19)
(Koo] [Koy] where Az is the propagation step sizé,is the propagation
K] = Z [[ K”“’] [ K’”’J (9) scheme parameter, and the subscriptandr + 1 stand for
e v vy quantities related to theith andm + 1th propagation steps,

respectively. The stability range for the propagation algorithm

with . : . ; .
is & > 0.5. During the numerical simulation® = 0.5, the

(M) = [M,,] = [n_Q A N;N; dA} (10)

(Keo] = [ / (K*N;N; — n 202 Niw N,
A

— 20l NiyNjy) dA + % 202NNl dl}
11)

[Kyy] = [/ (kQNiNj —n 2NNy,
A

— 202Ny Nj,) dA+ ]{ n~2a2N;Nj, L, dl}
§
12)

K.y = {/ (n_QamocyNinjm — n_QamocmeNiy) dA
A

+ j{n_QamayNiNjylw dl} (13)
!

[Kym] = |:/ (—n_QamayNinjm + n_2amameNjy) dA
A

+ j{n_Qa,}ayNiijly dl} (14)
l

where}_ stands for summation of contributions from all ele
mentsg, j = 1,2, 3,1, andl, are the direction cosines betwee
the outward normal unit vector,, and ther andy directions,
respectively, anfh] is a3x 3 null matrix. In solving (7), the Padée
approximation [16]
wide-angle wave equation as

with

2oL T 1 (K] — 2 M]) () = (0} (15)
L) = M) + ﬁ (K]-n2kM])  (16)

has been utilized to derive the first-order

Crank—Nicolson algorithm, will be adopted as it is stable and
also the least dissipating of the propagating power.

I1l. NUMERICAL EXAMPLES

To assess the numerical precision of the proposed VFEBPM,
it is first applied to a single rectangular guide shown in the inset
of Fig. 1. The refractive index of the core,, is 3.26 while that
of the substraten,, is 3.20 and the simulation is carried out
at a wavelength of 1.2m. In all simulations, the width of the
PML layer is taken as 1.0m, the theoretical reflection coeffi-
cient,R, as10~1%, and the reference refractive index, as the
mean value of the core and substrate indexes. In this example,
the waveguide cross section is represented by 7200 first-order
triangular elements. The waveguide is launched with the fun-
damental transverse electric (TE) or transverse magnetic (TM)
modal field profiles obtained from the VFEM [1]. Fig. 1 shows
the effect of the propagation step sizez, on the level of nu-
merical dissipation for both TE and TM modes. Each of the
simulation points shown in Fig. 1 takes around 10 min on SUN
4/85 Workstation. It is suspected that some stable numerical al-
gorithm may not conserve the propagating beam power. How-
ever, it can be noted from Fig. 1 that for the rangeaf < 2.0
»m, the nonphysical power loss is less than 0.00002 dB/mm
for both the polarizations. With this extremely low nonphysical
power loss, the proposed VFEBPM can be regarded as a stable
and power conserving technique as well. Next, the capability
of the proposed VFEBPM as a “mode solver” is investigated.
Launching an arbitrary initial field into the considered rectan-
gular waveguide, and letting it to propagate along the imaginary

axis, the fundamental TE or TM mode will be evolved [17].

r]I'o test the accuracy of the solution, a simple rectangular spa-

tial pulse with sharp step rise is launched into the waveguide.
For TE excitation, the field profile of its dominaif, compo-
nent atz = 50 um is shown in Fig. 2. This field profile re-
sembles the fundamental TE mode after propagating a relatively
short distance of 5@m. The variation of the effective indices,

n. = 3/k, whereg is the mode propagation constant, for both
TE and TM modes with the imaginary propagation distance are
also calculated. These effective index values settle to 3.241 25,
and 3.24121 for TE and TM modes, respectively, after propa-
gating a distance of around 46m along the imaginary axis.

Dividing the z-direction into a number of elements each witd "€ Same fundamental TE and TM modes have also been rig-

a width of Az, and applying Galerkin's method to the wide
angle wave equation results in

[A]m{ht }m+1 = [B]m{ht }m (17)

orously solved by using the VFEM [1] with 12 800 first-order
triangular elements to discretize the waveguide cross section.
The variation of the percentage errors in calculating the TE and
TM effective indices using the VFEBPM are shown in Fig. 3. It
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3.04m

ﬁ)ip. 4. Effect of the transverse mesh divisions on the coupling lengths of TE
lﬁgld TMwaves. The insetis a schematic diagram of the directional coupler under
consideration.

Next, a simple rectangular directional coupler consisting of
two-vertically coupled rectangular guides, shown in the inset of
Fig. 4, is simulated at a wavelength of L.8. Initially, the core
index,n,, and the substrate index,, are assumed as 3.26 and
3.20, respectively, and the waveguide separatigiis taken as
0.8 um. Launching one of the guides with its isolated TE or
TM fundamental modal field profile, the coupling length can be
defined as the minimum distance at which a maximum power
transfer between guides occurs. The effect of transverse mesh
divisions on the coupling length for both TE and TM polarized
waves is shown in Fig. 4, whet® is the number of divisions
in eitherz or y direction. In this caselz is taken as 0.xm. It
can be noted from Fig. 4 that fé¥ > 45, the coupling lengths
settle to 357um and 353um for TE and TM polarized waves,
respectively. FOiV = 60, in both transverse directions, the ef-
fect of Az on the coupling length for both TE and TM polar-
ized waves is shown in Fig. 5, where it can be observed that
the coupling lengths for TE and TM polarized waves are virtu-
ally constant forAz < 1.0 um. In order to assess the accuracy
of the VFEBPM in calculating the coupling length, the same
directional coupler structure has also been analyzed using the
VFEM [1] with 12 800 first-order triangular elements. Through
the calculation of the propagation constants of the even and odd
supermodes using the VFEM, the coupling lendth,for either
polarization can be calculated as

v

Le= 55

(20)

where3¢ and/3° are the propagation constants of the even and
odd supermodes, respectively. For this coupler, the coupling
lengths obtained by using the VFEM were 356.2 and 342

for TE and TM polarizations, respectively. It can be noted that

Fig. 3. Variation of the errors in the. calculation of the fundamental TE and the percentage difference between the coupling length results
TM modes with the longitudinal imaginary distance.

obtained using the VFEBPM and the VFEM are 0.22% and
0.34% for TE and TM polarizations, respectively, which shows

may be observed from this figure that the percentage errordtlire high numerical accuracy of the newly developed VFEBPM,
calculating the effective indexes using the VFEBPM were onin calculating the coupling length for both TE and TM polariza-
0.0012% and 0.0018% for TE and TM modes, respectively. Thisns. Next, the effect of varying both the waveguide separation,

proves the accuracy of the proposed VFEBPM approach.

S, and the core indexs,, on the TE and TM coupling length
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is shown in Fig. 6. In all cases, it may be noted that the cou- 420
pling lengths for TE and TM increase exponentially (linear for
semi-log scale) with the increase 8f For lower core indices,
cases ¢”, n, = 3.26, and V", n, = 3.3, the polarization ef-
fect on the coupling length is negligible. However, for case “
ng = 3.4, the coupling length for TM is relatively higher than
its TE counterpart. These features related to polarization effect
on the coupling length cannot be accurately predicted using a
less accurate scalar BPM algorithms. In all cases, the TE and
TM coupling lengths have been recalculated using the VFEM
with 12 800 first-order triangular elements and the differences
between these results and those obtained using the VFEBPM I — |
were always less than 0.8%. It can be noted that accuracy of the 06 08 10 2.0 4.0
solutions may be improved by using a finer mesh discretization. AZ(um)

Next, a simple rib directional coupler, shown in the inset of
Fig. 7, is simulated using the VFEBPM at a wavelength of 1.989.5. Effect of the propagation step siz&~) on the coupling lengths of TE

. . . and TM waves.

pm. For this coupler, the substrate indey, is taken as 3.4, and
the rib width, W, is kept constant at 3.0m, while the guide
index, ny, and the waveguide separatids, are varied. In the
VFEBPM simulations, the structure cross section is divided into 7007
6400 first-order triangular elements, and is taken as 1.gm.
For two values of the index differencAn = n,—n,, the effect
of waveguide separation on the TE coupling length is shownin €
Fig. 7. As shown in this figure, the increase $fand/or An ~_§l> 300
leads to the increase of the coupling length. The same simulation
points have been also carried out using the VFEM [1] and the
coupling lengths obtained using the VFEBPM differ only 1%.
Although the VFEM is very accurate in finding the coupling
lengths, however, it cannot directly estimate the crosstalk arises 100 , , |
due to the incomplete power transfer between guides. On the 0.4 0.6 0.8 1.0 1.2
other hand, the VFEBPM can accurately calculate the power
evolution in a system of coupled waveguides. The crosstalk for

a directional coupler can be defined as Fig. 6. Variation of TE and TM coupling lengths with the waveguide
separatior(.5) and the index differenceAn) as a parameter.

900

5004 7

Separation, S(wm)

Crosstalk (dB)= 10log; <%) (21)
bix = Lo

2000

whereP,(z = L.) andF,(z = L.) are the powers belongingto | |... An0.06
guides ‘@”, and “b”, respectively, calculated at a longitudinal po-
sition equals to the coupling length. In (21), it has been assumed
that guide %” is initially excited. Crosstalk is an important op-
tical parameter for characterizing directional couplers. For TE
excitation, the effect of the device length,, on the crosstalk 1000
for two values of the index differencéyn, is shown in Fig. 8. . 5
It can be observed that the crosstalk associated with a direc- 800 °s
tional coupler can be improved by increasing its length. It may
be noted that forAn = 0.04 and a device length of 10Qom,
the crosstalk level is-18.5 dB, however, increasingn to 0.06
and keeping the same device length at 108 the crosstalk
level is improved to-21.5 dB.

Finally, as "_sm e_xample of a nonidentical directional COUp_Ierfrg. 7. Variation of TE coupling length with the waveguide separgtitnand
an electrooptic LiINb@ channel coupler modulator, shown inte index differencé An) as a parameter. The inset is a schematic diagram of
the inset of Fig. 9, is simulated at a wavelength of Q.8B. the rib directional coupler under consideration.
Without any applied modulating signal, the refractive index
of both LiNbO; guides,n,, is taken as 2.3, while that of theThe effect of electrooptically induced index differengs;, on
cladding,n, is 2.29. With appropriate electrode design, fothe TE coupling length is shown in Fig. 9, where the results
nonzero modulating potential, it is assumed that the index d@ttained using the VFEBPM and VFEM [2] are in close agree-
one guide increases while in the other guide decreases by ient. Without applied modulating potentialy, = 0, the two
same amountAn /2, and the cladding index remains constanguide are phase matched giving rise to a peak coupling length,

L(um)

1.0 12 1.4 1.6 1.8 2.0
Separation, S(um)
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Fig. 8. Variation of the crosstalk with the device length and the indekig. 9. Effect of the electrooptically induced index difference on the coupling

difference as a parameter.

length. The inset is a schematic diagram of the electrooptic LiNb@annel

coupler modulator under consideration.

1010 ;zm, which monotonically reduces with the increase of
An as the two guides keep on losing their synchronousity.
When the input power is launched into guid#,“the power
evolution in the two guides with the axial direction,is shown

in Fig. 10 for two values ofAn. For An = 0, full power
transfer from guide d” to guide “a” can be observed at around
1010.m, while for An = 0.00092, a fraction of the guided”
power is initially transferred to guides” due to their phase
mismatch, then, this power is returned again to guidenith
virtually no overall power is transferred to guide”: It can
be noted that, whethn = 0.00092, the coupling length[L..,
is equal to 505.Q:m, half of the value forAn = 0. In this
case, at = L., the optical power couples back to guide “
as shown in Fig. 10. With guides” as an output port, the
variations of the maximum and output powerfs,,, and P,,
with An are shown in Fig. 11. The maximum powét, ., is
the power transferred to guidex™ at a device length equals
to the coupling length at the concernéah, while the output
power,P,, denotes the power transferred to guidédt a fixed
device length equals to the peak coupling lendth, = 1010
»#m. The power transfer results obtained using the VFEBPM
are in excellent agreement with those obtained using the LSBR
method [2]. As shown in Fig. 11, the output power is minimum
for An values at whiclL., is an even multiple of the coupling
length, while forAn values at whichL., is an odd multiple

of the coupling length, the output power reaches a maximum
value but not reaching the unity peak as the two guides are
strongly phase mismatched and hence, the full power transfer
is inhibited.

IV. CONCLUSION

Power

Fig. 10.
direction.

Power

A new full-vectorial propagation algorithm based on the ny5g 15
merically efficient finite element method is presented for th&ectrooptically induced index difference.

accurate characterization of 3-D optical guided-wave devices.
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Variations of the outpyi, ) and maximum powersP,,., ), with the

The new vector formulation is based on the transverse magnitiae, the robust PML boundary condition is incorporated into
field components allows effectively to account for the interfadie new full vectorial BPM formulation in order to offer a re-
boundary conditions between different dielectric media. As ritectionless boundary for the radiation waves. Through compar-
matrix inversion is needed in deriving the global matrices, thsons with other full vectorial approaches, the numerical accu-
resulting matrices are sparse which can be solved using aagy of the proposed full-vectorial FE-based BPM algorithm has
numerically efficient sparse matrix solver. Also, for the firsbeen demonstrated through the analyzes of different photonic
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devices, including, single rectangular guide, rectangular direq10] E.Montanari, S. Selleri, L. Vincetti, and M. Zoboli, “Finite-element full-
tional coupler, rib directional coupler, and electrooptic LiNpO vectorial propagation analysis for three-dimensionafarying optical

directional coupler-based modulator. Hence, the proposed fuﬂl]

waveguides,'J. Lightwave Technalvol. 16, pp. 703-714, Apr. 1998.
J. P. Berenger, “A perfectly matched layer for the absorption of electro-

vectorial BPM approach can be used to accurately model and  magnetic waves,J. Comput. Physvol. 114, no. 10, pp. 185-200, 1994.
optimize the performance of different 3-D photonic devices in{12] M. Koshiba, Y. Tsuji, and M. Hikari, “Finite element beam propagation

method with perfectly matched layer boundary conditiofSEE Trans.

cluding structures with totally arbitrary variation along the axial  \jagn, vol. 35, pp. 1482-1485, 1999.
direction. [13] F. Fogli, G. Bellanca, and P. Bassi, “TBC and PML conditions for 2D

(1]

(3]

and 3D-BPM: A comparison,Opt. Quantum Electron.vol. 30, pp.
443-456, 1998.
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