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New Full-Vectorial Numerically Efficient Propagation
Algorithm Based on the Finite Element Method

S. S. A. Obayya, B. M. A. Rahman, Senior Member, IEEE, and H. A. El-Mikati

Abstract—A new full-vectorial beam propagation algorithm
based on the versatile finite element method, in order to accurately
characterize three-dimensional (3-D) optical guided-wave devices,
is presented. The computationally efficient formulation is based
on the two transverse components of the magnetic field without
destroying the sparsity of the matrix equation. The robust per-
fectly matched layer (PML) boundary condition is incorporated
into the formulation so as to effectively absorb the unwanted
radiation out of the computational domain. The efficiency and
precision of the proposed full-vectorial propagation approach is
demonstrated through the analysis of single optical waveguide,
directional couplers, and electrooptic modulator.

Index Terms—Beam propagation method (BPM), directional
couplers (DC’s), finite element method (FEM), optical waveguides,
photonic devices.

I. INTRODUCTION

M ODAL solutions are very useful for the characterization
of uniform optical waveguides, and many semi-analyt-

ical and numerical modal solution approaches have been re-
ported. It has been shown that the vector finite element method
(VFEM) is an accurate and powerful method to find the modal
solutions for a wide range of optical waveguides [1]. Many
photonic devices may consist of a few butt-coupled uniform
guided-wave sections, such as the directional coupler or mul-
timode-interference (MMI)-based devices. By accurately cal-
culating the even and odd supermode propagation constants,
the VFEM is capable of calculating the coupling length, how-
ever, the VFEM cannot directly estimate the power coupling
efficiency between coupled guides. Earlier, it has been shown
that a combination of the VFEM and the least squares boundary
residual (LSBR) method can accurately characterize directional
couplers [2], or MMI-based devices [3], i.e., devices with a fi-
nite number of longitudinal discontinuities. However, to design
three-dimensional (3-D) photonic devices with arbitrary axial
variations, a more versatile numerical approach, like the beam
propagation method (BPM), is mandatory. Feit and Fleck [4] in-
troduced the fast-Fourier transform (FFT)-based BPM to simu-
late axially nonuniform structures, however, their approach is
only suitable for weakly guiding waveguides. Since then, many
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scalar, semi-vectorial and full-vectorial BPM approaches based
on the popular finite difference method (FDBPM) have been re-
ported [5]–[7]. Due to the inefficient discretization associated
with finite differences, the FDBPM needs large computational
resources especially in simulating nonuniform optical waveg-
uides. Due to its numerical efficiency and versatility, some BPM
algorithms have been formulated based on the finite element
method [8], [9]. However, most of these finite element-based
BPM algorithms are solving the less accurate, albeit simpler,
scalar wave equation which cannot accurately model the wave
propagation in three-dimensional optical waveguides with hy-
brid fields. A full vectorial approach is particularly necessary to
calculate the polarization conversion in the optical guided-wave
devices or systems. Recently, a vectorial BPM algorithm based
on the finite element method has been reported [10], however,
the algorithm is solving for the three magnetic field components
and is not incorporating a robust boundary condition to effec-
tively absorb the outgoing radiations.

In this paper, a new full-vectorial BPM algorithm based on the
numerically efficient finite element method (VFEBPM) is pre-
sented. This algorithm considers only two transverse magnetic
field components, hence it is more numerically efficient than the
vectorial propagation algorithm which considers all the three
magnetic field components [10]. Recently, a robust perfectly
matched layer (PML) boundary condition [11] has been intro-
duced to the finite element based BPM formulations, but either
considering a simple scalar formulation [12] or an-field for-
mulation [13], which considers all the three field components. In
the present work, the PML boundary condition is incorporated
to the newly developed full-vectorial FE-based BPM approach.
As it will be shown later on, the sparsity of the global matrices is
retained as no matrix inversion is needed, hence, a numerically
efficient sparse matrix solver is used which is the main advan-
tage of the present formulation. In Section II, the main theory of
the new full-vectorial BPM algorithm will be presented. To test
the accuracy of the proposed BPM, it will be applied to some op-
tical waveguide devices and the results, presented in Section III,
will be compared with those obtained from other rigorous vec-
torial methods.

II. THEORY

From the Maxwell's two curl equations, the vector wave equa-
tion based on the magnetic field vector,, can be derived:

(1)
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where and are the free space wavenumber and the refrac-
tive index, respectively, and the del operator,, used in (1) is
defined as

(2)

with , and are the unit vectors associated with , and
directions, respectively, and , and are parameters as-

sociated with the PML boundary condition. Since the waves are
assumed to propagate indirection, the parameter will be
set to unity, while the other PML parameters have to be deter-
mined such that the wave impedance of the PML layer placed
around the computational domain is exactly the same as that of
the adjacent medium inside the computational domain. Hence,
the PML medium will perfectly matches the computational do-
main medium which will allow the unwanted radiations to leave
the computational domain freely without any reflection. This
necessary condition can be derived as [11]

(3)

where , and are the angular frequency, the free space
permittivity and permeability, respectively, while and
are the electric and magnetic conductivity profiles of the PML,
respectively. If a parabolic electric conductivity profile is as-
sumed, then [11]

(4)

where is the wavelength, is the width of PML (kept con-
stant in all directions), is the distance inside the PML mea-
sured from the PML-computational domain interface, andis
the allowable theoretical value of the reflection coefficient at
the PML-computational domain interface, which is set to a very
small value during the simulations. The parametersand
are set in different regions as follows. Inside the orthodox com-
putational domain, both and are set to unity, while for
PML regions faced normally with direction, is set as indi-
cated in (4) while is set to unity, and the situation is reversed
for PML regions normally faced with direction. For corners,
both and are set as indicated in (4). With these PML ar-
rangements in different regions, any radiation wave will freely
leave the computational domain whatever the angle it hits the
PML-computational domain boundaries, and this kind of PML
boundary condition has been used with the scalar one-dimen-
sional FDBPM [14] to show its effectiveness over the trans-
parent boundary condition [15]. However, the incorporation of
the PML boundary condition into the full-vectorial BPM formu-
lation is, to best of our knowledge, presented here for the first
time.

Using the zero divergence condition of the magnetic field,
, and decomposing the transverse magnetic field

vector, , into a slowly -varying vector envelope, , and a

fast oscillating-phase, then, (1) for the transverse slowly varying
envelope, , takes the form

(5)

where is the reference index of refraction. If the waveguide
cross section is divided into a number of first-order triangular
elements, the application of Galerkin's procedure to (5) results
in

(6)

where is the weight function which is assumed the same as
the shape function at theth node is the ele-
ment area, is the element boundary, and is the unit vector
in the direction of the outward normal to the element boundary.
The evaluation of the line integrations involved in (6) is manda-
tory in order to account for the interface boundary conditions
between elements with different materials. The second line in-
tegral appearing in (6) is proportional to the longitudinal elec-
tric field components, , which is continuous everywhere, and
hence, its contribution along all the inter-element boundaries
will cancel, even when the adjacent elements have different re-
fractive indices. On the other hand, the first line integral in
(6) has to be calculated,but onlyalong the interfaces between
two elements with different refractive indices, as it accounts for
the discontinuity of the transverse magnetic field derivatives. It
can be shown that only the first line integral of (6) is respon-
sible for both polarization dependence and coupling. Hence,
working with transverse magnetic field formulation is more ad-
vantageous not only because of the more economical use of the
computational resources, but also, as it rigorously enforces the
interface boundary conditions. Hence, the spurious nonphysical
solutions are not permitted to propagate: a problem commonly
arises with most of the vector formulations.

Performing the integrations involved in (6) and collecting
the contributions from all elements leads to the following non-
paraxial vector wave equation:

(7)

where represents a column vector containing all the nodal
values of the slowly varying transverse magnetic field compo-
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nents, is a null column vector, and and are the
global element matrices assembling the contributions from all
elements, which can be expressed as

(8)

(9)

with

(10)

(11)

(12)

(13)

(14)

where stands for summation of contributions from all ele-
ments, and are the direction cosines between
the outward normal unit vector, , and the and directions,
respectively, and is a null matrix. In solving (7), the Padè
approximation [16] has been utilized to derive the first-order
wide-angle wave equation as

(15)

with

(16)

Dividing the -direction into a number of elements each with
a width of , and applying Galerkin's method to the wide-
angle wave equation results in

(17)

with

(18)

(19)
where is the propagation step size,is the propagation
scheme parameter, and the subscriptsand stand for
quantities related to the th and th propagation steps,
respectively. The stability range for the propagation algorithm
is . During the numerical simulations , the
Crank–Nicolson algorithm, will be adopted as it is stable and
also the least dissipating of the propagating power.

III. N UMERICAL EXAMPLES

To assess the numerical precision of the proposed VFEBPM,
it is first applied to a single rectangular guide shown in the inset
of Fig. 1. The refractive index of the core,, is 3.26 while that
of the substrate, , is 3.20 and the simulation is carried out
at a wavelength of 1.3m. In all simulations, the width of the
PML layer is taken as 1.0m, the theoretical reflection coeffi-
cient, , as , and the reference refractive index,, as the
mean value of the core and substrate indexes. In this example,
the waveguide cross section is represented by 7200 first-order
triangular elements. The waveguide is launched with the fun-
damental transverse electric (TE) or transverse magnetic (TM)
modal field profiles obtained from the VFEM [1]. Fig. 1 shows
the effect of the propagation step size, , on the level of nu-
merical dissipation for both TE and TM modes. Each of the
simulation points shown in Fig. 1 takes around 10 min on SUN
4/85 Workstation. It is suspected that some stable numerical al-
gorithm may not conserve the propagating beam power. How-
ever, it can be noted from Fig. 1 that for the range of

m, the nonphysical power loss is less than 0.00002 dB/mm
for both the polarizations. With this extremely low nonphysical
power loss, the proposed VFEBPM can be regarded as a stable
and power conserving technique as well. Next, the capability
of the proposed VFEBPM as a “mode solver” is investigated.
Launching an arbitrary initial field into the considered rectan-
gular waveguide, and letting it to propagate along the imaginary
axis, the fundamental TE or TM mode will be evolved [17].
To test the accuracy of the solution, a simple rectangular spa-
tial pulse with sharp step rise is launched into the waveguide.
For TE excitation, the field profile of its dominant compo-
nent at µm is shown in Fig. 2. This field profile re-
sembles the fundamental TE mode after propagating a relatively
short distance of 50m. The variation of the effective indices,

, where is the mode propagation constant, for both
TE and TM modes with the imaginary propagation distance are
also calculated. These effective index values settle to 3.241 25,
and 3.24121 for TE and TM modes, respectively, after propa-
gating a distance of around 40m along the imaginary axis.
The same fundamental TE and TM modes have also been rig-
orously solved by using the VFEM [1] with 12 800 first-order
triangular elements to discretize the waveguide cross section.
The variation of the percentage errors in calculating the TE and
TM effective indices using the VFEBPM are shown in Fig. 3. It
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Fig. 1. Effect of the propagation step size on the nonphysical power loss for
both TE and TM waves. The inset is a schematic diagram of the rectangular
guide under consideration.

Fig. 2. Contour plot of theH -field profile for the fundamental quasi-TE
mode atz = 50 µm.

Fig. 3. Variation of the errors in then calculation of the fundamental TE and
TM modes with the longitudinal imaginary distance.

may be observed from this figure that the percentage errors in
calculating the effective indexes using the VFEBPM were only
0.0012% and 0.0018% for TE and TM modes, respectively. This
proves the accuracy of the proposed VFEBPM approach.

Fig. 4. Effect of the transverse mesh divisions on the coupling lengths of TE
and TM waves. The inset is a schematic diagram of the directional coupler under
consideration.

Next, a simple rectangular directional coupler consisting of
two-vertically coupled rectangular guides, shown in the inset of
Fig. 4, is simulated at a wavelength of 1.3m. Initially, the core
index, , and the substrate index, , are assumed as 3.26 and
3.20, respectively, and the waveguide separation,, is taken as
0.8 m. Launching one of the guides with its isolated TE or
TM fundamental modal field profile, the coupling length can be
defined as the minimum distance at which a maximum power
transfer between guides occurs. The effect of transverse mesh
divisions on the coupling length for both TE and TM polarized
waves is shown in Fig. 4, where is the number of divisions
in either or direction. In this case, is taken as 0.5 m. It
can be noted from Fig. 4 that for , the coupling lengths
settle to 357 m and 353 m for TE and TM polarized waves,
respectively. For , in both transverse directions, the ef-
fect of on the coupling length for both TE and TM polar-
ized waves is shown in Fig. 5, where it can be observed that
the coupling lengths for TE and TM polarized waves are virtu-
ally constant for m. In order to assess the accuracy
of the VFEBPM in calculating the coupling length, the same
directional coupler structure has also been analyzed using the
VFEM [1] with 12 800 first-order triangular elements. Through
the calculation of the propagation constants of the even and odd
supermodes using the VFEM, the coupling length,, for either
polarization can be calculated as

(20)

where and are the propagation constants of the even and
odd supermodes, respectively. For this coupler, the coupling
lengths obtained by using the VFEM were 356.2 and 354.2m
for TE and TM polarizations, respectively. It can be noted that
the percentage difference between the coupling length results
obtained using the VFEBPM and the VFEM are 0.22% and
0.34% for TE and TM polarizations, respectively, which shows
the high numerical accuracy of the newly developed VFEBPM,
in calculating the coupling length for both TE and TM polariza-
tions. Next, the effect of varying both the waveguide separation,

, and the core index, , on the TE and TM coupling length
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is shown in Fig. 6. In all cases, it may be noted that the cou-
pling lengths for TE and TM increase exponentially (linear for
semi-log scale) with the increase of. For lower core indices,
cases “ ”, , and “ ”, , the polarization ef-
fect on the coupling length is negligible. However, for case “”,

, the coupling length for TM is relatively higher than
its TE counterpart. These features related to polarization effect
on the coupling length cannot be accurately predicted using a
less accurate scalar BPM algorithms. In all cases, the TE and
TM coupling lengths have been recalculated using the VFEM
with 12 800 first-order triangular elements and the differences
between these results and those obtained using the VFEBPM
were always less than 0.8%. It can be noted that accuracy of the
solutions may be improved by using a finer mesh discretization.

Next, a simple rib directional coupler, shown in the inset of
Fig. 7, is simulated using the VFEBPM at a wavelength of 1.55

m. For this coupler, the substrate index,, is taken as 3.4, and
the rib width, , is kept constant at 3.0m, while the guide
index, , and the waveguide separation,, are varied. In the
VFEBPM simulations, the structure cross section is divided into
6400 first-order triangular elements, and is taken as 1.0m.
For two values of the index difference, , the effect
of waveguide separation on the TE coupling length is shown in
Fig. 7. As shown in this figure, the increase ofand/or
leads to the increase of the coupling length. The same simulation
points have been also carried out using the VFEM [1] and the
coupling lengths obtained using the VFEBPM differ only 1%.
Although the VFEM is very accurate in finding the coupling
lengths, however, it cannot directly estimate the crosstalk arises
due to the incomplete power transfer between guides. On the
other hand, the VFEBPM can accurately calculate the power
evolution in a system of coupled waveguides. The crosstalk for
a directional coupler can be defined as

Crosstalk (dB) (21)

where and are the powers belonging to
guides “ ”, and “ ”, respectively, calculated at a longitudinal po-
sition equals to the coupling length. In (21), it has been assumed
that guide “ ” is initially excited. Crosstalk is an important op-
tical parameter for characterizing directional couplers. For TE
excitation, the effect of the device length,, on the crosstalk
for two values of the index difference, , is shown in Fig. 8.
It can be observed that the crosstalk associated with a direc-
tional coupler can be improved by increasing its length. It may
be noted that for and a device length of 1000m,
the crosstalk level is dB, however, increasing to 0.06
and keeping the same device length at 1000m, the crosstalk
level is improved to 21.5 dB.

Finally, as an example of a nonidentical directional coupler,
an electrooptic LiNbO channel coupler modulator, shown in
the inset of Fig. 9, is simulated at a wavelength of 0.85m.
Without any applied modulating signal, the refractive index
of both LiNbO guides, , is taken as 2.3, while that of the
cladding, , is 2.29. With appropriate electrode design, for
nonzero modulating potential, it is assumed that the index in
one guide increases while in the other guide decreases by the
same amount, , and the cladding index remains constant.

Fig. 5. Effect of the propagation step size(�z) on the coupling lengths of TE
and TM waves.

Fig. 6. Variation of TE and TM coupling lengths with the waveguide
separation(S) and the index difference(�n) as a parameter.

Fig. 7. Variation of TE coupling length with the waveguide separation(S) and
the index difference(�n) as a parameter. The inset is a schematic diagram of
the rib directional coupler under consideration.

The effect of electrooptically induced index difference,, on
the TE coupling length is shown in Fig. 9, where the results
obtained using the VFEBPM and VFEM [2] are in close agree-
ment. Without applied modulating potential, , the two
guide are phase matched giving rise to a peak coupling length,
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Fig. 8. Variation of the crosstalk with the device length and the index
difference as a parameter.

1010 m, which monotonically reduces with the increase of
as the two guides keep on losing their synchronousity.

When the input power is launched into guide “”, the power
evolution in the two guides with the axial direction,, is shown
in Fig. 10 for two values of . For , full power
transfer from guide “” to guide “ ” can be observed at around
1010 m, while for , a fraction of the guide “”
power is initially transferred to guide “” due to their phase
mismatch, then, this power is returned again to guide “” with
virtually no overall power is transferred to guide “”. It can
be noted that, when , the coupling length, ,
is equal to 505.0 m, half of the value for . In this
case, at , the optical power couples back to guide “”
as shown in Fig. 10. With guide “” as an output port, the
variations of the maximum and output powers, and ,
with are shown in Fig. 11. The maximum power, , is
the power transferred to guide “” at a device length equals
to the coupling length at the concerned , while the output
power, , denotes the power transferred to guide “” at a fixed
device length equals to the peak coupling length,

m. The power transfer results obtained using the VFEBPM
are in excellent agreement with those obtained using the LSBR
method [2]. As shown in Fig. 11, the output power is minimum
for values at which is an even multiple of the coupling
length, while for values at which is an odd multiple
of the coupling length, the output power reaches a maximum
value but not reaching the unity peak as the two guides are
strongly phase mismatched and hence, the full power transfer
is inhibited.

IV. CONCLUSION

A new full-vectorial propagation algorithm based on the nu-
merically efficient finite element method is presented for the
accurate characterization of 3-D optical guided-wave devices.
The new vector formulation is based on the transverse magnetic
field components allows effectively to account for the interface
boundary conditions between different dielectric media. As no
matrix inversion is needed in deriving the global matrices, the
resulting matrices are sparse which can be solved using any
numerically efficient sparse matrix solver. Also, for the first

Fig. 9. Effect of the electrooptically induced index difference on the coupling
length. The inset is a schematic diagram of the electrooptic LiNbOchannel
coupler modulator under consideration.

Fig. 10. The evolution of optical power in the two guides along the axial
direction.

Fig. 11. Variations of the output(P ) and maximum powers(P ), with the
electrooptically induced index difference.

time, the robust PML boundary condition is incorporated into
the new full vectorial BPM formulation in order to offer a re-
flectionless boundary for the radiation waves. Through compar-
isons with other full vectorial approaches, the numerical accu-
racy of the proposed full-vectorial FE-based BPM algorithm has
been demonstrated through the analyzes of different photonic
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devices, including, single rectangular guide, rectangular direc-
tional coupler, rib directional coupler, and electrooptic LiNbO
directional coupler-based modulator. Hence, the proposed full
vectorial BPM approach can be used to accurately model and
optimize the performance of different 3-D photonic devices in-
cluding structures with totally arbitrary variation along the axial
direction.
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