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Abstract—The generalized Douglas scheme is applied to
the time-domain finite-difference beam propagation methods
(TD-BPM’s) in rectangular and cylindrical coordinates. High
accuracy and efficiency are demonstrated through the analysis
of optical pulse propagation in slab and circularly symmetric
waveguides. As an example of a reflection problem, the TD-BPM
in cylindrical coordinates is applied to the analysis of a fiber
Bragg grating with a sinusoidal index change. Effectiveness of the
present scheme is discussed in comparison with the conventional
TD-BPM and the finite-difference time-domain method.
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I. INTRODUCTION

T O simulate wave propagation in an optical waveguide, we
frequently use a beam propagation method (BPM) and a fi-

nite-difference time-domain method (FD-TDM). The BPM has
the advantage of its high efficiency and can simulate a relatively
large model. However, the BPM cannot treat reflection prob-
lems, since only the forward traveling wave is assumed. On the
other hand, the FD-TDM can grasp all aspects of the optical be-
havior by virtue of direct discretization of Maxwell’s equations,
although it needs great computation resources.

Recently, to perform time-domain analysis effectively, much
effort has been directed toward developing time-domain beam
propagation methods (TD-BPM’s) on the basis of the slowly
varying envelope approximation (SVEA) [1]–[4]. Among them,
the TD-BPM in which the SVEA is applied only to the time term
has the advantage that reflection and diffraction can be evaluated
by the BPM algorithm with slight coefficient changes [4]–[10].
With the use of the implicit scheme for discretization in time, a
time step is chosen to be larger than that in the FD-TDM [4]–[6],
[8]–[10].

In the FD-based TD-BPM [3]–[7], the conventional central
FD scheme has been used to approximate the second deriva-
tives in space. This results in a truncation error of where

is the sampling width in space. We should recall that, in the
BPM the generalized Douglas (GD) scheme [12] has been suc-
cessfully applied to the second derivatives with respect to space.
The GD scheme attains a truncation error of provided
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that uniform or graded-index materials are treated [13]. This fact
motivates us to apply the GD scheme to the TD-BPM [8], [10].

One should also note that the previous TD-BPM’s have been
formulated only in slab waveguides. From this point of view,
the TD-BPM extended to circularly symmetric waveguides has
begun to attract attention [11].

The purpose of this paper is to discuss the application of the
GD scheme to the TD-BPM’s for both rectangular and cylin-
drical coordinates in detail. After formulating the TD-BPM in
rectangular coordinates, we demonstrate high accuracy and effi-
ciency of the GD scheme through the analysis of pulse propaga-
tion in a straight slab waveguide. We then apply the GD scheme
to the TD-BPM in cylindrical coordinates. Although the GD
scheme is incorporated only into the second derivative with re-
spect to the longitudinal direction, it still offers improvement as
in the case of rectangular coordinates.

As an example of a reflection problem, we analyze a fiber
Bragg grating (FBG) with a sinusoidal index change using the
TD-BPM in cylindrical coordinates. The wavelength character-
istics of gratings are calculated and compared with those ob-
tained from the conventional TD-BPM [11] and the FD-TDM
[14]. It is found that the sampling width in the longitudinal di-
rection can be chosen to be four times as large as that of the
conventional schemes.

II. TD-BPM IN RECTANGULAR COORDINATES

The wave equation to be solved is

(1)

where is the refractive index and is the speed of light in
vacuum. The dominant electric field with a centered frequency

is formally expressed as follows:

(2)

Substitution of (2) into (1) leads to

(3)

Now we adopt the SVEA such as

(4)
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With (4), (3) is reduced to the following first-order equation:

(5)

We treat a two-dimensional (2-D) problem in rectangular co-
ordinates. For TE-mode propagation, (5) can be written as fol-
lows [4]–[9]:

(6)

Here, we discretize (6) using the alternating-direction implicit
method (ADIM) as was shown in [12]. The first half-step in
ADIM factorization for (6) can be separated into

(7)

(8)
The GD scheme can directly be applied to the second derivatives
with respect to both the and directions. The next half-step
is treated similarly. After a bit of algebra, we obtain the TD
difference equations split into two steps:

(9)

(10)

where

in which or The truncation errors in (9) and (10)
are reduced, when compared to the conventional formulation
[4]. Since each of (9) and (10) leads to a tridiagonal matrix, the
standard technique such as the Thomas algorithm can be used.

We demonstrate the efficiency of the present scheme by
checking the propagation distance of an optical pulse in the
slab waveguide shown in Fig. 1. The refractive indexes of the
core and cladding are and respectively.
The core width is m and the wavelength is

m, so that only the fundamental mode propagates.
The pulse wave is composed of the fundamental mode profile
in the transverse direction and the Gaussian profile with a

full-width of 4 m in the longitudinal direction, which is
generated by the one-way excitation scheme [10]. Throughout
this paper, we set the absorbing boundary region at the edges
of the computational window.

Fig. 2 shows the propagation distance of the peak of the op-
tical pulse and the CPU time per propagation step. Each data

Fig. 1. Schematic of the investigated slab waveguide.

Fig. 2. Propagation distance of optical pulse and CPU time in a slab
waveguide.

is expressed as a function of The propagation distance is
measured at fs. For comparison, the results obtained
with the conventional central FD scheme are also shown. The
calculation is carried out using a PC with 500-MHz Pentium
III processor. The time step and the transverse sampling width
are fixed to be fs and m, re-
spectively. The number of transverse sampling points is 100.
Depending on the number of longitudinal sampling points
varies from 400 to 2660. From Fig. 2, it is seen that the propa-
gation distance gradually converges with a decrease inFor
the present scheme, a converged value of 16.2m is obtained
with m (note that the analytic propagation distance
is calculated to be 16.7m). For the conventional scheme, how-
ever, it is required that be reduced to less than 0.015m so
as to obtain the same accuracy. In this case, the present scheme
can reduce the CPU time to half that in the conventional scheme,
while maintaining the comparable accuracy.

III. TD-BPM IN CYLINDRICAL COORDINATES

For circularly symmetric fields, (5) can be rewritten as fol-
lows:

(11)

Note that the first derivative with respect to thedirection ap-
pears in (11), as contrasted with (6). In this section, we present
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Fig. 3. Propagation distance of optical pulse and CPU time in a circularly
symmetric waveguide.

Fig. 4. Refractive index change in the core. The inset schematically illustrates
the configuration of a FBG.

the detail derivation of the FD equations in cylindrical coordi-
nates, paying attention to the treatment of the first and second
derivatives in the direction.

For the difference equation corresponding to (11)
becomes

(12)

where and are central difference operators for the first and
second derivatives, respectively. We divide the propagation step
into two steps of size

(13)

and

(14)

Since the treatment regarding the two half-steps is the same, we
only deal with the first half-step.

As stated in [12], (13) can be equivalently expressed as the
following equations regarding theand directions:

(15)

(16)

We can apply the GD scheme to the second derivative with re-
spect to the direction in (15). It should be noted, however, that
the GD scheme may not simply be applied to (16), since there
exists the first derivative with respect to thedirection. Fortu-
nately, forward and backward waves traveling in thedirec-
tions often predominate the properties of waveguides. There-
fore, improving the FD scheme in thedirection offers high
accuracy in the analysis of grating structures, as will be seen
later.

Applying the conventional and GD schemes to the derivatives
with respect to the and directions, respectively, we obtain the
following FD equations:

(17)

(18)

where
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On the fiber axis, L’Hospital’s rule is applied to the
second term in the right-hand side of (11). Then, we obtain

(19)

One may notice that the GD scheme can also be introduced into
the direction in (19). However, in order to match the resultant
equations for with those for we apply the GD
scheme only to the direction. As a result, the FD equations for

are as follows:

(20)

(21)

where

We can again find that each of (17), (18), (20) and (21) is a
tridiagnal form, allowing the use of the Thomas algorithm.

For the assessment of the present scheme, we analyze an op-
tical fiber whose refractive indexes of the core and cladding are

and respectively. The core radius is
m. The pulse wave to be used is the same as that used

in Fig. 2 except for the LP mode profile in the transverse di-
rection. The wavelength is m.

Fig. 3 shows the propagation distance observed at
fs and the CPU time per propagation step, in which the data
expressed as a function of are obtained by the same PC as
that used in Fig. 2. Due to the symmetry of the fiber, only the half
section is analyzed. The time step and the transverse sampling
width are fixed to be fs and

m, respectively. The number of transverse sampling points is
300. Depending on the number of longitudinal sampling
points varies from 420 to 2800. It is seen that the result obtained
from the present scheme almost converges at m.
A converged value of 19.85m agrees well with an analytic
solution of 20.0 m. In contrast, the result obtained from the
conventional scheme converges for of less than 0.015 m.
Eventually, the present scheme provides improved accuracy as
observed for rectangular coordinates in Fig. 2, although the GD
scheme is applied only to thedirection.

IV. A NALYSIS OF A FIBER BRAGG GRATING

To demonstrate the validity of the present scheme for a reflec-
tion problem, we analyze a FBG with a sinusoidal index change
using the TD-BPM in cylindrical coordinates. The refractive in-
dexes in the core changes between 1.50 and 1.55 as shown in

(a)

(b)

Fig. 5. Power reflectivity. (a) Conventional scheme and (b) GD scheme.

Fig. 4, while that of the cladding is fixed to be The
grating period is 0.5 m and there are 20 periods in the core.
The core diameter is m. The incident field is the same
pulse wave as that used in Fig. 3. The spectrum of the power
reflectivity is calculated using the discrete Fourier transform.

Fig. 5 shows the power reflectivity for a parameter of
in which the results obtained from the FD-TDM [14] are also
included for reference. The conventional and GD schemes are
employed for the TD-BPM in Fig. 5(a) and (b), respectively.
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(a)

(b)

Fig. 6. Field contour plots observed for (a) minimum reflectivity and (b)
maximum reflectivity.

Fig. 7. Peak power reflectivity as a function of the number of grating periods.

The numerical parameters are fixed as follows: fs and
In Fig. 5(a), the peak wavelength obtained by

the conventional scheme almost agrees with that obtained by
the FD-TDM, provided that the same sampling widths in the

direction are used. This is due to the fact that the truncation
error of the conventional scheme is identical with that of the
FD-TDM, i.e., For these two schemes, the sampling

width should be reduced to be 0.025m so as to obtain a con-
verged result (in this case, for the FD-TDM is 0.11 fs). In
contrast, Fig. 5(b) shows that the GD scheme yields a converged
result for m (the result is superimposed on that for

m), which compares favorably with that obtained
by the FD-TDM for m. The CPU time in the
present TD-BPM is reduced to 25% of that in the FD-TDM.
The use of a lager contributes to substantial reduction in
CPU time.

We also calculate the power reflectivity using the present
TD-BPM with the one-way continuous-wave (CW) excitation
scheme [10], which is plotted in Fig. 5(b). The longitudinal sam-
pling width is chosen to be m. Good agreement is
found between the results for the continuous wave and the pulse
wave excitations.

A one-way CW excitation gives a steady-state field in which
the reflected and total fields are clearly separated [14], [10].
Fig. 6(a) and (b) illustrates the field distributions observed for
minimum and maximum reflectivities, respectively [the data are
obtained at the points marked in Fig. 5(b)]. For both cases, the
field exhibits a complicated standing wave, due to the multiple
reflection from gratings. In the former, the reflected wave cannot
be seen in the reflected field region, since it is canceled out. In
the latter, the peak position of the standing wave is found to be
close to the input side of the grating.

So far, the number of grating periods has been fixed to be
20, just for the assessment of the present scheme. Finally, we
investigate the effect of the number of grating periods on the
peak power reflectivity. As expected, the reflectivity increases,
as the number of grating periods is increased. As seen in Fig.
7, the power reflectivity reaches approximately 90% for 100
periods.

V. CONCLUSION

Efficient TD-BPM’s for the analysis of slab and circularly
symmetric waveguides have been formulated using the GD
scheme. To demonstrate the efficiency, we calculate the
propagation distance of optical pulse in straight waveguides.
Numerical results show substantial improvement in the present
TD-BPM’s both for rectangular and cylindrical coordinates. As
an example of a reflection problem, a FBG with a sinusoidal
index change is analyzed by the TD-BPM in cylindrical
coordinates. It is shown that a sampling width can be chosen
to be four times as large as those of the conventional TD-BPM
and the FD-TDM, maintaining comparable accuracy. The CPU
time in the present TD-BPM is reduced to 25% of that in the
FD-TDM.
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