2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Journal of Lightwave Technology
Volume 18 Number 4, April 2000

Table of Contents for this issue

Complete paper in PDF format

Fabrication of Buried Corrugated Waveguides by Wafer Direct Bonding

S. Pélissier, G. Pandraud, A. Mure-Ravaud, A. V. Tishchenko and B. Biasse

Page 540.

Abstract:

A new fabrication method of deeply buried corrugated waveguides is presented. It uses a direct bonding process and allows us to make efficient grating couplers in waveguides. The efficiency of the grating is enhanced by enclosing air in its grooves during the fabrication process. A demonstrator based on a waveguide produced by ion exchange has been fabricated and tested. Theoretical and experimental results are compared.

References

  1. T. Suhara and H. Nishihara, "Integrated optics components and devices using periodic structures", IEEE J. Quantum Electron., vol. QE-22, pp.  845-867,  June  1986.
  2. V. A. Sychugov, A. V. Tishchenko, N. M. Lyndin and O. Parriaux, "Waveguide coupling gratings for high sensitivity biochemical sensors", Sensors Actuat. B, vol. 39, no.  1, pp.  360-364, 1997.
  3. U. Gösele, Q.-Y. Tong, A. Schumacher, G. Kraüter, M. Reiche, A. Plössl, P. Kopperschimdt, T.-H. Lee and W.-J. Kim, "Wafer bonding for microsystems technologies", Sensors Actuat. A, vol. 74, pp.  161-168, 1999.
  4. M. Bruel, "A new silicon on insulator material technology", Electron. Lett., vol. 31, pp.  1201-1202, 1995.
  5. A. V. Tishchenko, "Generalized source method: New possibilities for waveguide and grating problems", Opt. Quant. Electron.,
  6. M. G. Moharam and T. K. Gaylord, "Diffraction analysis of dielectric surface relief gratings", J. Opt. Soc. Amer., vol. 72, pp.  1385-1392, 1982.
  7. L. Li, "Multilayer modal method for diffraction gratings of arbitrary profile, depth and permittivity", J. Opt. Soc. Amer., vol. 10, pp.  2581-2591,  1993.
  8. T. W. Preist, N. P. K. Cotter and J. R. Sambles, "Periodic multilayer gratings of arbitrary profiles", J. Opt. Soc. Amer. A, vol. 12, pp.  1740-1748, 1995.
  9. R. Petit, Electromagnetic Theory of Gratings, Berlin: Germany: Springer Verlag, 1980.
  10. N. H. Sun, J. K. Butler, G. A. Evans, L. Pang and P. Congdon, "Analysis of grating assisted directional couplers using the Floquet-Bloch theory", J. Lightwave Technol., vol. 15, pp.  2301-2315, 1997.
  11. K. C. Chang, V. Shah and T. Tamir, "Scattering and guiding of waves by dielectric gratings with arbitrary profiles", J. Opt. Soc. Amer., vol. 70, pp.  804-813,  1980.
  12. J. E. Gortych and G. H. Hall, "Fabrication of planar optical waveguides by K+ ion exchange in BK7 and Pyrex glass", IEEE J. Quantum Electron., vol. QE-22, pp.  892-895, 1986.
  13. F. Pigeon, B. Biasse and M. Zusy, "Low-temperature Pyrex glass wafer direct bonding", Electron. Lett., vol. 31, pp.  792-793, 1995.
  14. G. Pandraud, "Dispositifs micro-optiques enfouis par adhérence moléculaire", Thesis, Université Jean Monnet, Saint-Etienne, 1998.
  15. M. J. Adams, An Introduction to Optical Waveguides, New York: Wiley, 1981, pp.  113-119. 
  16. F. Pigeonet al. and B. Biasse, "Procédé de réalisation de guides d'ondes", French patent EN 9408343, European patent EN 95401596.2-2205,
  17. F. Pigeon, S. Pelissier, O. Gipouloux, A. M. Ravaud, G. Pandraud and B. Biasse, "Modelization et caractérisation de l'influence du recuit sur la géométrie d'un guide enterré par la technologie d'adhérence moléculaire", Journées nationales d'optique guidée, Saint-Etienne, 1997.