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A New Family of Space/Wavelength/Time Spread
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Abstract—A new family of space/wavelength/time spread
three-dimensional (3-D) optical codes for optical code-division
multiple-access (OCDMA) networks has been proposed. Two
types of 3-D codes have been constructed: 3-D codes with single
pulse per plane and 3-D codes with multiple pulses per plane. Both
codes are based on the prime sequence algorithm and have shown
improved performance compared to the previously proposed
two-dimensional (2-D) prime code. Effective implementation
of the 3-D code has also been proposed. In order to eliminate
the requirement of fiber ribbons and multiple star couplers in
space/wavelength/time spread 3-D code based optical networks,
a wavelength2/time scheme has been suggested, in which the
periodic property of an arrayed waveguide grating (AWG) is used.
It has been shown that the system performance can be maximized
for given resources with a proper choice of the wavelength2/time
scheme. Due to the improved performance of the 3-D code and
the effective architecture of the wavelength2/time scheme, the
feasibility of the OCDMA network is much enhanced.

Index Terms—Optical code division multiple access (OCDMA),
optical networks, space/wavelength/time spread 3-D optical code,
wavelength2/time scheme.

I. INTRODUCTION

A S THE feasibility of optical access networks increases, op-
tical code-division multiple-access (OCDMA) networks

attract much attention and have been studied by a number of
authors in that it does not require fast switching and provides
bursty, concurrent, asynchronous communications. The main
issue of the studies on the OCDMA networks is to devise a code
set of good system performance. In unipolar optical code based
OCDMA systems, the system performance is determined by the
bandwidth efficiency of the optical codes which is closely re-
lated with the error probability behavior of the optical code in
multiple user circumstance as well as the code set size depen-
dence on the code length. For the OCDMA scheme to be more
realistic, it is desired to devise an optical code that can accom-
modate a larger number of simultaneous users with a low error
probability for a given code length.

Since the optical orthogonal codes (OOC) were proposed [1],
several types of optical codes have been suggested. The OOC
is a one-dimensional (1-D) collection of binary sequences. In a
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1-D OCDMA system, one period of transmission clock is di-
vided into a given number of small temporal segments, dubbed
as time chips, and bit “1” is encoded with a number of optical
pulses spread in the time chips. The OOC has the lowest out-of-
phase autocorrelation and cross-correlation values among 1-D
families [1]–[10]—both are equal to one. The limit of 1-D op-
tical codes is that out-of-phase autocorrelation cannot be zero
because there are multiple optical pulses within one period. The
lower limit of out-of-phase autocorrelation in the 1-D codes is
1, and to achieve it as in the OOC, code length increases rapidly
as the number of users increases. To overcome the limit of the
1-D optical codes, 2-D approaches are proposed [11]–[15]. In
the 2-D optical codes, optical pulses are spread in both space
and time domains [11], [12] or in wavelength and time domains
[13]–[15]. By employing another dimension (space or wave-
length), 2-D code with single pulse per row is achieved and
the performance of the 2-D OCDMA system is much improved
in comparison to the 1-D OCDMA system. Out-of-phase auto-
correlation and cross-correlation of 2-D code families are equal
to 0 and 1, respectively. The generalized algebraic algorithms
of the 2-D code construction are the prime code [5], [6], [15]
and the Reed–Solomon code [9], [10], [15], and both wave-
length/time code and space/time code can be constructed by
either of those algorithms. Besides the algebraic unipolar 2-D
code-based OCDMA scheme, recently, the demonstration of the
OCDMA system based on the periodic spectrum encoding has
been reported [16].

With simple extension of the 2-D optical code, 3-D optical
code in which optical pulses are spread in space, wavelength,
and time domains can be easily constructed, and the perfor-
mance is further improved. One simple approach is hybridizing
the wavelength-division multiplexing (WDM) scheme with
the space/time code based CDMA scheme, where the 2-D
space/time codes is applied to each available wavelength
independently [17], [19]. It has been shown that with the simple
WDM–CDMA hybrid scheme, the bandwidth penalty of the
2-D space/time codes can be relaxed [17], [19]. Besides the
simple approach, more sophisticated WDM–CDMA hybrid
schemes, in which all available wavelengths are used in each
codeword, have been suggested [18]–[21]. In the previous
works [18]–[21], however, the cases where the same number
of wavelengths as the spatial channels are used have been
mainly considered, and generalized code generation algorithm
has not been fully discussed. Therefore, the estimation of the
code set size for generalized orthogonal codes was not given
explicitly. Moreover, in the scheme that was referred to as the
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WDM matrix code in [18], loose (not minimal) cross-corre-
lation constraint was imposed, and all possible ways () of
ordering wavelengths were considered as codewords. Hence,
as the number of wavelengths () increases, the maximum
cross-correlation value of the code increases ( ).

In this paper, we propose generalized space/wavelength/time
spread 3-D optical orthogonal codes having 0 out-of-phase
autocorrelation and 1 cross-correlation values. The algebraic
generation algorithm of the 3-D codes is discussed explicitly
and the orthogonality of the proposed 3-D codes is proven
mathematically. The proposed 3-D code generation algorithm
is generalization and extension of the previous hybrid schemes
with the stringent out-of-phase autocorrelation and cross-cor-
relation constraints imposed. The performance of the proposed
3-D codes is analyzed in comparison with that of the 2-D codes.
Physical implementation of the 3-D code is also considered,
and it is shown that the proposed 3-D code can be realized with
incoherent broadband light sources in wavelength/time form
by utilizing the periodic property of an arrayed waveguide
grating (AWG) [22] eliminating the requirement of fiber
ribbons and multiple star couplers in networks.

The last part of the paper is organized as follows. Some fre-
quently used notations and basic concepts are defined in Sec-
tion II. In Section III, the 2-D prime code is briefly reviewed, and
in Section IV, construction of the 3-D code is described. The per-
formance of the proposed 3-D code is analyzed and compared
with the 2-D code in Section V. In Section VI, implementation of
the 3-D code and newly proposed wavelength/time scheme are
discussed. Brief concluding remarks are given in Section VII.

II. PRELIMINARIES

Codewords of three-dimensional (3-D) code are represented
by 3-D matrices that have binary (1 or 0) values for their ele-
ments. For the 3-D code expanded over space, wavelength, and
time domains consists of matrices where , ,
and denote the numbers of spatial channels, wavelengths, and
time chips, respectively. Each element represents whether the
corresponding point in 3-D conceptual space is occupied by an
optical pulse or not. The fact that (, , ) element of the matrix
is equal to 1 means an optical pulse of wavelengthexists at
time chip in spatial channel.

In networks based on the space/wavelength/time 3-D code,
every user is assigned a codeword matrix as its own address sig-
nature. A user transmits data bit “1” with a sequence of pulses
spread in the space, wavelength, and time domains according
to the code matrix of its intended receiver. At the receivers, the
pulses of different spatial channels are separated and in each
spatial channel, the pulses of each wavelength are correlated
separately in the time domain. After correlation, all pulses are
collected together. Only at the intended receiver, all the spread
pulses are assembled in the same time chip and one large op-
tical pulse is obtained, which is dubbed as the autocorrelation
function. Whereas, at other receivers, a series of small pulses
are obtained, which is dubbed as the cross-correlation function.
Then, the data bit “1” can be recovered by threshold-detecting
the peak of the optical pulse. Data bit “0” is implemented by
transmitting nothing.

Now, we define the 3-D code in mathematical language.
Definition: A ( , , , ) 3-D code, , is a

collection of binary (0, 1) matrices, each of Hamming
weight , such that the following constraints are satisfied.

• Autocorrelation Constraint: For any 3-D codeword

for

for

(1)

where
is an element of matrix ;
is the code weight;

a nonnegative
integer,

is out-of phase autocorrelation;

denotes modulo- addition.
• Cross-Correlation Constraint: For any two distinct 3-D

codewords ,

for

(2)

where , are elements of matrices
and , respectively, and a nonnegative integer,is

cross-correlation.
The cross-correlation constraint guarantees asynchronous op-

eration of the 3-D code-based system. A ( , , , ) 2-D
code can be defined similarly just by replacing ma-
trices with matrices in the above definition [15].

In this paper, for visualization of a 3-D codeword,
matrix, we form a stack of matrices as depicted in Fig. 1
and we call each matrix a plane.

III. 2-D CODE CONSTRUCTION

The basic idea of constructing a 2-D code is to assign tem-
poral locations (time chips) of optical pulses to each spatial
channel (or wavelength) in such a way that for any two distinct
codewords, there is a coincidence of optical pulses only at one
spatial channel (or wavelength). Otherwise, cross-correlation of
the code will be higher than 1. To guarantee zero out-of-phase
autocorrelation, all pulses should be assigned to different spa-
tial channels (or different wavelengths), which is equivalent to
the codeword matrices having only one “1” in each row. In other
words, the code should have single pulse per row.

2-D codes can be constructed by modifying 1-D prime
codes and 1-D Reed–Solomon codes [15]. The author of
[15] called them generalized multiwavelength prime codes
(GMWPC’s) and generalized multiwavelength Reed–Solomon
codes (GMWRSC’s). They are named assuming that they are
to be used for wavelength/time codes, but they can be directly
applied to construct space/time codes. In this paper, we will
call them 2-D prime codes and 2-D Reed–Solomon codes,
respectively, not restricting their application to wavelength/time
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Fig. 1. Visualization of 3� 3 � 3 matrices. Each stack of 3� 3 matrices
represents a codewords of (3� 3� 3, 3, 0, 1) 3-D code. Each column and row
of 3� 3 matrices represent a time chip and a wavelength, respectively. Each 3
� 3 matrix represents a spatial channel or wavelength/time plane.

codes. Since we focus on 3-D code construction based on the
prime code construction algorithm in this paper, only the 2-D
prime code is considered in this section. The 2-D prime code
algorithm is presented in mathematical language as follows.

Given integers and for a set of prime
numbers such that , the ( ,

, 0, 1) code is represented by matrix
whose element is given by

for

for other (3)

for , , where
denotes modulo-multiplication. The code has codewords.
The proof of zero out-of-phase autocorrelation and 1 cross-cor-
relation is omitted in this paper, which is found in [15]. Similar
proof will be given in the next section.

IV. 3-D CODE CONSTRUCTION

Space/wavelength/time 3-D codes can be constructed by ex-
tending2-Dcodes—space/timecodesorwavelength/time codes.
Letusassume( , ,0,1)space/time2-Dcodes. Ifmultiwave-
length lightsources( )areavailable foreachspatialchannel,we
have another degree of freedom to choose the wavelength of each
spatial channel in code construction. For a given temporal distri-
bution of pulses over spatial channels, i.e., one codeword of the
space/time2-Dcode,many different codewords can be generated
by changing the wavelength of pulse in each spatial channel. In
assigningwavelength toeachspatial channel,weneed tokeep the
orthogonality by constraining cross-correlation between any two
codewords with different temporal distributions of pulses over
spatial channels less than or equal to 1. Note that cross-correla-
tion between any two codewords with the same temporal distri-
bution cannot be greater than 1 because of the orthogonality of
the 2-D code. To extend 2-D codes to 3-D codes without losing
orthogonality, we only need to assign wavelengths to each spa-
tial channel such a way that any two distinct codewords have
no more than one spatial channel of the same wavelength. To
do so, we can employ the same algorithm that is used to assign
temporal locations of pulses over spatial channels in construc-
tion of the 2-D code as given in Section III. In other words, we
can construct space/wavelength/time 3-D code by applying 2-D
construction algorithm separately to space/wavelength plane and
space/timeplane.Thealgorithmsapplied tospace/timeplaneand
space/wavelength plane can be different from each other. For ex-
ample, the prime sequence algorithm for space/wavelength and
the Reed–Solomonalgorithmforspace/timecan be employed. In
this paper, we only consider the case where the prime code algo-
rithm is employed for those two planes.

We can generate distinct codewords for each temporal
distribution of pulses over space channels by applying the 2-D
prime code algorithm for assigning W wavelengths over spatial
channels. Fig. 1 shows 9 codewords in (33 3, 3, 0, 1) 3-D
code constructed by employing the prime code algorithm, where

and are generated from by assigning wavelengths to
spatial channels in different ways with the same allocation of
optical pulses in time. Moreover, if the number of wavelength is
greater than or equal to that of spatial channels ( ), due to
the orthogonality of the 2-D prime code construction algorithm,
every cyclic shift in wavelength domain also generates another
codeword that is orthogonal to others. [You can verify this for
the codewords shown in Fig. 1. Each codeword will generate
two more codewords by shifting pulses in wavelengths. Con-
sequently, we have 27 codewords in (33 3, 3, 0, 1) 3-D
prime code.] Therefore, we can generate codewords by
extending ( , , 0, 1) code to ( , , 0, 1) code
if . If , cyclic shift of codewords in wavelength
domain coincide with other codewords, and thus, we have
codewords for ( , , 0, 1) 3-D code.

So far, we have assumed keeping the number of total pulses in
a codeword equal to that of the 2-D code in construction of 3-D
code by extending 2-D code. In this case, the 3-D code has one
pulseperspatialchannel, that is,singlepulseperwavelength/time
plane. Using the notation defined in Section II, ( , , 0, 1)
2-D code is extended to ( , , 0, 1) 3-D code.
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However, due to increased degree of freedom, we can also
increase the number of pulses per spatial channel in the 3-D
code satisfying orthogonality. In other words, 3-D code with
multiple pulses per wavelength/time plane is possible. To sat-
isfy the zero out-of-phase autocorrelation constraint, the number
of pulses per plane should not be greater than that of available
wavelengths. That is the only constraint on the number of pulses
per wavelength/time plane. In our work, only the case where all
available wavelengths are used for each wavelength/time plane
is considered for 3-D code with multiple pulses per plane, i.e.,
( , , 0, 1). In such a case, we have space/wave-
length channels, and to satisfy orthogonality, we need to allocate

pulses in such a way that for any two distinct codewords
there is a coincidence of optical pulses only in one space/wave-
length plane. Then, construction of the ( , , 0, 1)
3-D code is equivalent to construction of ( , , 0, 1)
2-D code. To construct the ( , , 0, 1) 3-D code by
using the prime code algorithm, all the possible combinations
of spatial channels and wavelengths are indexed with integers
between 0 and by mapping (, ) to
( , ), and ( , , 0, 1) 2-D
code, i.e., matrices - , is constructed applying the
algorithms described in Section III. Then, 3-D codewords, i.e.,

matrices - , are obtained by remapping-
to - [ , ], where

is an element of .
In the last of this section, the construction algorithms of the

3-D code with single pulse per plane (w/SPP) and 3-D code with
multiple pulses per plane (w/MPP) which were described above
are presented in mathematical language.

A. 3-D Code w/SPP

1) Case 1— , : Given integers ,
, and for two sets of prime num-

bers such that ,
, the ( , , 0, 1) code is represented by

matrix , , , , , , , whose
element is given by

for

and

for (4)

for , ,
, and . The op-

eration, represents modulo-multiplication. The code has
codewords. The term “ ” represents the cyclic

shift of pulses in wavelength domain. Since all the pulses be-
long to different spatial channels, zero out-of-phase autocorre-
lation constraint is clearly met. The cross-correlation constraint
is proven as follows.

Proof: For any two distinct matrices , , , ,
, , , and , , , , , , , , if cross-

correlation is greater than 1, we have at least two coincidence
of pulses of the same spatial channel and wavelength in any
cyclic shift of the matrices in time, which means following
four equations are simultaneously satisfied for,

:

(5)

(6)

(7)

(8)

Subtracting (7) from (5), we obtain

(9)

Since , (9) is valid only when for .
If we substitute for into (5), we obtain

. Similarly, subtracting (8) from (6), we obtain

(10)

Since , (10) is valid only when for .
As a result, the assumption , , , , , , ,

, , , , , , , is violated. There-
fore, cross-correlation cannot be greater than 1.

2) Case 2— , : Given integers , , and
for a set of prime numbers such that

, the ( , , 0, 1) code is
represented by matrix , , , , whose
element is given by

for

for other (11)
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for , , and
. The code has codewords. Since all the pulses

belong to different spatial channels, it is clear that out-of-phase
autocorrelation is equal to 0. Actually, Case 2 can be understood
as a subset of Case 1. If we set for in (4), we
obtain the equations of the same form with (11). The proof of 1
cross-correlation constraint of the code is similar to that for the
Case 1.

Proof: For any two distinct matrices , , , ,
and , , , , , if cross-correlation is greater than 1,
we have at least two coincidence of pulses of the same spatial
channel and wavelength in any cyclicshift of the matrices
in time, which means following equations are simultaneously
satisfied for ,

(12)

(13)

(14)

Subtracting (14) from (13), we obtain

(15)

Since , (15) is valid only when for .
As a result, the assumption , , , , , ,

, , is violated. Therefore, cross-correlation cannot be
greater than 1.

B. 3-D Code w/MPP

Given integers , , and for a set of prime
numbers such that , the (

, , 0, 1) code is represented by matrix
, , , whose element is given by

for

for other (16)

for , , and
. The code has codewords. Since all the pulses

have different combinations of spatial channel and wavelength,
i.e., belong to different space/wavelength channels, it is clear
that out-of-phase autocorrelation is equal to 0. The cross-corre-
lation constraint is proven as follows.

Proof: For any two distinct matrices
and , if cross-correlation is greater than 1,
we have at least two coincidence of pulses of the same spatial
channel and wavelength in any cyclicshift of the matrices in
time, which means following equations are simultaneously sat-
isfied for , , ,
where and ,

(17)

(18)

Subtracting (18) from (17), we obtain

(19)

Since , (19) is valid only when for .
As a result, the assumption , , , , , ,
is violated. Therefore, cross-correlation cannot be greater than
1.

V. PERFORMANCEANALYSIS

In this section, we analyze the performance of the optical
codes discussed in the previous sections, the 2-D prime code,
the 3-D code w/SPP, and the 3-D code w/MPP in respects of
code set size, bandwidth efficiency, error probability in multiple
user circumstance, and system scalability. For the comparison of
the 3-D codes with 2-D codes, only the 2-D prime code is con-
sidered in this paper because direct comparison is possible for
given resources. However, comparing only with the 2-D prime
code among other 2-D approaches to demonstrate the perfor-
mance improvement of the 3-D codes over the 2-D codes is jus-
tified in that the 2-D prime code is asymptotically optimal in the
aspect of the cardinality and has performance comparable with
the 2-D OOC and the 2-D Reed–Solomon code [15].

A. Code Set Size, Code Length, and Bandwidth Efficiency

With spatial channels, wavelengths, and time chips
(code length), we can construct (if ) or
(if ) orthogonal codewords for the 3-D code w/SPP.
Whereas, orthogonal codewords can be constructed for the
2-D prime code and the 3-D code w/MPP. For a fixed code
length, the code set size of the 3-D code w/SPP is larger
than that of the 2-D prime code and the 3-D code w/MPP.
This feature is very important in the aspect of the bandwidth
efficiency of the system [11], [13], [17]–[21]. In an OCDMA
system with a given modulation bandwidth of the light source,

, per-user bandwidth, , is inversely proportional
to the code length, that is, assuming that
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the chip time is equal to the FWHM of the optical pulse. In the
system based on the 2-D codes and the 3-D code w/MPP, the
per-user bandwidth should be compromised with the number
of total users (code set size). Whereas, for the 3-D code w/SPP,
the code set size can be increased without reducing the per-user
bandwidth. In other words, for the system based on the 2-D
prime code and the 3-D code w/MPP to accommodate the same
number of total users with the 3-D code w/SPP, the per-user
bandwidth of the system need to be reduced.

According to the above discussion, it appears that the 3-D
code w/MPP shows no improvement compared with the 2-D
prime code in terns of bandwidth efficiency. In practice, how-
ever, the number of users who can access the network simultane-
ously with a guaranteed error probability is a more meaningful
measure of the system performance rather than the number of
total users, and thus, the bandwidth efficiency considering the
number of simultaneous users is more important than that con-
sidering the number of total users. Therefore, the per-user band-
widths of codes to accommodate the same number of simulta-
neous users need to be considered. The number of simultaneous
users is closely related with the error probability behavior of the
codes in multiple user circumstance, which is discussed in de-
tail in the following subsection. The bandwidth efficiency con-
sidering the number of simultaneous users is also discussed in
the following subsection.

B. Error Probability in Multiple User Circumstance

Now, we analyze the error probability behavior of the 2-D
prime codes and the 3-D codes. In the analysis of the error
probability of the OCDMA system, we ignore thermal and
shot noises in photodetection, and only the interference from
other users is considered. We also assume that there is either
complete overlap of chips or no overlap when two codewords
are correlated—chip synchronization—for the sake of mathe-
matical convenience [12], [15]. Note that this does not mean
that the system is synchronous and the chip synchronization
assumption is different from the “bit synchronization” as in
synchronous systems. We are still dealing with asynchronous
systems without system clock and it has been shown that
this assumption results in an upper bound on the system
performance [3].

To analyze system performance under multiple user circum-
stance, we need the probability,, that we will get 1 in cross-cor-
relation between two distinct codewords at the time of detec-
tion. In other words, is the probability that we will get a small
optical pulse from an unwanted sender at the time of detec-
tion, where the power of the pulse is 1/(code weight) times of
a signal pulse. Let us call the cross-correlation probability.
In the 2-D prime codes, there is one pulse per row and

number of rows [12], [15]. In the 3-D codes with
multiple ( ) pulses per plane, is given by
since the code is equivalent to the 2-D code with rows. In
the space/wavelength/time 3-D codes w/SPP, for the pulse in a
spatial channel from an unwanted sender to contribute to noise
at the time of detection, it should be of the same wavelength
with the pulse from the wanted sender in that spatial channel.
Therefore, is given by .

Fig. 2. Bit error rate versus the number of simultaneous users for
space/wavelength/time 3-D OCDMA system and 2-D system.S = 16,
T = 127, W = 2; 3; 4. Filled figures represent the 3-D single pulse per
plane code systems and the hollow ones represent the 3-D multiple pulses per
plane code systems.

Once is given, the error probability of the system is given
by

(20)

where is a threshold in detection, is the number of simul-
taneous users, and the factor 1/2 accounts for the probability that
the wanted sender transmits “0” assuming equiprobable on–off
data bit transmission [12], [15]. Note that when the sender trans-
mits “1,” no error occurs.

For , , error probabilities of the codes are cal-
culated with various numbers of wavelength and simultaneous
users by (20). In calculation, the optimal threshold, which is
equal to code weight, is assumed. ( for 2-D code and
3-D code w/SPP, for 3-D code with pulses per
plane) Fig. 2 shows the calculated error probabilities. Both 3-D
codes show the improved performance compared to the 2-D
prime code. The improvement of the 3-D code w/SPP stems
from the reduced cross-correlation probability,. [Note that it
is ( ) times of the cross-correlation probability of the 2-D
code.] Whereas, in 3-D code w/MPP, the improvement arises
from the increased threshold incurred by the increased code
weight, the number of pulses in a codewords, in spite of the
increased cross-correlation probability. As seen in Fig. 2, for
a small number of simultaneous users, the 3-D code w/MPP
shows lower error probability than the 3-D code w/SPP, which
implies that the increased threshold effect is dominant. As the
number of simultaneous users increases the reduced cross-cor-
relation probability becomes dominant. Therefore, the 3-D code
w/SPP shows lower error probability than the 3-D code w/MPP.

The result indicates that when we design an OCDMA system
using the 3-D code with given resources (spatial channels,
wavelengths, and time chips), the choice between the 3-D code
w/SPP and the 3-D code w/MPP depends on the requirement
of the system. For example, if 16 spatial channels and 3
wavelengths are available, and the code length is limited to
127, Fig. 2 indicates that for the system which requires bit error
rate (BER) lower than , the 3-D code w/MPP should be
adopted. Whereas, the required BER is higher than , the
3-D code w/SPP will be better choice.
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Fig. 3. Bit error rate versus the number of simultaneous users for
space/wavelength/time 3-D OCDMA system and 2-D system.S = 24,
T = 127, W = 2; 3; 4. Filled figures represent the 3-D single pulse per
plane code systems and the hollow ones represent the 3-D multiple pulses per
plane code systems.

Fig. 4. Required minimum code length versus number of simultaneous users
for OCDMA system based on 3-D codes and 2-D prime code with BER=

10 . S = 24, W = 2; 3. Filled figures represent the 3-D single pulse per
plane code systems and the hollow ones represent the 3-D multiple pulses per
plane code systems.

As the number of spatial channels increases, the range of BER
where the 3-D code w/SPP outperforms the 3-D code w/MPP
increases. Fig. 3 shows the calculated BER for ,

. Note that the crossing between the curves of the 3-D code
w/SPP and the 3-D code w/MPP for in Fig. 3 decreased
to about BER , which was about BER for

in Fig. 2. Figs. 2 and 3 also indicate that for a fixed
number of spatial channels, the 3-D code w/SPP is more likely to
be better choice than the 3-D code w/MPP as more wavelengths
are available. This is because the maximum number of users
in the 3-D code w/MPP is limited to due to the code size
limitation.

Now, let us consider the bandwidth efficiency considering the
number of simultaneous users. A minimum code length required
to support a number of simultaneous users with a certain BER
guaranteed can be calculated. The minimum code length is lim-
ited by not only the error probability given by (20), but also the
maximum number of users that is related to the code length. This
implies that and should be sat-
isfied simultaneously for the 3-D code w/MPP. Fig. 4 shows the
calculated minimum code length that is required to accommo-
date various numbers of simultaneous users with
for , (2-D code), 2, 3. As seen in Fig. 4, the
3-D codes need much shorter code lengths than the 2-D prime
code in order to accommodate the same number of simultaneous
users, which means larger per-user bandwidth is provided by

using the 3-D codes. In Fig. 4, the 3-D codes w/SPP show re-
duction in the code size approximately by the factor of
compared with the 2-D prime code, which implies increase in
the per-user bandwidth by the factor of . One can see that
the improved error probability behavior of the 3-D codes brings
about the much improved bandwidth efficiency.

In Fig. 4, one can also see that the 3-D code w/SPP outper-
forms the 3-D code w/MPP for the given conditions. However,
as mentioned previously, it should be stressed that the 3-D code
w/MPP can be better choice than the 3-D code w/SPP depending
on the error probability requirement of the system. If the re-
quired BER is much lower than , the situation could be
different. Nevertheless, we would like to point out that as avail-
able spatial channels and wavelengths increase, the 3-D code
w/SPP will be more likely to show better performance.

C. Scalability of OCDMA System

Another measure of the OCDMA system is scalability of the
system, that is, how easily the number of simultaneous users can
be increased with minimum modification of network configura-
tion. The number of codewords in the 3-D code w/MPP is lim-
ited by the code length , whereas that in the 3-D code w/SPP
is assuming . The number of codewords of the
3-D code w/MPP does not change as the number of wavelength
increases. As a result, when we need to increase the number
of simultaneous users with the same BER guaranteed for a de-
ployed system, we can accommodate more users by employing
more wavelengths in the systems based on the 3-D code w/SPP,
whereas we cannot accommodate more thansimultaneous
users in the systems base on the 3-D code w/MPP no matter
how many wavelengths are employed. For example, let us con-
sider the systems composed of , , with
BER equal to . According to Fig. 2, both systems based
on the 3-D code w/SPP and the 3-D code w/MPP can accom-
modate roughly 100 simultaneous users. By employing another
wavelength, the number of simultaneous users can be increased
to about 150 and 127 with BER in the systems of the
3-D code w/SPP and the 3-D code w/MPP, respectively. If more
wavelengths are available, we can accommodate more simulta-
neous users in the systems of the 3-D code w/SPP. By contrast,
in the systems of the 3-D code w/MPP, the number of simulta-
neous users is now limited by the number of codewords (code
set size) and we cannot accommodate more than 127 users even
if more wavelengths are used. All the effect of increased wave-
lengths on the system is to reduce BER in that case. Therefore,
it can be said that the 3-D code w/SPP has greater system scal-
ability than the 3-D code w/MPP.

Another advantage of the OCDMA system based on the 3-D
code w/SPP is that adding wavelengths does not affect the ex-
isting users or network configuration at all. Only the new users
need to be equipped with encoders/decoders that can process the
added wavelengths, which also offers great system extendibility.

Before closing this section, we would like to point out that the
basic concept of the WDM/CDMA hybrid schemes suggested
in [17]–[21] is equivalent to the code w/SPP proposed in this
paper, and with the WDM/CDMA hybrid schemes, 3-D orthog-
onal codes that have similar performance to the 3-D code w/SPP
can be constructed if the compete set of orthogonal codewords
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Fig. 5. Structure of space/wavelength/time 3-D OCDMA networks. (Multiple
pulses per plane case. For case of single pulse per plane, only one fiber grating
is used in each spatial channel.)

can be found. One of the hybrid schemes that was referred to
as the WDM matrix code in [18] appears to have larger code set
size which is proportional to , but this is the result of the loose
cross-correlation constraint as mentioned earlier. Although only
orthogonal 3-D codes are considered in this work, the compro-
mise between the cross-correlation value and the system perfor-
mance to increase the code set size may be an interesting re-
search topic. This remains as one of a number of directions for
further research at this time.

VI. I MPLEMENTATION OF 3-D CODE AND WAVELENGTH /TIME

SCHEME

Structures of OCDMA systems based on 3-D codes are dis-
cussed in this section. Fig. 5 depicts the general configuration
of the OCDMA system based on the space/wavelength/time 3-D
code w/MPP. Each fiber connecting the encoder/decoder and the
star coupler corresponds to each spatial channel and the center
wavelength each fiber grating is tuned to each wavelength of the
code. An optical pulse, which has broadband spectrum, incident
into the encoder is split into the circulators, and each wavelength
component of the optical pulse is reflected at the fiber grating
of different location. As a result, we obtain a series of optical
pulses with different wavelength components in each fiber. In
the decoder, if the sequence and the relative distances among
the fiber gratings are properly determined, the series of optical
pulses are assembled in the same time chip obtaining one large
optical pulse. The system of the 3-D code w/SPP is of similar
configuration to Fig. 5. Only the difference is that there is one

Fig. 6. Structure of wavelength/time implementation of the 3-D OCDMA
networks. Center wavelengths of the fiber gratings connected to an output port
of AWG’s in the encoder/decoder are separated by free spectral range of AWG.

fiber grating in each spatial channel of the encoder/decoder. The
length of each delay line, the relative distances among gratings,
and the center wavelength of each grating are determined by a
corresponding codeword given in Section IV. In the structure
shown in Fig. 5, the path length of each spatial channel between
a pair of encoder and decoder should be same. Otherwise, all the
spread pulses will not be collected in the same time chip at the
intended receiver and thus, error occurs. However, it is very dif-
ficult to realize. Although the difficulty can be partially relaxed
by use of fiber ribbons, requirement of multiple star couplers is
also disadvantageous. To make the 3-D code more feasible, we
need to eliminate the requirement of fiber ribbons and multiple
star couplers.

The reason that we need multiple star couplers in the struc-
ture shown in Fig. 5 is to prevent optical pulses in different spa-
tial channels from being mixed together before correlated. If we
assign different sets of wavelengths, , to spatial chan-
nels, , we do not need multiple star couplers. In this scheme,
the pulse of in spatial channel s replaced with a pulse of

, and we can send pulses of all spatial channels though one
fiber without mixing. As a result, the requirement of multiple
star couplers is eliminated. As it were, space/wavelength/time
3-D code is converted to wavelength/time code for implemen-
tation. This scheme can be easily implemented with help of pe-
riodic characteristics of AWG [22]. When a number of
wavelengths are demultiplexed in an AWG, a group of wave-
lengths which are separated by free spectral range of the AWG
are coupled into the same output port. Therefore, if we assign
the group of wavelengths to a spatial channel, the scheme can
be implemented by the structure shown in Fig. 6. As seen in
Fig. 6, each output port of the AWG in the encoder/decoder cor-
responds to a spatial channel in the space/wavelength/time 3-D
code, and the center wavelengths of gratings in each fiber be-
long to a group of wavelengths that can be coupled to the cor-
responding output port of the AWG. Fig. 6 depicts the structure
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Fig. 7. Structure of encoder/decoder for wavelength/time OCDMA
networks with tunable filters and reflectors. By employing tunable filters, many
codewords can be encoded/decoded selectively with a encoder/decoder.

for wavelength/time scheme for the 3-D code w/MPP. We can
implement wavelength/time scheme for the 3-D code w/SPP
by using only one grating in each output of the AWG in en-
coder/decoder. In either structure, lengths of delay lines between
gratings and the order of gratings are determined according to
the 3-D codes given in Section IV.

Note that in structures shown in Figs. 5 and 6, we do not need
coherent light sources such as laser diodes (LD’s). Instead of
a bunch of LD’s, one incoherent broadband light source such
as light emitting diode (LED) is used for each user, which is
advantageous over wavelength division multiple access system.
Within the bandwidth of the light source, we can increase the
number of wavelengths by simply increasing the number of the
AWG ports or employing more kinds of fiber gratings.

The wavelength/time scheme w/MPP is equivalent to (
, , 0, 1) wavelength/time 2-D code, where , in

the aspect of code construction and error probability if .
The advantage of the wavelength/time scheme is that an AWG
with a smaller number of ports is used in the implementation of
the codes. Note that AWG’s are needed to implement
( , , 0, 1) wavelength/time 2-D code, while
AWG’s are needed for wavelength/time scheme. Moreover,
if the wavelength/time scheme w/SPP is employed, we will
have system extendibility and can accommodate more simul-
taneous users depending on system requirements as discussed
previously. Another advantage of the wavelength/time scheme
w/SPP is that if we use tunable filters and reflectors instead
of fiber gratings as depicted in Fig. 7, codewords (when

) or codewords (when ) can be selectively
transmitted or received with one encoder/decoder by tuning the
filters.

To compare the performance of the wavelength/time scheme
w/SPP with that of 2-D code or wavelength/time scheme
w/MPP, the error probability of ( , , 0, 1) 2-D wave-
length/time code system and [ , ,
0, 1] wavelength/time scheme w/SPP for various are cal-
culated assuming the total number of available wavelengths is
fixed to . Note that the performance of [ ,

, 0, 1] wavelength/time scheme w/MPP is the same with
that of ( , , 0, 1) 2-D wavelength/time code system.
Fig. 8 shows the calculated result for , . If
the required BER is higher than , (20 3 197, 20, 0,
1) wavelength/time scheme w/SPP shows best performance.
For the system which requires BER lower than , (30 2

Fig. 8. Bit error rate versus the number of simultaneous users for single
pulse per plane wavelength/time 3-D OCDMA system and 2-D system with
60 wavelengths.W = 60, T = 197, W = 2; 3; 4; 5. (The 3-D OCDMA
systems with multiple pulses per plane for variousW show the same BER with
that of the 2-D system if the number of total available wavelengths is fixed.)

197, 30, 0, 1) wavelength/time scheme w/SPP is the best
choice. This result indicates that OCDMA system performance
can be maximized for a given number of wavelengths and a
given code length by employing the wavelength/time scheme.

VII. CONCLUSION

In this paper, we constructed space/wavelength/time spread
3-D optical orthogonal codes by extending the 2-D prime
codes, and the performance of 3-D codes are analyzed and
compared to that of the 2-D code. The 3-D codes showed much
improve performance compared to the 2-D prime code. In
construction of the 3-D codes, we proposed two types of codes
with different numbers of pulses per wavelength/time plane, the
3-D codes w/SPP and the 3-D codes w/MPP, and investigated
the effect of the number of pulses per wavelength/time plane
on performance. For a small number of simultaneous users, the
3-D code w/MPP showed better performance due to dominant
effect of increased threshold. The 3-D code w/SPP showed
lower error probability for a large number of simultaneous users
since the effect of reduced cross-correlation probability became
dominant. This implies that the choice between the two 3-D
codes depends on the amount of traffic in the access networks.
Physical implementations of the proposed 3-D codes were also
considered. To eliminate the requirement of fiber ribbons and
multiple star couplers for implement of space/wavelength/time
codes, we proposed the wavelength/time scheme in which
the periodic property of an AWG is used. The performance
of the wavelength/time scheme w/SPP was compared to the
2-D prime code system with the same number of wavelengths
for fair comparison. It was shown that the wavelength/time
scheme w/SPP could accommodate more users depending
on the system requirement. We believe that the proposed
wavelength/time scheme w/SPP enhanced the feasibility and
the scalability of OCDMA system based on the 3-D codes.

In this paper, only the prime code algorithm was considered
for 2-D and 3-D code construction, but we would like to point
out that all the ideas for the extension of 2-D code to 3-D
code and the wavelength/time scheme are still valid for the
Reed–Solomon code algorithm.
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