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Abstract—We introduce a theoretical basis of polarization mode
dispersion (PMD) equalizers based on the operator representation
of PMD using Taylor's expansion. The two types of configuration of
PMD equalizers are derived as the inverse of diagonalization oper-
ators and delay time difference compensation. One is a type using
physical rotation of quarter wave phase plates. The other is a type
using variable phase shifters suitable for PLC integration. Wave-
form comparison algorithm was simulated to show the existence of
multiple equivalent optimum points due to the symmetry and pe-
riodicity of optical circuits. The second order PMD equalization is
discussed briefly on the case of cascading the first and the second
PMD equalizing circuits with two different polarization state con-
verters.

Index Terms—Optical equalizers, optical fiber communication,
optical fiber dispersion, optical fiber polarization, optical phase
shifters, optical pulse shaping, optical transfer functions.

I. INTRODUCTION

I N GLOBAL size photonic networks, polarization mode dis-
persion (PMD) of transmission lines can severely limit the

information capacity due to pulse waveform degradation [1].
For overcoming this limitation, fiber cables and optical com-
ponents are improved to reduce their PMD through the devel-
opments of transoceanic photonic networks such as TPC-5. Po-
larization scrambling technique was also implemented to reduce
polarization hole burning effect [2]. On the other hand, in terres-
trial networks, modern single-mode fibers (SMF’s) exhibit neg-
ligible PMD, with average differential group delays (DGD’s) of
the order of 0.1 ps/km , for the practical highest bit rate of 10
Gb/s in these days. However, in the implementation of 40-Gb/s
systems for the next generation, some of the older fiber cables
were found to show large PMD effects with average DGD's of
up to 2 ps/km . Moreover, the instantaneous DGD in such
high-PMD fibers generally fluctuates randomly with time, and
hence, can temporarily exceed values of more than 100 ps for
transmission distances of only a few hundred kilometers, which
may lead to a complete eye closure even in a 10-Gb/s signal [3].

Several methods for equalizing the PMD investigated pre-
viously are categorized as two approaches. One is the optical
equalization of transfer function matrix for transmission line
with PMD. The optical equalizer employs the inverse optical
circuit of the transfer function matrix, adaptively synthesized by
variable Mach–Zenhder lattice circuit using waveform compar-
ison algorithm [4]. The second is the optical first-order PMD
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equalizer employing a polarization state converter to the prin-
ciple polarization states and a delay time compensator [5]–[7].
Heismann demonstrated a fully automatic optical PMD equal-
izer that adaptively compensates for randomly fluctuating first-
order PMD in optical transmission fibers. The performance of
this compensator was tested in a 10-Gb/s transmission experi-
ment employing a high-PMD fiber with an average DGD of 50
ps. Optical compensation of first-order PMD is accomplished
by introducing a variable time delay between two adjustable or-
thogonal polarization states in the optical signal.

For the further, necessity of the equalizing second order PMD
is recently discussed.

Unfortunately, the second-order PMD was defined only on
the Poincaré sphere, where degrees of freedom to describe PMD
of optical fibers are not sufficient [8]–[11]. We introduced a new
formulation for describing second-order PMD using transfer
function matrix [12]. As the result of this new formulation, it
is found that the PMD equalizer can be derived as the inverse
operator for PMD definition.

In this paper, we reformulate the PMD equalizer including
second-order PMD equalization. We discuss the operation prin-
ciple of PMD equalizer in Section II. In Section III, synthesis
of optical circuits for diagonalizing unit is described. In Sec-
tion IV, the second-order PMD equalization is discussed in a
limited condition. In Section V, we conclude the discussion.

II. OPERATIONPRINCIPLE OFFIRST-ORDERPMD EQUALIZER

Transfer function matrix of an optical fiber with PMD can be
defined as the Fourier transform of its impulse response, which
is not necessary to use principle state assumption [8]. The op-
erator representation of PMD is derived from Taylor expansion
around optical carrier frequency [12]

(1)

where is the frequency derivative operator for output po-
larization state given by

(2)

is the optical carrier frequency and . The transfer
function matrix is given

(3)
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Fig. 1. Basic structure of PMD equalizer.

by a unitary matrix for a loss-less fiber: whereis the polar-
ization angle, which describes power distribution between the
two orthogonal modes. is the vertical phase difference, which
denotes the phase difference betweenand . is the hor-
izontal phase difference, which denotes the phase difference be-
tween and .

The first-order PMD is given by imaginary part difference of
the eigen value of , and the second-order PMD is evalu-
ated as the norm of [12]. The output polarization state

for the input polarization state is given by

(4)

This is the basic expression of output polarization state of the
fiber with PMD.

For the first, we concentrate our discussion on the first-order
PMD, neglecting the second-order PMD operator. A matrix
is defined using the eigen states of operator for diagonal-
ization

(5)

where and are imaginary parts of eigen values of .
Equation (5) implies that is given by two

orthogonal components of delayed by
different group delay time and , when we neglect the
higher order terms at this instance.and are the maximum
and minimum delay times, so that two orthogonal components
of correspond to the principle polarization
states [2].

When we rewrite (5) in the following form, the basic idea of
PMD equalization can be understood clearly

(6)

For equalization, the received signal polarization state
should be operated by a linear transformation , then the
delay time difference should be compensated. Finally, we obtain

, which is a transformation of input polariza-
tion state, without any distortion in waveform. This concept is
the basis of first order PMD compensation methods [6], [7].

Fig. 2. Optical circuit type #1 for diagonallizerX .

Fig. 3. Integrated first-order PMD equalizer on PLC.

III. SYNTHESIS OFPMD EQUALIZER CIRCUITS

Fig. 1 illustrates the basic structure of the first-order PMD
equalizer described by (9).

Here, we discuss on the optical circuit synthesis of oper-
ator using the basic PMD parameters for the
first-order. The basic PMD parameters are defined as the Taylor
expansion coefficients of

(7)

The operator is determined using eigen vectors of the op-
erator

(8)
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Fig. 4. Second-order PMD equalizer.

where is the half of PMD or DGD given by

(9)

The operator is special unitary, so that, using Euler's gen-
eralized rotation [13], we can generally write as

(10)

where This Euler's generalized rotation rep-
resentation corresponds to the physical circuit synthesis of the
operator . Comparing (8) and (10), we find . Then,
we can synthesize the operator in two forms, using the fol-
lowing relation:

where

(11)

The first type is a circuit synthesis using physical rotation of
phase plates: in other words, the variable phase-shifter in (10) is
replaced by physical rotation using (11). The operator can
be equivalently rewrite as follows:

(12)

Equation (13) indicates the operations as follows. First, rotates
the quarter-wave phase-plate by, then secondly rotates the
second quarter-wave phase-plate by. Fig. 2 illustrates the
first type optical circuit corresponding to . This circuit is
not practical because it requires resetting at the edge of pe-
riodic cycle for automatically adaptive operation. Then, Heis-
mann used a polarization controller with three stages, which is
equivalent to this type but does not require resetting [7].

The second type is a circuit synthesis employing variable
phase-shifters, which are suitable for PLC integration: the phys-
ical rotation in (10) is replaced by variable phase-shifter.

(13)

Fig. 3 illustrates the operator in the form of PLC integra-
tion. Firstly, a variable phase-shifter “” is inserted and a 3 dB
coupler follows to mix the mode amplitudes. Second, the first
operation is repeated in the same way. The couplers is equiva-
lent to the physical rotation, in this case [14]. The variable delay
lines may employ combination of switches and delay line
units.

IV. SECOND-ORDER PMD EQUALIZATION

Since and are not commuting, in general,
the following formula of operator algebra gives us the way of
second-order equalization:

(14)

where the last bracket is zero, only when two operators are
commuting. When the bracket is negligibly small, (4) can be
rewritten as

(15)

where is a matrix for diagonalization of . and
is imaginary parts of eigenvalues of . We obtain
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, which is a liner transformation of input po-
larization state, without any distortion in waveform.

Here, we have a second-order PMD equalizer as shown in
Fig. 4.

Comparing with the first-order PMD equalizer, we find the
PMD equalizer as cascading the first- and second-PMD equal-
izing optical circuits. The variable dispersion and can be
realized by Mach–Zehnder lattice circuit on PLC reported pre-
viously [14], [15].

V. CONCLUSION

We introduce a theoretical basis of PMD equalizers based on
the PMD operator representation of transfer function matrix ap-
proximation using Taylor expansion. The two types of configu-
ration of PMD equalizers are shown as the inverse of PMD op-
erators. One is a type of using physical rotation of quarter-wave
phase plates. The other is a type using variable phase-shifters
suitable for PLC integration. The second-order PMD equaliza-
tion is discussed briefly on the cases of cascading the first and
the second PMD equalizing circuits with two different polariza-
tion state converters.
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