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Photonic Crystal Distributed Feedback Fiber Lasers
with Bragg Gratings

Thomas Søndergaard

Abstract—Two new types of optical fibers, where air-holes are
running down their length, are considered for making fiber lasers
with Bragg gratings. The mode areas for pump and signal in these
fiber lasers may be either larger or smaller compared to the corre-
sponding mode areas for fiber lasers based on standard step index
fibers. This makes possible realization of fiber lasers with a low
pump threshold (small mode area), and fiber lasers suitable for
high-power applications (large mode area).

Index Terms—Distributed feedback (DFB) lasers, integrated op-
tics, optical fiber lasers, periodic structures, photonic crystals.

I. INTRODUCTION

I N THE recent few years a new class of optical fibers based
on photonic crystal technology has been suggested in the lit-

erature [1]–[11]. In these fibers the single-mode properties and
the intensity distribution for the guided modes differs consider-
ably from the standard step-index fiber. In particular, it is pos-
sible to design single-mode fibers (SMF’s) where the mode area
for the guided mode is significantly different in size relative to
that in a standard step-index fiber. As the mode area is altered
the local intensity of the mode near an active medium, such as
Er -ions, is altered too. This opens up for the possibility of al-
tered light-matter interaction between the guided modes and an
active medium in the fiber. Fiber lasers with a small mode area
are interesting for obtaining a low threshold, whereas lasers with
a large mode area are interesting for applications where high
powers are desired.

A large-mode area optical fiber based on photonic crystal
technology has recently been demonstrated experimentally [4],
and indeed the experimentally demonstrated honeycomb fiber
[5] is suitable for reducing the mode area. In this paper the
spatial mode intensity profiles at the signal wavelength (1560
nm) and pump wavelength (980 nm) relevant for two photonic
crystal distributed feedback fiber laser designs are calculated.
The photonic crystal fibers considered are chosen in such a
way that they are single-moded at both signal and pump wave-
lengths. Mode intensity profiles and single-mode properties
are investigated numerically using a full-vector approach based
on plane-wave expansion theory and a variational principle
[12]–[14]. A different full-vector method for modeling of
photonic crystal fibers appears in [15].
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Fiber lasers, where the design is based on doping photonic
crystal fibers with Er and writing a Bragg grating, are inves-
tigated using coupled-wave theory [16], a transfer-matrix ap-
proach [17], [18] and a model for gain provided by Er[18],
[19]. Compared to the one-dimensional model for gain used in
[18] a more general model is used in this paper taking into ac-
count the distribution of signal and pump power relative to the
distribution and inversion of Er across the fiber and along the
fiber.

This paper is organized in the following way. In Section II
single-mode properties and field intensity profiles are consid-
ered for two fiber designs. Section III describes the transfer-ma-
trix method and the model for gain used in this paper to calculate
steady-state solutions for distributed feedback photonic crystal
fiber lasers. Numerical results are presented for the two fiber
laser designs in Section IV. A conclusion is given in Section V.

II. SINGLE-MODE RANGE OF WAVELENGTHS AND FIELD

INTENSITY PROFILES

In this section the single-mode properties and field intensity
profiles for two fiber designs, where air-holes are running down
their length, are investigated using plane-wave expansion theory
and a variational principle [12]–[14].

The starting point is the fully vectorial wave equation for the
complex magnetic field , i.e.

(1)

This wave equation is treated as a Hermitian eigenvalue
problem, where represents the eigenvector and is
the corresponding eigenvalue. The structures considered are
defined by the dielectric function , and in this paper the
fiber designs in concern will be approximated with a dielectric
function characterized by discrete translational symmetry in the

– plane and invariance in the-direction. This technique is
often referred to as a supercell approximation. The fiber designs
considered in this paper are shown in Fig. 1. To the left is shown
a fiber design, where air-holes running down the length of the
fiber are arranged in a honeycomb pattern. A waveguide has
been created by introducing an extra air-hole in the structure.
The supercell used in this paper as an approximation of the
honeycomb fiber is shown with a dashed line. The honeycomb
fiber design considered in this paper is characterized by a
hole-diameter to hole-spacing ratio that
yields a large out-of-plane photonic bandgap [9], and the extra
air-hole introduced to create a waveguide has the same size
as the other air-holes. To the right is shown a design where
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Fig. 1. Illustration of two fiber designs, where air-holes are running down the
length of the fiber. To the left is shown the honeycomb fiber, where air-holes
are arranged in a honeycomb pattern. A waveguide is created by introducing
a defect in the structure, i.e., by introducing an extra air-hole. To the right is
shown a design where air-holes are arranged on a triangular lattice. In this case
a waveguide is created by removing one of the air-holes. The supercell used for
modeling the honeycomb fiber design in this paper is shown with a dashed line.

air-holes are arranged on a triangular lattice. In this case, a
waveguide has been created by removing a single air-hole. An
air-hole diameter to hole-spacing ratio being
small enough for the fiber to be endlessly single-moded [1]
has been chosen for this design. This choice makes possible
single-moded fibers with large core areas. Smaller ratios

may be chosen as was done in [4], however, very
small ratios result in poor localization of the guided
modes to the core region. Note that the triangular fiber may
also be considered for obtaining small mode areas by choosing
large ratios as was done in [20]. In this case, however,
limitations in the single-mode range of wavelengths becomes
an important issue. The two chosen fiber designs are as will be
shown single-moded for the frequency ranges of interest.

For structures characterized by discrete translational sym-
metry, a solution may, according to Bloch’s theorem, be written
as a plane wave modulated by a functioncharacterized by the
same discrete translational symmetry as the structure itself. The
function is approximated with a Fourier-series expansion in
terms of reciprocal lattice vectorsleading to the following ex-
pression for the solutions

(2)

where is a wave-number vector andrepresents the two field
directions perpendicular to . The set of discrete solutions
for a given wave number vector, on the form (2), are organized
after increasing eigenvalues using the band number.
The solutions (2) are found using a variational method based on
minimization of the functional

(3)

When this functional is at a minimum the argumentis an
eigenvector and is the corresponding eigenvalue. By in-
serting a trial vector on the form (2) in (3), the functional effec-
tively becomes a function of the coefficients , and the
problem is reduced to varying these coefficients along a path
that minimizes the functional. An efficient iterative approach
that performs this task is described in [14]. Higher order solu-
tions are found by restricting the trial-vectors to be orthogonal

Fig. 2. The figure shows the continuum of allowed(�=k; ��) in the cladding
structures surrounding the core in the honeycomb fiber and the triangular
fiber, where� is the out-of-plane wave vector component,k is the free-space
wave number and� = � ; � are the center-to-center hole-spacings in
the cladding structures for the honeycomb fiber and the triangular fiber,
respectively. The white regions represent values for(�=k; ��) that are not
allowed in the cladding structure, and the dashed lines correspond to guided
modes that are localized to the fiber-core region. The dotted line represents the
refractive index of silica used for the calculation.

to all previously found eigenvectors and using the same mini-
mization principle. The computer memory requirements using
this method scales linearly with the number of plane waves
used in the expansion (2), whereas the required computer calcu-
lation time scales as . A large number of plane waves

are required for accurate modeling of the structures consid-
ered in this paper, and it is exactly for large numerical problems
that this method is numerically efficient compared to previous
plane wave expansion methods [21]. More details regarding the
method may be found in [12].

The single-mode properties of the two chosen fiber designs
are illustrated in Fig. 2. The figure shows for both fiber designs
the continuum of allowed for cladding modes, where

is the out-of-plane wave vector component,is the free-space
wave number, and are the center-to-center hole-
spacings in the cladding structures for the honeycomb fiber and
the triangular fiber, respectively. The honeycomb fiber is unique
in the sense that light is localized to a region near where the
refractive index has been decreased relative to the surrounding
structure, i.e., a region where an extra air-hole has been intro-
duced. Therefore light is not guided by the principle of total
internal reflection but is guided by the photonic bandgap ef-
fect [6]. This is possible due to the existence of out-of-plane
photonic bandgaps such as bandgaps A and B in Fig. 2, where
cladding modes are not allowed. The dashed line in bandgap
A for the honeycomb fiber and the dashed line above the con-
tinuum of cladding modes for the triangular fiber correspond
to two doubly degenerate guided modes being localized to the
fiber-core region (the defect shown in Fig. 1).

Since no guided modes appear in bandgap B the honeycomb
fiber is single-moded for the considered wavelength range cor-
responding to the dashed line in bandgap A. This does not have



SØNDERGAARD: PHOTONIC CRYSTAL DFB FIBER LASERS WITH BRAGG GRATINGS 591

Fig. 3. Intensity profile for the signal (1560 nm) in the honeycomb fiber
with hole-spacing� = 1:62 �m and hole-diameter to hole-spacing ratio
D =� = 0:41. Along with the intensity profile the contour of the structure
is plotted (solid lines). Three circles are plotted (dotted lines) along with the
fraction� of the mode energy within this circle. The intensity profile has been
calculated using256� 256 plane waves. Four locations have been labeled A,
B, C, and D.

to be true in general for the honeycomb fiber for other choices of
hole-diameter to hole-spacing ratios and other choices
of the size of the defect air-hole. Since only two degenerate
modes appear above the continuum of cladding modes for the
triangular fiber, this fiber is also single-moded for the wave-
length range corresponding to the dashed line, i.e., this fiber is
single-moded for normalized frequencies

, at least.
The wavelengths of interest are 980 and 1560 nm, and a hole

spacing must be chosen so that guided modes exist and
are well-localized at both wavelengths for the honeycomb fiber.
For this reason m has been chosen, and for this
choice Fig. 3 shows the field intensity profile for the wavelength
1560 nm. With this choice of the wavelength 1560 nm
corresponds to , whereas 980 nm corresponds to

. In Fig. 3 three dotted circles have been plotted
along with the fraction of the signal energy confined within
the circle.

A similar plot of the field intensity profile at 980 nm does
not look much different. In that case the energy confined within
the same three circles is , and %, re-
spectively. Note that for a standard step index fiber being single-
moded at both 1560 and 980 nm less than 50% of the mode en-
ergy is confined to the core region for the mode at 1560 nm. The
differences between pump (980 nm) and signal (1560 nm) are
more clearly seen by comparing the cross-sectional plots shown
in Fig. 4. From Fig. 4 is seen that some signal energy is present in
the defect air-hole, whereas almost no pump energy is present in
the defect air-hole. The intensity profiles may be used to get an
understanding of where erbium doped fiber lasers based on the

Fig. 4. Cross sectional plot of signal and pump intensity.

honeycomb photonic crystal fiber should be doped with erbium.
Naturally, the erbium should be placed in such a way that both
the signal intensity distribution and the pump intensity distribu-
tion are of significant amplitude at the position of the erbium.

The field intensity profile for the triangular photonic crystal
fiber is shown to the left in Fig. 5 for the fundamental guided
mode characterized by the normalized frequency ,
where is the free-space wavelength. In Fig. 5 (right) ver-
tical and horizontal cross sections of the field intensity profile
through the center of the fiber core for a number of normal-
ized frequencies are shown, where is kept constant.
Clearly the distribution of the mode intensity at the center does
not change much with frequency for high frequencies, whereas
more significant changes are seen with frequency for low fre-
quencies.

III. M ODELING PHOTONIC CRYSTAL DISTRIBUTED FEEDBACK

FIBER LASERS WITHBRAGG GRATINGS

In Section III a model for distributed feedback Er-doped
fiber lasers is presented. Steady-state solutions are calcu-
lated using a transfer-matrix method [17], [18] based on
coupled-wave theory [16] and a model for gain provided by
Er pumped with 980 nm light [19]. The model for gain
takes into account the spatial distribution of Errelative to
the spatial mode intensity distribution at the signal and pump
wavelengths, respectively. In [18] gain was calculated using a
one-dimensional approach based on confinement factors and
the assumption that the inversion of the gain medium Er
is constant across the fiber cross section. Whereas this is an
excellent approximation for standard step-index fiber doped
uniformly within the core region this assumption is not valid
in general near threshold for more complicated doping profiles
and mode intensity profiles.

A distributed feedback waveguide may be created by intro-
ducing a spatial periodic modulation of the refractive index in
the -direction of a fiber. In this paper the simple case of a sinu-
soidal refractive index modulation is considered, i.e.

(4)

where
average refractive index;
amplitude of the index modulation;
Bragg wave number.

For wave propagation vectorsclose to there will be two
counter-running waves with complex amplitudes and

coupled by backward Bragg scattering. Consider a short
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Fig. 5. To the left is shown a contour plot of the field intensity profile in a photonic crystal fiber corresponding to the normalized frequency� =� = 8:8,
where� is shown in the figure and� is the free-space wavelength. To the right is shown horizontal and vertical cross sections of the field intensity profile for a
number of frequencies� =� , where� is kept constant.

section of distributed feedback waveguide of lengthwhere
, and gain provided by Er may be assumed con-

stant. By further assuming the gain over one grating period to
be small, i.e., , and the index modulation to be a small
perturbation, i.e., , the following coupled wave equa-
tions may be obtained

(5)

(6)

where . The coupling coefficient is given by
. If the complex amplitudes and are known

at some position these coupled equations may be solved to
provide the corresponding amplitude at any position .
The amplitudes at position are related to the amplitudes
at position by the following transfer matrix [17]

(7)

where the elements of the transfer matrix are given by

(8)

where , and is the phase
of the grating at position.

Fig. 6. Energy level diagram for a three-level gain medium.

In this paper we consider gainprovided by Er pumped
with 980 nm light, and in this case Er may be considered
a three-level gain medium [19]. The energy level diagram for
a three-level gain medium is shown in Fig. 6. Absorption and
stimulated emission is denoted in the diagram by the letters
and , where represents transitions at the pump wavelength,
whereas represents transitions at the laser wavelength. Spon-
taneous decay is denoted by the letter. The spontaneous decay
from the energy level is usually expressed by the lifetime,
i.e., . In this paper the lifetime is set equal to 10 ms.
Note that the effect of up-conversion on the lifetime is neglected.

By assuming and [19] the pop-
ulation at the energy level is negligible. The fraction of the
Er at the energy level is referred to as the inversion .
The inversion is given by

(9)

The transition rates , and are given by the fol-
lowing expressions:

(10)

(11)
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Fig. 7. Diagram of a waveguide with Bragg gratings divided in N segments
with constant parameters� ; n ; �n, and g. The waveguide structure
is pumped from the right end with the pump powerP (L). The complex
amplitudes of the forward propagating waveE and the backward
propagating waveE are illustrated at the two ends of the waveguide.

(12)

where is the absorption cross section at the pump wave-
length and and are the absorption and emission cross
sections at the signal wavelength. The terms and
represent the intensity distribution for signal and pump, respec-
tively. The intensity distributions are defined by

(13)

The intensity distribution (13) is shown for the honeycomb fiber
in Figs. 3 and 4, and for the triangular fiber design in Fig. 5.

The parameter represent pump photons per unit time,
whereas represent the sum of signal photons
per unit time in the forward propagating wave and in the
backward propagating wave .

The effective gain per unit length, expressed in terms of
the inversion , the mode intensity profiles , ,
the cross sections , and and background losses

, for signal ( ) and pump ( ) is given by (14)
and (15)

(14)

(15)

In erbium lasers with Bragg gratings, , and may
vary along the fiber axis. In order to be able to use the transfer
matrix (7) the waveguide is divided into segments with
constant parameters , and . This is illustrated in
Fig. 7. In Fig. 7 the amplitudes and of forward and
backward propagating waves are shown at the two ends of the
distributed feedback waveguide. In lasers there is no in-going
signal field at the two ends of the fiber. Therefore the boundary
conditions that must be fulfilled are .
For a given pumped erbium waveguide with Bragg gratings a
solution is defined by two parametersand for which
this boundary condition is satisfied. The calculation starts by
assuming a value for and . Using the boundary
condition the amplitude of both forward and
backward propagating waves are known at position .
By using the expression (14) the gain is determined for
segment . Using this gain and the transfer matrix (7) the

complex amplitudes at the interface to the next segment (po-
sition ) are found. The pump power present at the
interface to the next segment is determined using expression
(15) for the pump gain and

(16)

By repeating this procedure the complex amplitudes
and , at the left end of the waveguide, are found. The
parameters and are adjusted using linear interpola-
tion until the boundary condition is fulfilled.

IV. NUMERICAL RESULTS FORERBIUM-DOPEDPHOTONIC

CRYSTAL DISTRIBUTED FEEDBACK FIBER LASERS

In Section IV numerical results are presented for two erbium-
doped fiber laser designs, where the fibers have air-holes run-
ning down the length of the fiber.

The first fiber laser design, we will consider is based on the
honeycomb photonic crystal fiber described in Section II. It is
assumed that a periodic sinusoidal index modulation is created
along 5 cm of the length of the fiber using UV exposure, and
that a grating phase shift is created at the center of the
grating. The writing of a Bragg grating in fibers with air-holes
using ultraviolet light requires further study. The problem that
might be faced here is to overcome technical problems in writing
the Bragg grating due to scattering of the ultraviolet light by the
air-holes. This problem will not be investigated in this paper.

In Section II, a field intensity profile was given for the signal
with wavelength 1560 nm, and circles denoted , 91,
and 68% indicated circles within which 99, 91, and 68% of the
mode energy was confined. In this section, we will consider
honeycomb fiber lasers doped with the erbium concentration

m within each of these three circles. This
will provide an idea of the behavior of the fiber for different
choices of erbium-doped regions in the fiber. The emission and
absorption is modeled using the emission and absorption cross
sections m , m , and

m .
Since the discrete phase shift of at the center of the

grating was chosen the detuning is zero, and the period of
the index modulation is, therefore, given by

(17)

where is the free-space wavelength. This leads to the period
of the index-modulation of 565 nm. For a standard step-index
fiber this period will be slightly smaller since the ratio is
higher.

First, we will consider for the honeycomb fiber laser the prop-
erties for a relatively high pump power of 100 mW. Fig. 8 shows
output power from one end of the fiber as a function of modu-
lation strength for the fixed pump power 100 mW. Clearly, if
the modulation strength is too weak the output power is zero,
i.e., there is no lasing. It is also clear that as the region doped
with erbium is changed from a region covering % of the
mode energy to a region covering% or % the fiber will lase
at lower modulation strengths and provide more output power at
a fixed modulation strength. In both cases this is due to the more
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Fig. 8. Output power as a function of modulation strength� for the honeycomb photonic crystal fiber with hole-spacing� = 1:62 �m and hole-diameter to
hole-spacing ratioD=� = 0:41. The defect hole has the same size as the other holes. The calculation has been performed for the fiber doped with the erbium
concentration� = 1:74�10 m within circles where 99, 91, and 68% of the signal power is confined. Both a fiber laser with no waveguide loss (� = 0:0 m )
and a fiber with waveguide loss and/or absorption loss (� = 0:25 m ) are considered.

erbium providing more gain. However, since the pump intensity
profile at positions C and D has lower amplitude compared to
the pump intensity profile at positions A and B (see Fig. 3), a
high pump power is required for the erbium at positions C and
especially D to have sufficient inversion to offer any reasonable
amplification of the light.

In Fig. 8 both a case with no background loss (absorption /
waveguide loss) denoted m and a case with back-
ground loss denoted m are considered. For the
case with background losses taken into account there is an op-
timum modulation strength, where the output power is maxi-
mized, for the given pump power. If the modulation strength is
higher than this optimum the output power decreases since rela-
tively more light is lost due to the background losses compared
to the useful light coupled out through the Bragg mirrors. Note
that the optimum modulation strength depends on both back-
ground loss and the length of the fiber laser.

The advantage of using a high modulation strength is, how-
ever, that the threshold pump power required for lasing will be
lower.

The situation for pump powers near the pump threshold is il-
lustrated in Fig. 9. Note that the slope of the curves in Fig. 9
is lower near threshold, a result which is seen only because the
model for gain takes into account the spatial distribution and in-
version of Er relative to the signal and pump intensity across
the fiber and along the fiber. Fig. 9 shows that the choice of
doping within the % circle offers the lowest pump
power threshold both when background losses are not present
( m ) and in the presence of background losses (

m ). As the area doped with erbium covers a larger frac-
tion of the mode intensity profiles the pump power threshold
increases. Note that whereas the output power is highest for the
doped region covering 99% of the mode energy in Fig. 8, where

the pump power is high, this is not the case in Fig. 9 where the
pump power is low.

The inversion at the four positions A, B, C, and D along the
length axis of the fiber laser is shown for a high and a low pump
power in Fig. 10. For the high pump power 100 mW the inver-
sion at positions A, B, and C is approximately the same along
the fiber. At position D the inversion is significantly lower rel-
ative to the other positions even at high pump powers. How-
ever, for the pump power 100 mW the inversion at position D
is still sufficiently high for the erbium to provide amplification
of the light. The low inversion at position D can be understood
by noting that the amplitude of the signal intensity distribution

is high relative to the pump intensity distribution at
this position.

At the center of the fiber laser (L ) the inversion is
low relative to the inversion at the edges of the fiber laser. This
is due to high signal power at the center of the structure. The
signal power along the fiber is shown as an inset in Fig. 10. The
inversion at the same four positions for the pump power 5 mW
only slightly above threshold is shown to the right in Fig. 10.
In this case the inversion at position D is below

, and erbium at this position will attenuate the
signal. The inversion at position D peaks at the center of the
fiber laser ( ), where the signal intensity peaks, as a
consequence of the absorption of the signal. Also note that the
asymmetry seen in Fig. 10 is due to the fiber being pumped from
the right end.

The large mode-area fiber with circular air-holes arranged on
a triangular lattice with a single air-hole removed hold both ad-
vantages and disadvantages. Here we will again consider a fiber
design of length 5 cm with a UV-induced Bragg grating with a
phase shift of at the center of the grating. We choose
the same erbium concentration and emission / absorption cross
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Fig. 9. Output power as a function of pump power for the erbium doped honeycomb photonic crystal fiber laser with modulation strength� = 110 m . The
calculation has been performed for the fiber doped with the erbium concentration� = 1:74 � 10 m within a region covering 99, 91, and 68% of the signal
power. To the left is shown a calculation where background losses� are set equal to 0, whereas the calculation to the right takes into account a background loss
of � = 0:25 m .

Fig. 10. Inversion at four positions A, B, C, and D in the erbium doped honeycomb distributed feedback fiber laser for two choices of pump power. Left: a high
pump power of 100 mW and right: a pump power of 5 mW only slightly above threshold. The inset shows the sum of signal powers in forward and backward
running waves.

sections that were also used above for modeling the honeycomb
fiber laser.

The disadvantage of using large-mode area fibers for fiber
lasers is that in order to achieve the same amplification per unit
length a larger area must be doped with Er. This leads to sig-
nificant losses due to spontaneous emission and consequently a
higher pump power threshold. This is illustrated in Fig. 11 for
the erbium-doped triangular photonic crystal distributed feed-
back fiber laser for three sizes of fibers given by the center-to-
center hole-spacing . The region doped with Er is shown

with a circle in the inset. The fraction of signal and pump energy
within the circle in the inset for all three choices of are in the
range from 84–88%. Fig. 11 shows that for a relatively modest
size of fiber core given by the center-to-center hole-spacing

m the pump power threshold of 5.0 mW is certainly
higher than what was the case for the honeycomb fiber, even for
the honeycomb fiber doped within a large region covering 99%
of the mode energy. This difference is due to the small effective
mode area of the honeycomb fiber laser. As the size of the tri-
angular fiber is increased to m the area doped with
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Fig. 11. Illustration of pump power threshold for three sizes of erbium-doped triangular photonic crystal distributed feedback fiber lasers. The size parameter
� represents the center-to-center hole-spacing in the fiber design.

Fig. 12. The figure shows local intensity in units W/mfor the honeycomb photonic crystal fiber, the standard step-index fiber and the triangular photonic crystal
fiber, where the total power passing through the fibers is 1 W.

Er increases, and consequently the pump power threshold in-
creases to 9.2 mW. For m the pump power threshold
has increased to 21.7 mW.

The advantage of the triangular photonic crystal fiber laser is,
however, not found near the pump power threshold. This fiber
is suitable for high power applications. In Fig. 12 the local in-
tensity (W/m ) for the signal is shown for the honeycomb pho-
tonic crystal fiber, the standard step-index fiber and the trian-
gular photonic crystal fiber. In all cases the total power passing
through the fiber is assumed to be 1 W. The local intensity pro-
file for a standard step-index fiber shown in Fig. 12 has been

calculated by assuming a Gaussian distribution function and a
core with radius m. The wavelength 980 nm is chosen as the
single-mode cut-off wavelength, i.e., for shorter wavelengths
the step-index fiber is multimoded. The peak amplitudes at 1560
and 980 nm for the step-index fiber are considerably different.
This is not the case for the guided modes at the same two wave-
lengths in the honeycomb fiber design (see Fig. 4).

As the area increases for the triangular photonic crystal fiber
the local intensity may become very low for the same total trans-
mitted intensity relative to other fiber designs. This makes pos-
sible higher output powers and pump powers before the glass at
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the center of the fiber laser, where the signal intensity is high,
melts. Furthermore, higher powers are possible before the per-
formance is limited by intensity-dependent nonlinear effects.

V. CONCLUSION

Two photonic crystal fiber designs, with circular air-holes
running down the length of the fiber, have been considered
for making erbium-doped distributed feedback fiber lasers
with Bragg gratings. Both photonic crystal fiber designs are
single-moded at the signal wavelength 1560 nm and the pump
wavelength 980 nm.

The mode intensity profiles at the two wavelengths 1560 and
980 nm differs only slightly for the honeycomb photonic crystal
fiber design. This is also the case for the triangular photonic
crystal fiber design when the wavelengths 1560 and 980 nm
are both small compared to the dimensions of the microstruc-
ture in the fiber. Both properties, i.e., single-moded at 1560 and
980 nm and only a small deviation between the mode intensity
distributions at these two wavelengths, is not possible in stan-
dard step-index fiber. The honeycomb fiber is characterized by
having a large fraction of the mode energy confined within a
small area, whereas the triangular photonic crystal fiber is char-
acterized by large mode areas. This difference leads to small
pump power thresholds and high local peak intensities (W/m)
for the honeycomb photonic crystal fiber laser, whereas high
powers are possible in the large-mode-area triangular photonic
crystal fiber laser before the performance is limited by heating
effects and intensity-dependent nonlinear effects.
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