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Guided-Mode and Leaky-Mode Analysis by
Imaginary Distance Beam Propagation Method Based
on Finite Element Scheme
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Abstract—As a simple analysis method to solve eigenmodes 111 I m ld
of optical waveguides, we present an imaginary distance beam X
propagation method (BPM) based on finite element scheme. The
matrices used in the beam propagation analysis are essentially Y
complex, so lossy optical waveguides can be easily treated. More- 1 ]| %W
over, employing the transparent boundary condition or perfectly
matched layer boundary condition, the validity of which has been
already confirmed in the real distance BPM, we can easily treat

not only guided modes but leaky ones. To show the validity and

. - . 111 II | | d
usefulness of this approach, eigenmodes of two- and three-dimen- — —
sional leaky waveguides, and optical fibers are calculated. Y4 Wi "d

Index Terms—Beam propagation method (BPM), finite element Fig. 1
method (FEM), guided-mode analysis, imaginary distance propa- o
gation method, leaky optical waveguide.

Optical waveguide surrounded by PML.

arbitrarily superposing the eigenmodes. The main advantages
of the ID-BPM as an eigenmode solver are as follows: 1)
high-efficient calculation algorithms developed for the BPM
N ANALYSIS of eigenmodes in longitudinally invariant analysis can be directly utilized, 2) matrices derived from the
optical waveguides is indispensable for designing opticBPM formulation are essentially complex, so lossy optical
waveguide devices and many kinds of analysis methods havaveguides can be easily treated with no additional effort, 3)
been reported [1], [2]. On the other hand, in order to analyeéggenmodes can be obtained successively from the fundamental
the light propagation behavior of longitudinally varying opticalo higher order modes, and 4) employing the appropriate
waveguides, the beam propagation method (BPM) is at presbotindary conditions, not only guided modes but leaky modes
widely used and there are great number of versions of the BRMsuch as ARROW optical waveguides may be treated [14]
[3], [4]; BPM based on the fast Fourier transform (FFT-BPM)hecause radiation fields are automatically included in the BPM
BPM based on the finite difference method (FD-BPM), andalculation. The ID-BPM developed so far is mainly based on
BPM based on the finite element method (FE-BPM). Especialthe FDM (FD-ID-BPM). FEM has some advantages mentioned
FE-BPM is superior to FFT-BPM in the sense that the formabove, so if FE-BPM can be applied to the imaginary distance
can be applied to strongly guiding waveguides and strongly paropagation method including the leaky mode analysis, its
larization dependent waveguides. In addition, FE-BPM can arsefulness will be enhanced.
bitrarily select the order and the number of elements, dependingn this paper, we present the finite element ID-BPM
on the required computational accuracy. Itis, of course, possiliE-ID-BPM). Here, in order to treat leaky modes, the trans-
to use nonuniform finite element meshes. Furthermore, thgsrent boundary condition (TBC) [16] or the perfectly matched
meshes can be adaptively updated along the propagation ditager (PML) boundary condition [17]-[19], the validity of
tion so that computational efficiency can be improved withowthich has been already confirmed in the real distance beam
degrading numerical accuracy [5]-[8]. These features are mwbpagation method, are employed as boundary conditions
available in FFT-BPM and FD-BPM. for artificial boundaries. To show the validity and usefulness
Recently, the so-called imaginary distance beam propagatwithis approach, eigenmodes of two-dimensional (2-D) and
method (ID-BPM) has been reported as an analysis methihdlee-dimensional (3-D) leaky waveguides, and optical fibers
of eigenmodes [9]-[15]. In the ID-BPM, the propagatiorare calculated.
direction is selected along the imaginary axis and selecting
the appropriate propagation step size, we can extract thejl. PERFECTLY MATCHED LAYER BOUNDARY CONDITION
specific eigenmode from the initial inputted field expressed by We consider a 3-D optical waveguide surrounded by PML re-

gions |, Il, and IIl with thicknessl as shown in Fig. 1, where
Manuscript recelyed June_22_, 1999; rewsed November 29,_1999. _ _andy are the transverse directionsijs the propagation direc-
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andW, are the computational window sizes along thandy TABLE |
directions, respectively. Using the transversely scaled version of THE DEFINITION OF s, 8y
PML [18], Maxwell's equations can be written as

Region s, s

z y
V' x H = jweon*sE 1) I L s
I s 1
111 1 1
V' x E = —jwposH )
wherei,, i, andz. are the unit vectors in the, y, andz direc-
with tions, respectively, and the valuessgfands, are summarized
o, O in Table I.
s=1-j—s5=1-j— ()
WeQN Wl
[ll. BEAM PROPAGATION METHOD
where Basic E .
E andH electric and magnetic field vectors, respectivelyf“‘ asic Equation
w angular frequency; Under the scalar approximation, from (1) and (2) we get the
eg andugy permittivity and permeability of free space, refollowing basic equation:
spectively;
n refractive index; s 9 <p3_“’ @) +s 9 <p3_'y @)
o. ando,, electric and magnetic conductivities of PML, re- 9z \" s 9z dy \" s 9y
spectively. a9 ([ 9% 2 _
The relation (3) is required to satisfy the PML impedance +88z Pa: +hkogs® =0 (10)

matching condition _
wherek, is the free space wavenumber, abdp, andq are

(4) given by

Ue _ O—’nl

gon? o

—_ _ a2
which means that the wave impedance of a PML medium ex- e=F, p=1 q=n 1)

actly equals that of the adjacent medium with refractive ind

n in the computational window,/ 1.0/ (eon?), regardless of the
angle of propagation or frequency. In the PML medium, we as-

%r E* (quasi-TE) modes and

, : L ®=~H, =1/n? =1 12
sume arm-power profile of the electric conductivity as P /% a (12)
o™ for £Y (quasi-TM) modes.
Te = Tmax (d) ®) Substituting a solution of the form
Wherep_ is the dis‘Fance frqm the beginning_ of PML. Using the O(x, y, 2) = $(x, y, 2) exp(—jkonoz) (13)
theoretical reflection coefficie® [18] at the interface between
the computational window and the PML medium into (10), and assuming Fresnel approximation, we obtain the
. 4 . following beam propagation equation for the slowing varying
R=oxp [_2 max/ (B) dp] (6) complex amplitudes:
goen Jo \d
9ik 99 g Sz O g sy O¢
the maximum conductivity,.. may be determined as —ERonops o -+ e AP o | oy \Ps oy
m+ 1 egcn 1 —l—kgs(q - ”(QJPMJ =0 (14)

Omax = T d In E (7)

' wheren, is the reference refractive index.
wherec is the light velocity of free space. Usually, a parabolic
profile is assumed for the conductivityy = 2, and thuss in - B. Finite Element Discretization

(1) and (2) is finally written as Dividing the waveguide cross section into quadratic (second-

order) triangular or line elements for 3-D or 2-D waveguide
(8) structures, and applying the standard FEM to (14), we obtain

o3 /pN\2 1. .
.= 1 I (3) In 7 n PML region
1 in non-PML region
’ : d{¢} L 1202
—2jkono[M]|—— K| + kgng[M ={0 15
whereX = 2n¢/w is the free-space wavelength. ikonolM] dz +([ I+ konol ]) {o} =10} (19)
The modified differential operatd?v’ used in (1) and (2) is

defined as where{¢} is the global electric or magnetic field vectdfi} is

a null vector. The matrixk] is given by
V' = 'l.g,;sgc3 +2y5 9 —|—izs2 9) >
dr Yoy Az (K] = [K]+ [K]r (16)
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and the finite element matric¢&’] and[A/] are given by

K1=3 /I [’“ gy - plz 2N OV

s oz
; N nNT
_ S_J M M dz dy (17)
s Oy dy
y
M| = s{NHNY dz dy. 18
[ ] ze: //e P { }{ } 4 ( ) Fig. 2. Two-dimensional leaky waveguide.
Here,{ N} is the shape function vectdF, denotes a transpose, IV. IMAGINARY DISTANCE PROPAGATION METHOD

andX. extends over all different elements. The tefifr in

(16) is related to TBC and is given by Assuming that the effective refractive index of tfta eigen-

mode isn.g ; and that the corresponding field {5f;}, the
eigenvalue equation can be written as follows:

[K]{fj} - koneﬂ j[M]{fJ} (26)

where{N}1 is the shape function vector on the TBC-imposeéfter Az propagation, from (23)-(26) the field distribution of
boundary[’, =.’ extends over all boundary elements, and tH&e jth eigenmode yields

integration is performed on the bounddry The way of de- . . 2, 9 9
termination off,, corresponding to the outside wavenumber is —2jkono — 0.58zk5(neg, ; — 1) )

{f }z-l—l 2 2 {fj }z- (27)
described in [7] In this formulation, we employ the isopara- —2jkong + 0.5A2kF(nZ; e ng)
metric triangular elements and matri¢ég), [A ] are calculated . : . L .
by using the numerical integration formula derived by Hammer Whenm eigenmodes including radiation modes exist in the
et al.[20]. waveguide, the field ¢}, at theith propagation step can be

In the case of 2-D slab waveguid&/dx = 0 and[K], [M], expressed by

K=Y /F kN NVE ds (19)

and[K|r are given by m
{o}i = Z Ayl S} (28)
O{N} o{N}T =
K] = Kas{NHYNY -
4] z;/e [ 0astVHNY s Oy dy & whereA4; ; is the complex amplitude of thgh eigenmode. Se-
(20) lecting the propagation step size alonglirection,Az, as
)= 3 [ psNHNY dy @y Apmjo Ao (29)
e € 2 p2 k
(neﬂ,] ”0) 0
—jpky O - 0
o 0 --- 0 for a sufficiently large number of, {¢} converges to thgth
[K]r = : (22) eigenvector f; } [13]. The effective index of this eigenmode,
0 0 - —jpky Tett, j, IS Obtained by
o AHIKL{9): 0)
C. Crank-Nicholson Method I R M {0}

Applying the Crank-Nicholson algorithm for the propagatiog; the;th propagation step with denoting complex conjugate
directionz to (15) yields and transpose.

In the actual case, the effective index of the desired mode is
[Ali{¢}iv1 = [Bli{o}i (23) unknown at the beginning of calculation, so we use the largest

refractive index of the waveguiding region to determifie.

with After a few iterative calculations using thisz are performed,

and the effective index difference from the previous propaga-

Y ‘ - o tion step is converged tt—3, we usen.s, ;; to determineAz,

[A]i = =2jkono[M]i + 0.547 ([K]” FongM]; ) (%) 2nd then the field distribution and effective index of the fun-

damental mode are obtained. The value of reference refractive
index,ng, may be arbitrarily chosen. Here, we use the smallest

. . value among the refractive indexes so as to make the imaginary
[Bli = —2jkono[M]; — 0.5A% ([K]z‘ kgng[M]; ) - (25) distance ofAz positive.
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Fig. 5. Electric field evolution.

When calculating the higher order mode, for example, t
kth higher order mode, the lower order field components afd

eliminated from the initial inputted field as

/ UMY} de dy

(P ={oh-

= / U5V ML} de dy

2.6 um

20% AlGaA

5% AlGaAs 1.1pm

Fig. 6. Three-dimensional leaky waveguide.

(c) (d)

Fig.7. Electricfield distributions: (&7, , (0)E%,, (C)EZ, , and (dZ, modes.

V. NUMERICAL RESULTS

First, in order to confirm the validity of FE-ID-BPM with
TBC or PML, we consider a 2-D leaky waveguide as shown
in Fig. 2 [19]. The eigenmodes supported in this type of wave-
guide are essentially leaky modes and generally those complex
iifective indexes cannot be easily calculated. On the other had,
in, our FE-ID-BPM, TBC, or PML, the validity of which has
been already confirmed in the real distance beam propagation
method, has been incorporated and the complex effective in-
dexes are easily calculated. The waveguide parameters are given
by ng = 1.0, ny = 1.458, no = 2.01, ng = 3.5, W; = 4.0,
andW, = 0.5, and the operating wavelengthliss5 »m, and
the fundamental transverse electric (TE) mode is calculated.
The complex effective index calculated with TBC or PML is

Using (31) as a new inputted fieldp} will converge to the 1.4462244 — j4.722 x 10~* and is in good agreement with
desired higher order mode without converging to the lower ordiire theoretical onel.4462245 — 54.721 x 10~* [19]. Fig. 3

modes.

shows the field distribution calculated with TBC and PML. In
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TABLE I 1.5068 oL
COMPLEX EFFECTIVE INDEX 5 1.50661 %BC
= L - - - Neumann
Mode FE-ID-BPM Vector-FEM [21] Eosomk v T - Dirichlet
EZ,  3.574131 — j1.6976~7 3.574125 — j1.7649~7 2 I
Ef,  3.543530 — j5.4823°  3.543505 — ;5.53527° 310
B, 3.529949 — j1.6915~%  3.529994 — ;1.4923~5 5 1.5060F
EZ, 3498591 — j1.2316™% 3.498680 — j1.2273~ _ L
1'50588 12 16 20

Computational window size [pLm]

Fig. 9. Effective index as a function of the computational window size.

e

the case of PML, PML layer with Am width is uniformly di-

vided into 40 elements an = 10~%. The results agree well
(b) ()

2a

Fig. 8. Optical fiber.

—
)
Rai%

with each other within the analysis region. Fig. 4 shows the co
vergence behavior of the effective index. We can see that 1
PML boundary condition can converge the effective index fast
than TBC. This is because that TBC is required to simultan
ously converge the effective index and the TBC paramiter
in (19) related to the outside wavenumber at the boundary. (
the other hand, the PML parameter needs not be changed in
calculation. Fig. 5 shows the field evolution in this calculatiol
with PML. We select the random field as an initial inputted fielc
and it is quickly modified to the fundamental eigenmode.
Next, we consider a 3-D leaky waveguide as shown in Fig.
The refractive indexes are 3.452 for 20% AlGaAs, 3.555 for 5!
AlGaAs, and 3.590 for GaAs, and the operating wavelength
1.064 pm. The PML boundary condition is imposed at the oute
boundaries and the first four symmetric quasi-TE modes are ¢
culated. PML layer withl m width is uniformly divided by 6
andR = 10~ 3. Inthis calculation, to accelerate the convergenc
behavior, we use the modal field profile and effective index fc
the same structure in which GaAs substrate is replaced by !
AlGaAs. Fig. 7 shows the field distributions and Table Il show
the effective indexes for each mode. Our results agree well w
those of the full-wave conventional eigenmode analysis [21].
Finally, we consider an optical fiber as shown in Fig. 8. Th_
refractive indexes are;, = 1'.515 andnp = 1.5, core radius Fig. 10. Electric field distributions: (d)/ = 20 pm with Neumann boundary
a = 2.0 m, and the normalized frequeney= 2. The PML  ¢ongition, (b)lV" = 8 um with PML boundary condition, ()’ = 8 zm with
or TBC boundary condition is imposed and the fundamentaC boundary condition, (d)’ = 8 zm with Neumann boundary condition,
quasi-TE mode is calculated. PML layer with:m width is and (&) = 8 um with Dirichlet boundary condition.
uniformly divided by 4 andR = 10~2. Fig. 9 shows the ef-
fective index as a function of the computational window sizeults calculated for a sufficiently large computational window
For comparison, the results obtained by using the standard N&& = 20 ;m) and Fig. 10(b)—(e) are those calculated for a
mann and Dirichlet boundary conditions are also shown. We camaller computational windowX = 8 zm) with PML, TBC,
see that the PML boundary condition and TBC can drasticalNeumann, and Dirichlet boundary conditions, respectively. The
reduce the computational window size. Fig. 10 shows the elgesults of Fig. 10(a)—(c) are in good agreement and the effec-
tric field distributions in the optical fiber. Fig. 10(a) is the retiveness of PML and TBC boundary condition is confirmed.

N="

(@) (e)
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As a simple and efficient eigenmode analysis method for

VI. CONCLUSION [18] U.Pekel and R. Mittra, “A finite-element method frequency-domain ap-
plication of the perfectly matched layer (PML) conceptjicrowave

Opt. Technol. Lettvol. 9, pp. 117-122, June 1995.

3-D optical waveguides, an imaginary distance BPM based ol9] W.P.Huang, C.L. Xu, and K. Yokoyama, “The perfectly matched layer

finite element scheme was newly described. In order to treat

boundary condition for modal analysis of optical waveguides: Leaky
mode calculations,/EEE Photon. Technol. LettMay 1996.

not only guided modes but leaky modes, the TBC and PMLj20] M. Koshiba, Optical Waveguide Theory by the Finite Element

boundary conditions were introduced as boundary conditions
for artificial boundaries. To show the validity and usefulnessm]
of this approach, numerical results for 2-D and 3-D leaky
waveguides, and optical fibers were presented. A full-wave

Method Tokyo, Japan/Dordrecht, Germany: KTK Scientific/Kluwer
Academic, 1992.

H. E. Hernadndez-Figueroa, F. A. Fernandez, Y. Lu, and J. B. Davies,
“Vectorial finite element modeling of 2D leaky waveguide$EE
Ttrans. Magnet.vol. 31, pp. 1710-1713, May 1995.

FE-ID-BPM using edge/nodal hybrid elements is now under
consideration.
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