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Guided-Mode and Leaky-Mode Analysis by
Imaginary Distance Beam Propagation Method Based

on Finite Element Scheme
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Abstract—As a simple analysis method to solve eigenmodes
of optical waveguides, we present an imaginary distance beam
propagation method (BPM) based on finite element scheme. The
matrices used in the beam propagation analysis are essentially
complex, so lossy optical waveguides can be easily treated. More-
over, employing the transparent boundary condition or perfectly
matched layer boundary condition, the validity of which has been
already confirmed in the real distance BPM, we can easily treat
not only guided modes but leaky ones. To show the validity and
usefulness of this approach, eigenmodes of two- and three-dimen-
sional leaky waveguides, and optical fibers are calculated.

Index Terms—Beam propagation method (BPM), finite element
method (FEM), guided-mode analysis, imaginary distance propa-
gation method, leaky optical waveguide.

I. INTRODUCTION

A N ANALYSIS of eigenmodes in longitudinally invariant
optical waveguides is indispensable for designing optical

waveguide devices and many kinds of analysis methods have
been reported [1], [2]. On the other hand, in order to analyze
the light propagation behavior of longitudinally varying optical
waveguides, the beam propagation method (BPM) is at present
widely used and there are great number of versions of the BPM
[3], [4]; BPM based on the fast Fourier transform (FFT-BPM),
BPM based on the finite difference method (FD-BPM), and
BPM based on the finite element method (FE-BPM). Especially,
FE-BPM is superior to FFT-BPM in the sense that the former
can be applied to strongly guiding waveguides and strongly po-
larization dependent waveguides. In addition, FE-BPM can ar-
bitrarily select the order and the number of elements, depending
on the required computational accuracy. It is, of course, possible
to use nonuniform finite element meshes. Furthermore, these
meshes can be adaptively updated along the propagation direc-
tion so that computational efficiency can be improved without
degrading numerical accuracy [5]–[8]. These features are not
available in FFT-BPM and FD-BPM.

Recently, the so-called imaginary distance beam propagation
method (ID-BPM) has been reported as an analysis method
of eigenmodes [9]–[15]. In the ID-BPM, the propagation
direction is selected along the imaginary axis and selecting
the appropriate propagation step size, we can extract the
specific eigenmode from the initial inputted field expressed by
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Fig. 1. Optical waveguide surrounded by PML.

arbitrarily superposing the eigenmodes. The main advantages
of the ID-BPM as an eigenmode solver are as follows: 1)
high-efficient calculation algorithms developed for the BPM
analysis can be directly utilized, 2) matrices derived from the
BPM formulation are essentially complex, so lossy optical
waveguides can be easily treated with no additional effort, 3)
eigenmodes can be obtained successively from the fundamental
to higher order modes, and 4) employing the appropriate
boundary conditions, not only guided modes but leaky modes
in such as ARROW optical waveguides may be treated [14]
because radiation fields are automatically included in the BPM
calculation. The ID-BPM developed so far is mainly based on
the FDM (FD-ID-BPM). FEM has some advantages mentioned
above, so if FE-BPM can be applied to the imaginary distance
propagation method including the leaky mode analysis, its
usefulness will be enhanced.

In this paper, we present the finite element ID-BPM
(FE-ID-BPM). Here, in order to treat leaky modes, the trans-
parent boundary condition (TBC) [16] or the perfectly matched
layer (PML) boundary condition [17]–[19], the validity of
which has been already confirmed in the real distance beam
propagation method, are employed as boundary conditions
for artificial boundaries. To show the validity and usefulness
of this approach, eigenmodes of two-dimensional (2-D) and
three-dimensional (3-D) leaky waveguides, and optical fibers
are calculated.

II. PERFECTLYMATCHED LAYER BOUNDARY CONDITION

We consider a 3-D optical waveguide surrounded by PML re-
gions I, II, and III with thickness as shown in Fig. 1, where
and are the transverse directions,is the propagation direc-
tion, PML regions I and II are faced with theand directions,
respectively, region III corresponds to the four corners, and
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and are the computational window sizes along theand
directions, respectively. Using the transversely scaled version of
PML [18], Maxwell’s equations can be written as

(1)

(2)

with

(3)

where
and electric and magnetic field vectors, respectively;

angular frequency;
and permittivity and permeability of free space, re-

spectively;
refractive index;

and electric and magnetic conductivities of PML, re-
spectively.

The relation (3) is required to satisfy the PML impedance
matching condition

(4)

which means that the wave impedance of a PML medium ex-
actly equals that of the adjacent medium with refractive index

in the computational window, , regardless of the
angle of propagation or frequency. In the PML medium, we as-
sume an -power profile of the electric conductivity as

(5)

where is the distance from the beginning of PML. Using the
theoretical reflection coefficient [18] at the interface between
the computational window and the PML medium

(6)

the maximum conductivity may be determined as

(7)

where is the light velocity of free space. Usually, a parabolic
profile is assumed for the conductivity, , and thus, in
(1) and (2) is finally written as

in PML region

in non-PML region
(8)

where is the free-space wavelength.
The modified differential operator used in (1) and (2) is

defined as

(9)

TABLE I
THE DEFINITION OF s , s

where , and are the unit vectors in the , and direc-
tions, respectively, and the values ofand are summarized
in Table I.

III. B EAM PROPAGATION METHOD

A. Basic Equation

Under the scalar approximation, from (1) and (2) we get the
following basic equation:

(10)

where is the free space wavenumber, and , and are
given by

(11)

for (quasi-TE) modes and

(12)

for (quasi-TM) modes.
Substituting a solution of the form

(13)

into (10), and assuming Fresnel approximation, we obtain the
following beam propagation equation for the slowing varying
complex amplitude :

(14)

where is the reference refractive index.

B. Finite Element Discretization

Dividing the waveguide cross section into quadratic (second-
order) triangular or line elements for 3-D or 2-D waveguide
structures, and applying the standard FEM to (14), we obtain

(15)

where is the global electric or magnetic field vector, is
a null vector. The matrix is given by

(16)
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and the finite element matrices and are given by

(17)

(18)

Here, is the shape function vector, denotes a transpose,
and extends over all different elements. The term in
(16) is related to TBC and is given by

(19)

where is the shape function vector on the TBC-imposed
boundary, , extends over all boundary elements, and the
integration is performed on the boundary. The way of de-
termination of corresponding to the outside wavenumber is
described in [7]. In this formulation, we employ the isopara-
metric triangular elements and matrices are calculated
by using the numerical integration formula derived by Hammer
et al. [20].

In the case of 2-D slab waveguide, and ,
and are given by

(20)

(21)

(22)

C. Crank–Nicholson Method

Applying the Crank–Nicholson algorithm for the propagation
direction to (15) yields

(23)

with

(24)

(25)

Fig. 2. Two-dimensional leaky waveguide.

IV. I MAGINARY DISTANCE PROPAGATIONMETHOD

Assuming that the effective refractive index of theth eigen-
mode is and that the corresponding field is , the
eigenvalue equation can be written as follows:

(26)

After propagation, from (23)–(26) the field distribution of
the th eigenmode yields

(27)

When eigenmodes including radiation modes exist in the
waveguide, the field at the th propagation step can be
expressed by

(28)

where is the complex amplitude of theth eigenmode. Se-
lecting the propagation step size along-direction, , as

(29)

for a sufficiently large number of, converges to theth
eigenvector [13]. The effective index of this eigenmode,

, is obtained by

(30)

at the th propagation step with denoting complex conjugate
and transpose.

In the actual case, the effective index of the desired mode is
unknown at the beginning of calculation, so we use the largest
refractive index of the waveguiding region to determine.
After a few iterative calculations using this are performed,
and the effective index difference from the previous propaga-
tion step is converged to , we use to determine ,
and then the field distribution and effective index of the fun-
damental mode are obtained. The value of reference refractive
index, , may be arbitrarily chosen. Here, we use the smallest
value among the refractive indexes so as to make the imaginary
distance of positive.
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Fig. 3. Electric field distribution.

Fig. 4. Relative error of the effective index.

Fig. 5. Electric field evolution.

When calculating the higher order mode, for example, the
th higher order mode, the lower order field components are

eliminated from the initial inputted field as

(31)

Using (31) as a new inputted field, will converge to the
desired higher order mode without converging to the lower order
modes.

Fig. 6. Three-dimensional leaky waveguide.

Fig. 7. Electric field distributions: (a)E , (b)E , (c)E , and (d)E modes.

V. NUMERICAL RESULTS

First, in order to confirm the validity of FE-ID-BPM with
TBC or PML, we consider a 2-D leaky waveguide as shown
in Fig. 2 [19]. The eigenmodes supported in this type of wave-
guide are essentially leaky modes and generally those complex
effective indexes cannot be easily calculated. On the other had,
in our FE-ID-BPM, TBC, or PML, the validity of which has
been already confirmed in the real distance beam propagation
method, has been incorporated and the complex effective in-
dexes are easily calculated. The waveguide parameters are given
by , , , , ,
and , and the operating wavelength is m, and
the fundamental transverse electric (TE) mode is calculated.
The complex effective index calculated with TBC or PML is

and is in good agreement with
the theoretical one, [19]. Fig. 3
shows the field distribution calculated with TBC and PML. In
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TABLE II
COMPLEX EFFECTIVE INDEX

Fig. 8. Optical fiber.

the case of PML, PML layer with 1m width is uniformly di-
vided into 40 elements and . The results agree well
with each other within the analysis region. Fig. 4 shows the con-
vergence behavior of the effective index. We can see that the
PML boundary condition can converge the effective index faster
than TBC. This is because that TBC is required to simultane-
ously converge the effective index and the TBC parameter
in (19) related to the outside wavenumber at the boundary. On
the other hand, the PML parameter needs not be changed in this
calculation. Fig. 5 shows the field evolution in this calculation
with PML. We select the random field as an initial inputted field
and it is quickly modified to the fundamental eigenmode.

Next, we consider a 3-D leaky waveguide as shown in Fig. 6.
The refractive indexes are 3.452 for 20% AlGaAs, 3.555 for 5%
AlGaAs, and 3.590 for GaAs, and the operating wavelength is

m. The PML boundary condition is imposed at the outer
boundaries and the first four symmetric quasi-TE modes are cal-
culated. PML layer with m width is uniformly divided by 6
and . In this calculation, to accelerate the convergence
behavior, we use the modal field profile and effective index for
the same structure in which GaAs substrate is replaced by 5%
AlGaAs. Fig. 7 shows the field distributions and Table II shows
the effective indexes for each mode. Our results agree well with
those of the full-wave conventional eigenmode analysis [21].

Finally, we consider an optical fiber as shown in Fig. 8. The
refractive indexes are and , core radius

m, and the normalized frequency . The PML
or TBC boundary condition is imposed and the fundamental
quasi-TE mode is calculated. PML layer with m width is
uniformly divided by 4 and . Fig. 9 shows the ef-
fective index as a function of the computational window size.
For comparison, the results obtained by using the standard Neu-
mann and Dirichlet boundary conditions are also shown. We can
see that the PML boundary condition and TBC can drastically
reduce the computational window size. Fig. 10 shows the elec-
tric field distributions in the optical fiber. Fig. 10(a) is the re-

Fig. 9. Effective index as a function of the computational window size.

Fig. 10. Electric field distributions: (a)W = 20�m with Neumann boundary
condition, (b)W = 8�m with PML boundary condition, (c)W = 8�m with
TBC boundary condition, (d)W = 8�m with Neumann boundary condition,
and (e)W = 8�m with Dirichlet boundary condition.

sults calculated for a sufficiently large computational window
( m) and Fig. 10(b)–(e) are those calculated for a
smaller computational window ( m) with PML, TBC,
Neumann, and Dirichlet boundary conditions, respectively. The
results of Fig. 10(a)–(c) are in good agreement and the effec-
tiveness of PML and TBC boundary condition is confirmed.
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VI. CONCLUSION

As a simple and efficient eigenmode analysis method for
3-D optical waveguides, an imaginary distance BPM based on
finite element scheme was newly described. In order to treat
not only guided modes but leaky modes, the TBC and PML
boundary conditions were introduced as boundary conditions
for artificial boundaries. To show the validity and usefulness
of this approach, numerical results for 2-D and 3-D leaky
waveguides, and optical fibers were presented. A full-wave
FE-ID-BPM using edge/nodal hybrid elements is now under
consideration.
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