2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Journal of Lightwave Technology
Volume 18 Number 5, May 2000

Table of Contents for this issue

Complete paper in PDF format

Interferometric Crosstalk Reduction by Phase Scrambling

Idelfonso Tafur Monroy, Eduward Tangdiongga, René Jonker and Huig de Waardt

Page 637.

Abstract:

Interferometric crosstalk, arising from the detection of undesired signals at the same nominal wavelength, may introduce large power penalties and bit-error rate (BER) floor significantly restricting the scalability of optical networks. In this paper, interferometric crosstalk reduction in optical wavelength-division-multiplexing (WDM) networks by phase scrambling is theoretically and experimentally investigated. Enhancement of 7-and 5-dB tolerance toward crosstalk is measured in a 2.5-Gb/s transmission link of 100 km and 200 km of SSMF, respectively. This result proves the feasibility of optical networking in the local area network/metropolitan area network (LAN/MAN) domain while tolerating the relatively high crosstalk levels of present integrated optical switching and cross-connect technology. Experiment is in good agreement with theory. Recommendations on the use of phase scrambling to reduce crosstalk in WDM systems are given.

References

  1. E. L. Goldstein, L. Eskildsen and A. F. Elrefaie, "Performance implications of component crosstalk in transparent lightwave networks", IEEE Photon. Technol. Lett., vol. 6, pp.  657-700, May  1994.
  2. E. L. Goldstein and L. Eskildsen, "Scaling limitations in transparent optical networks due to low-level crosstalk", IEEE Photon. Technol. Lett., vol. 7, pp.  93-94, Jan.  1995.
  3. P. T. Legg, M. Tur and I. Andonovic, "Solution paths to limit interferometric noise induced performance degradation in ASK/direct detection lightwave networks", J. Lightwave Technol., vol. 14, pp.  1943-1953, Sept.  1996 .
  4. I. T. Monroy and E. Tangdiongga, "Performance evaluation of optical cross-connects by saddlepoint approximation", J. Lightwave Technol., vol. 16, pp.  317-323, Mar.  1998.
  5. C. G. P. Herben, et al. "Compact integrated polarisation independent optical crossconnect", in Proc. Eur. Conf. Optic. Commun., vol. 1, Madrid, Spain,Sept. 20-24 1998, pp.  257-258. 
  6. P. K. Pepeljugoski and K. Y. Lau, "Interferometric noise reduction in fiber-optic links by superposition of high frequency modulation", J. Lightwave Technol. , vol. 10, pp.  957-963, July  1992.
  7. A. Mooradian, "Laser linewidth", Phys. Today, vol.  38, pp.  43-48, May  1985.
  8. G. Einarsson, Principles of Lightwave Communications, New York: Wiley, 1996.
  9. C. G. P. Herben, et al. "Crosstalk performance of integrated optical cross-connects", J. Lightwave Technol., vol. 17, pp.  1126-1134, July  1999.
  10. I. T. Monroy, E. Tangdiongga and H. de Waardt, "On the distribution and performance implications of interferometric crosstalk in WDM networks", J. Lightwave Technol., vol. 17, pp.  989-997, June  1999.
  11. A. Yariv, H. Blauvelt and S. Wu, "A reduction of interferometric phase-to-intensity conversion noise in fiber links by large index phase modulation of the optical beam", J. Lightwave Technol., vol. 10, pp.  978-981, July  1992 .
  12. F. W. Willems and W. Muys, "Suppression of interferometric noise in externally modualted lightwave AM-CATV systems by phase modulation", Electron. Lett., vol. 29, pp.  2062-2063, Nov.  1993.
  13. D. Middleton, An Introduction to Statistical Communication Theory, New York: McGraw-Hill, 1960.
  14. H. E. Rowe, Signals and Noise in Communications Systems, New York: D. van Nostrand , 1965.
  15. A. R. Chraplyvy, et al. "Phase modulation to amplitude modulation conversion of cw laser light in optical fibres", Electron. Lett., vol. 22, pp.  409-500, Apr.  1986.
  16. S. Yamamoto, et al. "Analysis of laser phase noise to intensity noise conversion by chromatic dispersion in intensity modulation and direct detection optical fiber transmission", J. Lightwave Technol., vol. 8, pp.  1716-1722, Nov.  1990.
  17. A. Yariv, et al. "An experimental and theoretical study of the suppression of interferometric noise and distortion in AM optical links by phase dither", J. Lightwave Technol., vol. 15, pp.  437-443, Mar.  1997.
  18. R. G. Smith and S. D. Personick, "Semiconductor device for optical communication,"in Receiver Design for Optical Communication Systems, New York: Springer-Verlag, 1987, pp.  89-160. 
  19. M. Tur and E. L. Goldstein, "Probability distribution of phase-induced intensity noise generated by distributed feed-back lasers", Opt. Lett. , vol. 15, pp.  1-3, Jan.  1990.
  20. R. Khosravani, et al. "Reduction of coherent crosstalk in WDM add/drop multiplexing nodes by bit pattern misaligment", IEEE Photon. Technol. Lett., vol. 11, pp.  134-135, Jan.  1999.