2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Journal of Lightwave Technology
Volume 18 Number 5, May 2000

Table of Contents for this issue

Complete paper in PDF format

Optical Multiplication Using a Bisected Intersecting Waveguide

Aref Chowdhury and Leon McCaughan Fellow, OSA

Page 688.

Abstract:

We present an analysis of a bisected intersecting waveguide in periodically poled lithium niobate that can produce and isolate the second-order optical product E(1+2) E1(1)E2(2) free from the near degenerate second harmonics. Model calculations of such a device fabricated in quasi-phase matched (QPM) LiNbO3 predict a conversion efficiency of 1.5 %/W, about 15% that of a straight waveguide of the same length,and a crosstalk of < -30 dB.

References

  1. F. Girardin, J. Eckner, G. Guekos, R. Dall'Ara, A. Mecozzi, A. D'Ottavi, F. Martelli, S. Scotti and P. Spano, "Low-noise and very high-efficiency four-wave mixing in 1.5-mm-long semiconductor optical amplifiers", IEEE Photon. Technol. Lett., vol. 9, pp.  746-748, 1997.
  2. S. Dubovitsky and W. H. Steier, "Tunable wavelength filters based on nonlinear optical interactions in semiconductor amplifiers", J. Lightwave Technol., vol. 14, pp.  1020-1026, 1996.
  3. D. X. Zhu, S. Dubovitsky, W. H. Steier, K. Uppal, D. Tishinin, J. Burger and P. D. Dapkus, "Noncollinear four-wave mixing in a broad area semiconductor optical amplifier", Appl. Phys. Lett., vol. 70, pp.  2082-2084,  1997.
  4. K. Gallo, G. Assanto and G. Stegeman, "Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second-order processes in lithium niobate waveguides", Appl. Phys. Lett., vol. 71, pp.  1020-1022, 1997.
  5. K. Noguchi, O. Mitomi, H. Miyazawa and S. Seki, "A broadband Ti:LiNbO3 optical modulator with a ridge structure", J. Lightwave Technol. , vol. 13, pp.  1164-1168, 1995.
  6. E. J. Murphy, T. O. Murphy, A. F. Ambrose, R. W. Irvin, B. H. Lee, P. Peng, G. W. Richards and A. Yorinks, "16 × 16 strictly nonblocking guided-wave optical switching system", J. Lightwave Technol., vol. 14, pp.  352-358, 1996.
  7. F. Heismann and M. S. Whalen, "Fast automatic polarization control system", IEEE Photon. Technol. Lett., vol. 4, pp.  503 -505, 1992.
  8. C. H. Huang and L. McCaughan, "Er-diffused Ti:LiNbO3 channel waveguide optical amplifiers pumped at 980 nm", Electron. Lett., vol. 32, pp.  215-216, 1996.
  9. I. Baumann, S. Bosso, R. Brinkmann, R. Corsini, M. Dinand, A. Greiner, K. Schäfer, J. Söchtig, W. Sohler, H. Suche and R. Wessel, "Er-doped integrated optical devices in LiNbO3", IEEE J. Select. Topics Quantum Electron., vol. 2, pp.  355-366, 1996.
  10. J. Amin, J. A. Aust and N. A. Sanford, "Z-propagating waveguide lasers in rare-earth-doped Ti:LiNbO3", Appl. Phys. Lett., vol. 69, pp.  3785-3787,  1996.
  11. K. Bencheikh, E. Huntziger and J. A. Levenson, "Quantum noise reduction in quasi-phase-matched optical parametric amplification", J. Opt. Soc. Amer. B, vol. 12, pp.  847-852, 1995.
  12. D. J. Lovering, J. A. Levenson, P. Vidakovic, J. Webjörn and P. St. J. Russell, "Noiseless optical amplification in QPM bulk lithium niobate", Opt. Lett., vol. 21, pp.  1439-1441, 1996.
  13. T. Suhara, H. Ishizuki, M. Fujiimura and H. Nishihara, "Waveguide quasi-phase-matched sum-frequency generation device for high-efficiency optical sampling", IEEE Photon. Technol. Lett., vol. 11, pp.  1027-1029, 1999.
  14. L. McCaughan, N. Agrawal and G. A. Bogert, "Novel physical effects in intersecting waveguides", Appl. Phys. Lett., vol. 51, pp.  1389-1391, 1987.
  15. N. Agrawal, L. McCaughan and S. R. Seshadri, "A multiple scattering interaction analysis of intersecting waveguides", J. Appl. Phys., vol. 62, pp.  2187-2193,  1987.
  16. J. A. Armstrong, N. Bloembergen, J. Ducuing and P. S. Pershan, "Interaction between lightwaves in a nonlinear dielectric", Phys. Rev., vol. 127, pp.  1918 -1939, 1962.
  17. E. J. Lim, S. Matsumoto and M. M. Fejer, "Noncritical phase matching for guided-wave frequency conversion", Appl. Phys. Lett., vol. 57, pp.  2294-2296, 1990.
  18. M. M. Fejer, G. A. Magel, D. H. Jundt and R. L. Byer, "Quasi-phase-matched second harmonic generation: Tuning and tolerances", IEEE J. Quantum Electron., vol. 28, pp.  2631-2654,  1992.
  19. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg and J. W. Pierce, "Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3", J. Opt. Soc. Amer. B, vol. 12, pp.  2102-2116, 1995.
  20. G. I. Stegeman and C. T. Seaton, "Nonlinear integrated optics", J. Appl. Phys., vol. 58, pp.  R57-R78, 1985.
  21. M. D. Feit and J. A. Fleck, "Propagating beam theory of optical fiber cross coupling", J. Opt. Soc. Amer. B, vol. 71, pp.  1361-1372, 1981.
  22. L. McCaughan and E. J. Murphy, "Influence of temperature and initial titanium dimensions on fiber-Ti:LiNbO3 waveguide insertion loss at =1.3 µm", IEEE J. Quantum Electron., vol. 19, pp.  131-136, 1983.
  23. J. L. Jackel, "Optical waveguides in LiTaO3: Silver lithium ion exchange", Appl. Opt., vol. 19, pp.  1996 -1999, 1980.
  24. R. Schiek, Y. Baek, G. Krijnen, G. I. Stegeman, I. Baumann and W. Sohler, "All-optical switching in lithium niobate directional couplers with cascaded nonlinearity", Opt. Lett. , vol. 21, pp.  940-942, 1996.
  25. Y. Baek, R. Schiek, G. I. Stegeman, G. Krijnen, I. Baumann and W. Sohler, "All-optical integrated Mach-Zehnder switching due to cascaded nonlinearities", Appl. Phys. Lett., vol. 68, pp.  2055-2057,  1996.
  26. M. H. Chou, J. Hauden, M. A. Arbore and M. M. Fejer, "Efficient wavelength conversion based on difference frequency mixing in LiNbO3 waveguides with integrated coupling structures", in Proc. OFC '98 Tech. Dig., San Jose, CA, 1998.