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Abstract—A unified approach using curvilinear hybrid TABLE |
edge/nodal elements with triangular shape is, for the first time, DEFINITION OF SYMBOLS IN VECTORIAL
described for the study of guided-wave problems. Not only the WAVE EQUATION (1)

lowest order (fundamental) but the higher order elements are

systematically constructed. The advantage of curvilinear elements ¢ P q2
lies in the fact that they can model curved boundaries with more E 1 ) n
accuracy and lesser number of degrees of freedom than recti- H 1/n !

linear elements. The vector basis functions derived here are also

applicable to rectilinear cases. To show the validity and usefulness

of the present approach, computed results are illustrated for rib  with straight boundaries and circular waveguides with large
waveguides with straight boundaries and circular waveguides refractive-index difference.

with large refractive-index differences.

Index Terms—Curvilinear element, edge element, finite element Il. VECTORIAL WAVE EQUATION
method, full-wave analysis, guided-wave problem. ) . ] . ]
We consider a waveguide with arbitrary cross sectibim

the xy (transverse) plane. With a time) dependence of the
. INTRODUCTION form exp(jwt) being implied, from Maxwell’s equations the
ARIOUS types of the finite element method have beefllowing vectorial wave equation is derived:
developed for the full-vectorial analysis of guided-wave
problems. Especially, the hybrid edge/nodal elements with tri- V x (pV x @) — k2qp =0 Q)
angular shape are very useful for imposing the continuity of the
tangential components of the electric and magnetic fields and fiehere w is the angular frequencyko is the free-space
eliminating the nonphysical, spurious solutions. The hybrid elesavenumber, aneg, p, andg are given in Table | withE, H,
ments developed so far [1]-[3] are, however, only for the waveghdn being, respectively, the electric field, the magnetic field,

uides with straight, rectilinear boundaries. and the refractive index.
Recently, Wang and Ida [4] have proposed curvilinear hex-
ahedral and tetrahedral edge elements for solving cavity prob- I1l. HYBRID EDGE/NODAL ELEMENTS

lems, and Antilla and Alexopoulos [5] have also proposed curvi- The electromagnetic fields have to be tangentially continuous

linear brick edge elements for solving scattering problems. The o . .
- S across material interfaces. As is well-known, the tangential con-

advantage of curvilinear elements lies in the fact that they can -~ : . .
. : Inuity in the guided-wave problem can be straightforwardly im-

model curved boundaries with more accuracy and lesser numper . :
osed in the hybrid edge/nodal elements, where the edge and the

of degrees of freedom than rectilinear elements, resulting in 180 :
dal elements are, respectively, employed for the transverse

. : ; n
computational cost. However, these three-dimensional elemeg:ﬁ% the axial fields. Typical and well-established rectilinear hy-

belong to the lowest order, fundamental families, the conveg-. o . N
ence of which s, in general, not so fast. Furthermore, the CurVIr_ld.eIements with triangular shape are sur_nmanzed In Fig. 1.
g ' ' ’ ' Fig. 1(a) shows the lowest order hybrid element [2], [6]

linear edge elements have not been specifically constructed\}‘v Leh s composed of an edge element with three tangential
two-dimensional (2-D) problems, even though the lowest ord\%1
ones.

In this paper, a unified approach using curvilinear hybri
edge/nodal elements with triangular shape is, for the fir

time, described for the study of guided-wave problems. After:- . . : .
e . - asis function is constant along one edge of the triangle and is
reviewing the earlier rectilinear edge elements [1]-[3], [6]-[8 ; ,
. o ero along the other two edges, while the normal component is
not only the lowest order but the higher order curvilinear . .
elements are systematically constructed. The validit agdmear function along all three edges [7].
y y ) Y Fig.1(b), (c), and (d) shows the higher order hybrid elements.

usefulngss of the presenF approach are mvestlggted n det§|l|:%¥ the axial fields, a quadratic nodal (conventional Lagrange)
calculating the propagation characteristics of rib wavegwdeF o . : . .
€lement with six axial variables,.; to ¢.¢, is employed, while

for the transverse fields, an edge element with six variablgs,

riables,¢41 to ¢3, based on constant tangential and linear
ormal (CT/LN) vector basis functions and a linear nodal
%onventional Lagrange) element with three axial variables,
1 to ¢.3. The tangential component of a particular CT/LN
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Fig. 2. Curvilinear hybrid edge/nodal element.

These interior variables are omitted in the LT/LN representation
with six tangential variables);; and¢;s, and when using the
CT/LN representation, only the first three tangential variables,
@41 10 43, remain.

In the curvilinear elements with triangular shape the
Cartesian coordinates; and ¥, are, in general, approxi-
mated with quadratic polynomials using the local coordinates
L; (i =1,2,3)[9], [10] as

6 6
z=Y Njz;, y=> Ny (2)
j=1 j=1
with
N1 =L1(2L, —1), No=Ly2L,—1)
N3 = L3(2L3 — 1), Ny=4L L,
N3 =4L2L3, Ng=4Lzly 3
(d) wherez; andy; are the Cartesian coordinates at the nodal point

Fig. 1. Hybrid edge/nodal elements based on (a) constant tangential Iy~ 1.’_2’ U 6) within ef"‘Ch ?lemem shown in Fig. 2. For .
linear normal (CT/LN), (b) linear tangential and linear normal (LT/LN)N€ rectilinear elements with triangular shape, the local coordi-

(c) linear tangential and quadratic normal (LT/QN-1), and (d) Nedelecsates,L, L., andLs, are called the area coordinates [9], [10].
space-conforming linear tangential and quadratic normal (LT/QN-2) vector Noting the relation among these local coordinaast L +
basis functions. . . 2
Ls = 1, and selectind.; and L as the independent variables,
the transformation for differentiation is given by
basis functions [1], [7] is employed. The LT/QN basis set is

a combination of the six LT/LN functions and two additional {8/8L1} y [8/835}
quadratic functions. The six functions interpolate to a unity 9/0Ly | /0y
tangential component at the triangular edges. The other two Jii Jp ] [8)0x
functions each contribute a quadratic normal component to one = |:J21 J22:| [a/ay} (4)
(labeled as LT/QN-1) [1] or two (labeled as LT/QN-2) [7] of the
three edges and have no tangential component along any ofiih
edges. The LT/QN-1 and the LT/QN-2 basis functions, respec- .
tively, do not and do exactly satisfy the Nedelec constraints to g Oz ON; 5
eliminate some of nullspace degrees of freedom corresponding Y Z oL, i (52)
to irrotational, spurious solutions [7]. ]Zl
ho= LS9, (50)
IV. CURVILINEAR HYBRID ELEMENTS Looj=1 7t
6
Based on the rectilinear hybrid edge/nodal elements de- Jog = 9z = Z ON; z; (5¢)
scribed in the previous section, the curvilinear counterparts are AL, =1 OL,
constructed as shown in Fig. 2. The interior variabesand 6
¢ indicated by the solid and dashed arrows are associated with Joy = ﬂ — Z ON; ’ (5d)

Y
the LT/QN-1 and LT/QN-2 vector basis functions, respectively. ILy =1 oLz ™
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TABLE I
VECTOR AND SCALAR-BASED SHAPE FUNCTIONS
edge {¢1}e i{U} +1,{V} nodal {¢:}c {N}
[ ¢ ] [TV eLal (L1 Vi Ly — LV Ly) [ 1 ] L
CT/LN d)gz ]J|2|VtL1 lg(LgvtLg - L3V¢L2) linear d’z’) L2

| b5 | {13 ViLe|3(LsVeLr ~ L1V, L3) | #23 | Ly
a1 [ T2V Lol (L4 VL ] S

du [J1IVeLs|1 (L1V:Ls) . Li(2L;, - 1)

¢t2 |J|2|VgL1]2(L2V¢L3)

LT/LN P2 Ly(2L, - 1)
LT/QN-1 Prs {J|3|VeLa]s(L3 VL) bos La(2Lg — 1)
LT/QN-2 ¢t4 |J|2|VtL3]2(L2VtL1) quadratic ¢z4 4L1L2

b5 |J13|VeL1|3(LsVL2) ¢25 4L,Ls
____________ b | | MhVelah(TaVels) | due | AL
2 4L, LoV L3 /|V L3y
LT/QN-1
/Q dis 4Ly L3V, L1 [|ViLyls
ber 4714V Ly |4 (L2 Vi Ly — L3V, Ly)
LT/QN-2
/Q Lo | L aldl5IViLals(LeVeLy — Ly L) |

where[J] is the Jacobian matrix. The transformation relatiowhere{0} is a null vector, and the global electric or magnetic

for integration of a functiory(x, y) is given by field vector{¢} and the finite element matricelg{| and[A],
are given by

flz,y) de dy _ {d)t}}

/] = ©
1-L,
= / [/ (L1, Ly, L3)|J(Ly, Ly, L3)| dLy | dL;

0 0 [K] — |:[Ktt] [0]:| (10)

®) [0] [o]

where|./| is the determinant of the Jacobian matrix and is called (My]  [Me.]
the Jacobian. M| = [ t 2 } 11
M=) e -

V. FINITE ELEMENT DISCRETIZATION with

2 T 2 T
Dividing the waveguide cross sectidn into a number of (K] = Z// <k0q‘{U}{U} + k{VHVY
curvilinear hybrid elements, we expand the transverse figlds, ¢ ‘

and¢,, and the axial fieldp. in each element as _ U} o{u”t _ pa{V} V3"
dy dy dz dz
o{uyo{vir = ofv}io{u}”
b dy dz Tr dz dy de. dy
12)

= LAUY + i, {V} ) {be}e exp(—52)
+15B8{N} {¢-} exp(—jBz) (7)

wherei,, i,, andi. are, respectively, the unit vectors in the [Mu]= Z// PIUHUY +p{VHV} ) dedy (13)
x, y, and z directions,{¢: }. and{¢.}. are, respectively, the

edge- and nodal-variable vectors for each element,fanig-  [7,.] = [M_,]"

notes a transpose. The vector-based shape function for curvi- Z// < ) O{N\T

+p{V}

linear edge elements, {U} +i,{V}, and the ordinary scalar-
based shape function for curvilinear nodal elemefé}, are

T
ON} ) dz dy
dy

given in Table Il, where&v, = i,0/dx +1,9/9y, and|V,L,|, (14)
and|.J|; are, respectively, the values|&f. L;| (¢ = 1,2,3) and . .
|J| at the nodal poinf (j = 1,2, ...,6). M..] :Z//<pa{N} N} +p8{N} N}

For the rectilinear case$/||VL;| = I; with [; being the - e dr  Ox dy Oy

length of the edge facing to the vertexi = 1,2, 3), and thus, ) -
the vector basis function summarized in Table Il are exactly re- — kgg{ NH{N} ) dx dy (15)

duced to those for the rectilinear edge elements [11-[3], [6]-[&] here o] is a null matrix andS"_ extends over all different
Applying the finite element technique to (1), we obtain elements. ¢

Noting (4) and Table Il, the integrants in (12) to (15) are given
[K|{¢} — B*[M{¢} = {0} (8) asthe functions of the local coordinates, and thus, the numerical



740 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 18, NO. 5, MAY 2000

TABLE Il 3.390

VALUES OF WEIGHTING COEFFICIENTS ANDLOCAL COORDINATES r

3.389r-

k Wi Liyr Lo Lsg 5 |

1 0.225 ay a ag a = 1/3 -g 3388

2 0.13239415 ag asz as Ay = 0.05971587 O |
3 0.13239415 a3 as a3 a3 = 0.47014206 2

4 013239415 a3 a3 as  ag = 0.79742669 G 3.3871

5 0.12593918 a4 as as as = 0.10128651 e i

6 012593918 a5 ay as K 33861

7 0.12593918 as as a4 3

|

L ! L L 1 L
3'3850 2500 5000 7500 10000
Degrees of freedom

(2)

3.390

3.389

3.388

Effective index

3.387
Fig. 3. Rib waveguide.
3.386
3.390
L P R I R
3389k 3"3850 2500 5000 7500 10000
_?é T Degrees of freedom
£ 3388 (b)
4
‘3 3.387 Fig. 5. Convergence of effective index for the fundamental TM-like mode int
&L | a rib waveguide calculated by using (a) the electric field and (b) the magnetic
E 3.386 field as working variables.
M R SRR B
3‘3850 2500 5000 7500 10000
Degrees of freedom
(a)
3.390
L E, H,
3.389
S
3
£ 3.388
5
2
o 3.387
é) E, H
M 3.386 Y i
N R IR B
3'3850 2500 5000 7500 10000 *6@5—
Degrees of freedom @
(b)
E, H,

Fig. 4. Convergence of effective index for the fundamental TE-like mode in
a rib waveguide calculated by using (a) the electric field and (b) the magne#igy. 6. Field distributions for the fundamental TE-lke mode in a rib
field as working variables. waveguide.

integration formulas derived by Hammetral. [9], [10] can be

Ly, Lok, and Lay, ted in Table 111 [9], [10]. Th -
directly applied to (6) as follows: i L2k, andLay, are presented in Table I1l [9], [10]. The ap

proximation of neglecting the second derivatives of local coor-
//f(%y) dz dy dinates is very useful for evaluating the teragl/} /9y and
e O{V'}/0z included in (12).
7
Wy,
- ;1 Tf(le’LQk’L3k)|J(L1k’L2k’L3k)| (16) VI. NUMERICAL RESULTS
where the subscript denotes the quantity associated with the First, we consider a rib waveguide with straight boundaries as
sampling points (¢ = 1,2,...,7), and the local coordinates,shown in Fig. 3. Because of the symmetry nature of the system,
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0.290

Frv=2
| b=10.286359 (exact)

= 0.285

1 ---LTLN
A LT/QN
I —o— curvilinear CT/LN
- 4 - curvilinear LT/LN
~--o~ curvilinear LT/QN

L | L I L | 1
0'2800 2500 5000 7500 10000
Degrees of freedom
(a)

E, H, 0.290
rv=2
Fig. 7. Field distributions for the fundamental TM-like mode in a rib b=10.286359 (exact)
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) S Degrees of freedom
only one-half of the waveguide cross section is divided into rec- (b)

tilinear hybrid elements and the vector-based shape function

i.{U} +1,{V} and the scalar-based shape functf@n} sum- Fig. 9. Convergence of normalized propagation constant at the normalized
marized in Table Il were implemented as is. frequencyv = 2 for the fundamental mode in a circular waveguide calculated

. . by using (a) the electric field and (b) the magnetic field as working variables.
Figs. 4 and 5 show, respectively, the convergence behavior 9@ ®) g g

of the effective index3/ %, for the fundamental transverse elec-

tric (TE)-like and transverse magnetic (TM)-like modes in the . .

rib waveguide, where the computed results are obtained by ?é'—lar vyavegwde_, where the cgmputed results are obtgmed by
gardingg asE in (a) and ad in (b). The results of the LT/QN-1 regardingg ask in (a) and ad in (b), andv andb are defined

and LT/QN-2 representations are almost the same each othe%0

the labels are rewritten as LT/QN. It is confirmed from Figs. 4 v = koniaV2A (17)

and 5 that the basis functions for the curvilinear hybrid elements

are valid also for rectilinear cases and that the fastest conver-

gence is given for the LT/QN representation. The lowest order (B/ko)? — n3
CT/LT element works better or at least almost the same as the b= T2z (18)
1 2

LT/LN one, which is one order higher.
Figs. 6 and 7 show, respectively, the field distributions for theith A = (n? — n3)/(2n?) being the refractive-index differ-
fundamental TE-like and TM-like modes in the rib waveguideence. It is confirmed from Figs. 9 and 10 that the curvilinear
The electric and magnetic fields are, respectively, obtained hybrid elements proposed here can give faster convergence than
¢ = Eand¢ = H. the conventional rectilinear hybrid ones and that when using the
Next, we consider a circular waveguide with core radius curvilinear LT/QN representation, the significantly fastest con-
and large refractive-index difference, namely, core-index= vergence is obtained, irrespective of thealue, in other words,
1.515 and cladding index; = 1.0, as shown in Fig. 8. Becausethe degree of field confinement into core region. When using the
of the two-fold symmetry of the system, only one-quater of theonventional rectilinear elements, the lowest order CT/LN ele-
waveguide cross section is divided into curvilinear hybrid elenent performs better than the LT/LN one. Moreover, the CT/LN
ments. element performs even better than the LT/QN one (except in
Figs. 9 and 10 show, respectively, the convergence behawag. 10(a), where LT/QN works better than CT/LN, however
of the normalized propagation constarat the normalized fre- both curves are very close). If the number of degrees of freedom
quenciesy = 2 and5 for the fundamental mode in the cir-is the same among CT/LN, LT/LN, and LT/QN, much more el-
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Fig. 10. Convergence of normalized propagation constant at the normalized
frequencyv = 5 for the fundamental mode in a circular waveguide calculated
by using (a) the electric field and (b) the magnetic field as working variables.

ements are used in CT/LN, compared to LT/LN and LT/QN.
Therefore, in the rectilinear case, curved boundaries could be
more accurately modeled with the lowest order CT/LN element.
Anyway, from the two examples in Figs. 3 and 8, we are inclinqgg_ 1.
to recommend to avoid the use of LT/LN elements.
Figs. 11 and 12 show, respectively, the field distributions at
v = 2and5 for the fundamental mode in the circular waveguide.
The electric and magnetic fields are, respectively, obtained by

¢ = Eand¢ = H.

We presented a unified approach using curvilinear hybrid
edge/nodal elements with triangular shape for the study of

v
L b

5
0.821879 (exact)

R LT/QN

1 — CT/LN
! === LTAN

—o— curvilinear CT/LN
- <4 - curvilinear LT/LN
—-#— curvilinear LT/QN

PR R R N
0 2500 5000 7500 10000

Degrees of freedom
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0 2500 5000 7500 10000
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E,

Fig. 11. Field distributions at the normalized frequency= 2 for the
fundamental mode in a circular waveguide.

E, H,

Field distributions at the normalized frequency= 5 for the

fundamental mode in a circular waveguide.

REFERENCES

[1] J.-F. Lee, D.-K. Sun, and Z. J. Cendes, “Full-wave analysis of dielectric

waveguides using tangential vector finite element&EE Trans. Mi-
crowave Theory Techvol. 39, pp. 1262-1271, Aug. 1991.

M. Koshiba and K. Inoue, “Simple and efficient finite-element analysis
of microwave and optical waveguide$ZEE Trans. Microwave Theory
Tech, vol. 40, pp. 371-377, Feb. 1992.

M. Koshiba, S. Maruyama, and K. Hirayama, “A vector finite element
method with the high-order mixed-interpolation type triangular elements
for optical waveguiding problemsJ. Lightwave Technqlvol. 12, pp.
495-502, Mar. 1994.

guided-wave problems. Not only the lowest order but the[4] J. S. Wang and N. Ida, “Curvilinear and higher order ‘edge’ finite ele-

higher order elements were systematically constructed and
were applied to rib waveguides and circular waveguides. Fors)
the guided-wave problems, we would like to recommend to use
the rectilinear/curvilinear hybrid elements which are composed

ments in electromagnetic field computatiotEEE Trans. Magnetvol.

29, pp. 1491-1494, Mar. 1993.

G. E. Antilla and N. G. Alexopoulos, “Scattering from complex three-
dimensional geometries by a curvilinear hybrid finite-element-integral
equation approach,J. Opt. Soc. Amer. Aol. 11, pp. 1445-1457, Apr.
1994.

of the LT/QN'based edge elements and the quadratic nOdaﬂG] J. C. Nedelec, “Mixed finite elements in RA\lumer. Math.vol. 35, pp.

elements.

315-341, 1980.



KOSHIBA AND TSUJI: CURVILINEAR HYBRID EDGE/NODAL ELEMENTS WITH TRIANGULAR SHAPE

[7] A. F. Peterson, “Vector finite element formulation for scattering fror
two-dimensional heterogeneous bodid&§EE Trans. Antennas Prop-
agat, vol. AP-43, pp. 357-365, Mar. 1994.

[8] G. Mur and A. T. Hoop, “A finite element method for computing
three-dimensional electromagnetic fields in inhomogeneous medi:
IEEE Trans. Magnetvol. MAG-21, pp. 2188-2191, Nov. 1985.

2

[9] O.C. Zienkiewitz,The Finite Element Methe®&rd ed. London, U.K.: \E'/

McGraw-Hill, 1977.
[10] M. Koshiba, Optical Waveguide Theory by the Finite Elemen
Method Tokyo, Japan: KTK Scientific/Kluwer, 1992. '

743

Yasuhide Tsuji (M'97) was born in Takikawa,
Japan, on December 31, 1967. He received the B.S.,
M.S., and Ph.D. degrees in electronic engineering
from Hokkaido University, Sapporo, Japan, in 1991,
1993, and 1996, respectively.

In 1996, he joined the Department of Applied
Electronic Engineering, Hokkaido Institute of
Technology, Sapporo, Japan. Since 1997, he has
been an Associate Professor of Hokkaido University,
Sapporo, Japan. He has been engaged in research on
wave electronics.

Dr. Tsujiis amember of the Institute of Electronics, Information and Commu-
nication Engineers (IEICE). In 1997 and 1999, he recieved the Excellent Paper

M.S., and Ph.D. degrees in electronic engineering
from Hokkaido University, Sapporo, Japan, in 1971,
1973, and 1976, respectively.

In 1976, he joined the Department of Electronic
Engineering, Kitami Institute of Technology,
Kitami, Japan. From 1979 to 1987, he was an
Associate Professor of Electronic Engineering
at Hokkaido University, and in 1987, he became
Professor. He has been engaged in research on wave
electronics, including microwaves, millimeter-waves, lightwaves, surface
acoustic waves (SAW), magnetostatic waves (MSW), and electron waves,
and computer-aided design and modeling of guided-wave devices using finite
element method, boundary element method, beam propagation method, etc.
He is an author or coauthor of more than 200 research papers in English and
of more than 100 research papers in Japanese both in refereed journals. He
authored the book®ptical Waveguide Analys{dlew York: McGraw-Hill) and
Optical Waveguide Theory by the Finite Element Metiidokyo/Dordrecht:

KTK Scientific/Kluwer), and coauthored the boolalysis Methods for
Electromagnetic Wave Problen{slorwood, MA: Artech House)Ultrafast
and Ultra-parallel Optoelectronic§New York: Wiley), andFinite Element
Software for Microwave Engineerir{iNew York: Wiley).

Dr. Koshiba is a member of the Institute of Electronics, Information and Com-
munication Engineers (IEICE), the Institute of Electrical Engineers of Japan, the
Institute of Image Information and Television Engineers of Japan, the Japan So-
ciety for Simulation Technology, the Japan Society for Computational Methods
in Engineering, the Japan Society of Applied Electromagnetics and Mechanics,
the Japan Society for Computational Engineering and Science, and the Applied
Computational Electromagnetics Society (ACES). In 1987, 1997, and 1999, he
recieved the Excellent Paper Awards from the IEICE, and in 1998, he recieved
the Electronics-Society Award from the IEICE.

Masanori Koshiba (SM'84) was born in Sapporo, awards from the IEICE, and in 1999, he recieved the Young Scientist Award
Japan, on November 23, 1948. He received the B.Spqm the IEICE.



