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Curvilinear Hybrid Edge/Nodal Elements with
Triangular Shape for Guided-Wave Problems
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Abstract—A unified approach using curvilinear hybrid
edge/nodal elements with triangular shape is, for the first time,
described for the study of guided-wave problems. Not only the
lowest order (fundamental) but the higher order elements are
systematically constructed. The advantage of curvilinear elements
lies in the fact that they can model curved boundaries with more
accuracy and lesser number of degrees of freedom than recti-
linear elements. The vector basis functions derived here are also
applicable to rectilinear cases. To show the validity and usefulness
of the present approach, computed results are illustrated for rib
waveguides with straight boundaries and circular waveguides
with large refractive-index differences.

Index Terms—Curvilinear element, edge element, finite element
method, full-wave analysis, guided-wave problem.

I. INTRODUCTION

V ARIOUS types of the finite element method have been
developed for the full-vectorial analysis of guided-wave

problems. Especially, the hybrid edge/nodal elements with tri-
angular shape are very useful for imposing the continuity of the
tangential components of the electric and magnetic fields and for
eliminating the nonphysical, spurious solutions. The hybrid ele-
ments developed so far [1]–[3] are, however, only for the waveg-
uides with straight, rectilinear boundaries.

Recently, Wang and Ida [4] have proposed curvilinear hex-
ahedral and tetrahedral edge elements for solving cavity prob-
lems, and Antilla and Alexopoulos [5] have also proposed curvi-
linear brick edge elements for solving scattering problems. The
advantage of curvilinear elements lies in the fact that they can
model curved boundaries with more accuracy and lesser number
of degrees of freedom than rectilinear elements, resulting in low
computational cost. However, these three-dimensional elements
belong to the lowest order, fundamental families, the conver-
gence of which is, in general, not so fast. Furthermore, the curvi-
linear edge elements have not been specifically constructed for
two-dimensional (2-D) problems, even though the lowest order
ones.

In this paper, a unified approach using curvilinear hybrid
edge/nodal elements with triangular shape is, for the first
time, described for the study of guided-wave problems. After
reviewing the earlier rectilinear edge elements [1]–[3], [6]–[8],
not only the lowest order but the higher order curvilinear
elements are systematically constructed. The validity and
usefulness of the present approach are investigated in detail by
calculating the propagation characteristics of rib waveguides
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TABLE I
DEFINITION OF SYMBOLS IN VECTORIAL

WAVE EQUATION (1)

with straight boundaries and circular waveguides with large
refractive-index difference.

II. V ECTORIAL WAVE EQUATION

We consider a waveguide with arbitrary cross sectionin
the (transverse) plane. With a time dependence of the
form being implied, from Maxwell’s equations the
following vectorial wave equation is derived:

(1)

where is the angular frequency, is the free-space
wavenumber, and , and are given in Table I with , ,
and being, respectively, the electric field, the magnetic field,
and the refractive index.

III. H YBRID EDGE/NODAL ELEMENTS

The electromagnetic fields have to be tangentially continuous
across material interfaces. As is well-known, the tangential con-
tinuity in the guided-wave problem can be straightforwardly im-
posed in the hybrid edge/nodal elements, where the edge and the
nodal elements are, respectively, employed for the transverse
and the axial fields. Typical and well-established rectilinear hy-
brid elements with triangular shape are summarized in Fig. 1.

Fig. 1(a) shows the lowest order hybrid element [2], [6]
which is composed of an edge element with three tangential
variables, to , based on constant tangential and linear
normal (CT/LN) vector basis functions and a linear nodal
(conventional Lagrange) element with three axial variables,

to . The tangential component of a particular CT/LN
basis function is constant along one edge of the triangle and is
zero along the other two edges, while the normal component is
a linear function along all three edges [7].

Fig.1(b), (c), and (d) shows the higher order hybrid elements.
For the axial fields, a quadratic nodal (conventional Lagrange)
element with six axial variables, to , is employed, while
for the transverse fields, an edge element with six variables,
to , based on linear tangential and linear normal (LT/LN)
basis functions [3], [8], or with eight variables, to ,
based on linear tangential and quadratic normal (LT/QN)
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Fig. 1. Hybrid edge/nodal elements based on (a) constant tangential and
linear normal (CT/LN), (b) linear tangential and linear normal (LT/LN),
(c) linear tangential and quadratic normal (LT/QN-1), and (d) Nedelec’s
space-conforming linear tangential and quadratic normal (LT/QN-2) vector
basis functions.

basis functions [1], [7] is employed. The LT/QN basis set is
a combination of the six LT/LN functions and two additional
quadratic functions. The six functions interpolate to a unity
tangential component at the triangular edges. The other two
functions each contribute a quadratic normal component to one
(labeled as LT/QN-1) [1] or two (labeled as LT/QN-2) [7] of the
three edges and have no tangential component along any of the
edges. The LT/QN-1 and the LT/QN-2 basis functions, respec-
tively, do not and do exactly satisfy the Nedelec constraints to
eliminate some of nullspace degrees of freedom corresponding
to irrotational, spurious solutions [7].

IV. CURVILINEAR HYBRID ELEMENTS

Based on the rectilinear hybrid edge/nodal elements de-
scribed in the previous section, the curvilinear counterparts are
constructed as shown in Fig. 2. The interior variablesand

indicated by the solid and dashed arrows are associated with
the LT/QN-1 and LT/QN-2 vector basis functions, respectively.

Fig. 2. Curvilinear hybrid edge/nodal element.

These interior variables are omitted in the LT/LN representation
with six tangential variables, and , and when using the
CT/LN representation, only the first three tangential variables,

to , remain.
In the curvilinear elements with triangular shape the

Cartesian coordinates, and , are, in general, approxi-
mated with quadratic polynomials using the local coordinates

[9], [10] as

(2)

with

(3)

where and are the Cartesian coordinates at the nodal point
within each element shown in Fig. 2. For

the rectilinear elements with triangular shape, the local coordi-
nates, , and , are called the area coordinates [9], [10].

Noting the relation among these local coordinates,
, and selecting and as the independent variables,

the transformation for differentiation is given by

(4)

with

(5a)

(5b)

(5c)

(5d)
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TABLE II
VECTOR- AND SCALAR-BASED SHAPE FUNCTIONS

where is the Jacobian matrix. The transformation relation
for integration of a function is given by

(6)

where is the determinant of the Jacobian matrix and is called
the Jacobian.

V. FINITE ELEMENT DISCRETIZATION

Dividing the waveguide cross section into a number of
curvilinear hybrid elements, we expand the transverse fields,
and , and the axial field in each element as

(7)

where , and are, respectively, the unit vectors in the
, and directions, and are, respectively, the

edge- and nodal-variable vectors for each element, andde-
notes a transpose. The vector-based shape function for curvi-
linear edge elements, , and the ordinary scalar-
based shape function for curvilinear nodal elements, , are
given in Table II, where , and
and are, respectively, the values of and

at the nodal point .
For the rectilinear cases, with being the

length of the edge facing to the vertex , and thus,
the vector basis function summarized in Table II are exactly re-
duced to those for the rectilinear edge elements [1]–[3], [6]–[8].

Applying the finite element technique to (1), we obtain

(8)

where is a null vector, and the global electric or magnetic
field vector and the finite element matrices, and ,
are given by

(9)

(10)

(11)

with

(12)

(13)

(14)

(15)

where is a null matrix and extends over all different
elements.

Noting (4) and Table II, the integrants in (12) to (15) are given
as the functions of the local coordinates, and thus, the numerical
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TABLE III
VALUES OFWEIGHTING COEFFICIENTS ANDLOCAL COORDINATES

Fig. 3. Rib waveguide.

Fig. 4. Convergence of effective index for the fundamental TE-like mode in
a rib waveguide calculated by using (a) the electric field and (b) the magnetic
field as working variables.

integration formulas derived by Hammeret al. [9], [10] can be
directly applied to (6) as follows:

(16)

where the subscript denotes the quantity associated with the
sampling point , and the local coordinates,

Fig. 5. Convergence of effective index for the fundamental TM-like mode int
a rib waveguide calculated by using (a) the electric field and (b) the magnetic
field as working variables.

Fig. 6. Field distributions for the fundamental TE-like mode in a rib
waveguide.

, and , are presented in Table III [9], [10]. The ap-
proximation of neglecting the second derivatives of local coor-
dinates is very useful for evaluating the terms and

included in (12).

VI. NUMERICAL RESULTS

First, we consider a rib waveguide with straight boundaries as
shown in Fig. 3. Because of the symmetry nature of the system,
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Fig. 7. Field distributions for the fundamental TM-like mode in a rib
waveguide.

Fig. 8. Circular waveguide.

only one-half of the waveguide cross section is divided into rec-
tilinear hybrid elements and the vector-based shape function

and the scalar-based shape function sum-
marized in Table II were implemented as is.

Figs. 4 and 5 show, respectively, the convergence behavior
of the effective index for the fundamental transverse elec-
tric (TE)-like and transverse magnetic (TM)-like modes in the
rib waveguide, where the computed results are obtained by re-
garding as in (a) and as in (b). The results of the LT/QN-1
and LT/QN-2 representations are almost the same each other, so
the labels are rewritten as LT/QN. It is confirmed from Figs. 4
and 5 that the basis functions for the curvilinear hybrid elements
are valid also for rectilinear cases and that the fastest conver-
gence is given for the LT/QN representation. The lowest order
CT/LT element works better or at least almost the same as the
LT/LN one, which is one order higher.

Figs. 6 and 7 show, respectively, the field distributions for the
fundamental TE-like and TM-like modes in the rib waveguide.
The electric and magnetic fields are, respectively, obtained by

and .
Next, we consider a circular waveguide with core radius

and large refractive-index difference, namely, core-index
and cladding index , as shown in Fig. 8. Because

of the two-fold symmetry of the system, only one-quater of the
waveguide cross section is divided into curvilinear hybrid ele-
ments.

Figs. 9 and 10 show, respectively, the convergence behavior
of the normalized propagation constantat the normalized fre-
quencies and for the fundamental mode in the cir-

Fig. 9. Convergence of normalized propagation constant at the normalized
frequencyv = 2 for the fundamental mode in a circular waveguide calculated
by using (a) the electric field and (b) the magnetic field as working variables.

cular waveguide, where the computed results are obtained by
regarding as in (a) and as in (b), and and are defined
as

(17)

(18)

with being the refractive-index differ-
ence. It is confirmed from Figs. 9 and 10 that the curvilinear
hybrid elements proposed here can give faster convergence than
the conventional rectilinear hybrid ones and that when using the
curvilinear LT/QN representation, the significantly fastest con-
vergence is obtained, irrespective of the-value, in other words,
the degree of field confinement into core region. When using the
conventional rectilinear elements, the lowest order CT/LN ele-
ment performs better than the LT/LN one. Moreover, the CT/LN
element performs even better than the LT/QN one (except in
Fig. 10(a), where LT/QN works better than CT/LN, however
both curves are very close). If the number of degrees of freedom
is the same among CT/LN, LT/LN, and LT/QN, much more el-
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Fig. 10. Convergence of normalized propagation constant at the normalized
frequencyv = 5 for the fundamental mode in a circular waveguide calculated
by using (a) the electric field and (b) the magnetic field as working variables.

ements are used in CT/LN, compared to LT/LN and LT/QN.
Therefore, in the rectilinear case, curved boundaries could be
more accurately modeled with the lowest order CT/LN element.
Anyway, from the two examples in Figs. 3 and 8, we are inclined
to recommend to avoid the use of LT/LN elements.

Figs. 11 and 12 show, respectively, the field distributions at
and for the fundamental mode in the circular waveguide.

The electric and magnetic fields are, respectively, obtained by
and .

VII. CONCLUSION

We presented a unified approach using curvilinear hybrid
edge/nodal elements with triangular shape for the study of
guided-wave problems. Not only the lowest order but the
higher order elements were systematically constructed and
were applied to rib waveguides and circular waveguides. For
the guided-wave problems, we would like to recommend to use
the rectilinear/curvilinear hybrid elements which are composed
of the LT/QN-based edge elements and the quadratic nodal
elements.

Fig. 11. Field distributions at the normalized frequencyv = 2 for the
fundamental mode in a circular waveguide.

Fig. 12. Field distributions at the normalized frequencyv = 5 for the
fundamental mode in a circular waveguide.
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