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Influence of Core Diameter on the 3-dB Bandwidth
of Graded-Index Optical Fibers
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Abstract—The frequency response and bandwidth of multimode
silica glass fibers are investigated in this paper. The theoretical
model incorporates both wavelength and modal effects including
power coupling from random microbends. The 3-dBo bandwidth
is examined through the study of the fiber transfer function which
introduces the wavelength and modal effects as two separate filter
functions. The formal derivation of the chromatic transfer func-
tion is analytical. On the other hand, the modal bandwidth is ob-
tained by numerically solving the power flow equation in the fre-
quency domain using the Crank–Nicholson method. As an appli-
cation, the transfer function is illustrated and subsequently dis-
cussed with special focus spent on analyzing the influence of the
fiber size in combination with the launching conditions. We show
in particular that the larger the core, the greater the bandwidth po-
tential of the fiber when operated under selective mode excitation.
Some measurements are also carried out and excellent agreement
between this model and data is achieved.

Index Terms—Crank–Nicholson method, differential mode at-
tenuation, dispersion, graded-index (GRIN) optical fibers, mode-
coupling, optical communications, power flow equation.

I. INTRODUCTION

PTICAL networking has become a major research topic cur-
rently driving much activities in the field of lightwave tech-
nology. Glass optical fibers (GOF’s) do present more trans-
mission capacity and lower attenuation than conventional phys-
ical media, thereby allowing communication signals to be trans-
mitted at much higher rates over longer distances. This perfor-
mance follows not only from the propagation of a single op-
tical carrier over single-mode fibers (SMF’s) operated in the
lowest-loss windows (located around 850, 1300, and 1550 nm)
but also from the emergence of erbium-doped fiber amplifiers
(EDFA’s) and upgrade technologies such as wavelength-divi-
sion multiplexing (WDM). Single-mode GOF’s are now widely
used in many terrestrial and transoceanic communication links
and these wide area network (WAN) applications are expected
to keep on growing. The main objective of fiber-optic link op-
erators is to extend the fiber coverage to smaller local area net-
works (LAN’s) in the view of enabling the simultaneous han-
dling of various services (voice, video, data) through all-optical
systems. The problem of concern is that single-mode fibers that
are widely installed in WAN links appear to be impractical for
use within LAN’s. As a matter of fact, the small core diam-
eter (typically 10 m) of SMF’s would be incompatible with
the manifold junctions, connectors, couplings that are often re-
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quired in LAN’s. The solution is given by multimode fibers
(MMF’s) that have large core diameters (50–1500m) to ease
their connections and large numerical apertures (0.16–0.65 for
GOF’s) to allow for efficient couplings to semiconductor lasers.

Unfortunately, MMF’s propagate a large number of modes
having different velocities, thereby producing a signal response
inferior to that of single-mode fibers. For standard 62.5/125

m MMF’s, the minimum bandwidths are only specified to
be 200 and 500 MHzkm [1] in the 850 and 1300 nm trans-
mission windows, respectively, under full-mode launch condi-
tion [2]. Even though such figures quite satisfy the information
rate of a number of classical short-range links, it is clear that a
2-km long campus backbone cannot be realized for operation at
the speed of Gigabit Ethernet. Until wavelength division multi-
plexing (WDM) technology becomes available and inexpensive,
the potential MMF capacity for digital communication needs a
greater exploitation to meet user need for higher data rates. To
enable for such enhanced performances, several techniques have
been proposed to overcome the intermodal dispersion. The main
options include the use of microbending effects [3], [4], the de-
sign of so-called annealed MMF’s [5], and the use of mode-fil-
tering schemes [6], [7]. The first method has the main drawback
that the bandwidth enhancement from microbends is accompa-
nied by additional attenuation due to the coupling-induced loss.
The main problem of the second alternative is that time is re-
quired to properly design a new generation of MMF’s that can
be mass produced, and the resulting cost will be inevitably high.
Although these possibilities cannot be ruled out, for a near term
implementation, only the upgrading can provide the lowest cost
solution since the existing fiber plants need not be changed.
For this reason, the selective-mode excitation technique is cur-
rently attracting much attention as a means of increasing the
bandwidth-distance product [6], [7]. The motivation behind the
present work is to contribute to a discussion concerning this al-
ternative. The analysis presented in [7] was mainly focused on
the study of standard 50/125 and 62.5/125m MMF’s in the
situation where the axis of the incident beam is shifted from
the core center (“offset launch”), and little attention was given
to the axial launching. Because the smallest number of modes
can only be excited by positioning the beam spot against the
core center, we believe that this method of excitation should po-
tentially cause the smallest dispersion. Moreover, since a few
low-order modes are involved, which propagate near the fiber
axis, this technique can be expected to cause much less power
loss in comparison to the offset launch.

In this paper, we explore the potential of the axial launching
in greater detail. This work is achieved using a newly devel-
oped dispersion model as it appears that none of the predic-
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tion tools reported in the existing literature incorporates the in-
volved parameters together. The main parameters include the
combined effect of material dispersion and source linewidth [8],
[9], the launching conditions [7], and the mode-dependent pa-
rameters (i.e., propagation delay [8], attenuation [10], and the
coupling coefficient [3], [4]). The 3-dBo cutoff bandwidth of
the fiber is discussed through the study of the transfer function
which introduces the wavelength and modal effects as two sep-
arate functions. The formal derivation of the chromatic transfer
function is analytical, whilst the modal transfer function is ob-
tained by numerically solving the power flow equation in the
frequency domain. This calculation is followed by a clear eval-
uation of the total number of mode groups initially excited in
the fiber. By examining this development the bandwidth be-
havior can be physically understood. Furthermore, the illustra-
tive curves show how the parameters of the beam should be
chosen to achieve a desired signal response. Special attention
is spent on analyzing, for the first time, the influence of the core
and outside diameters. We show in particular that the size of
the core increases the bandwidth potential of the MMF under
restricted mode launching condition. All computer simulations
are based on studying high-quality silica glass fibers fabricated
by Plasma Optical Fiber. Some measured results are also pre-
sented showing excellent agreement with theory.

II. THEORY

We consider the class of circular symmetric graded-index
(GRIN) fibers described by the refractive index profile

for
for

(1)
where is an offset distance from the core center,is the wave-
length (in free-space), is the index exponent
is the core peak index, is the refractive-index contrast, and

is the core radius.
Multimode optical fibers described by (1) support a large but

finite number of modes which are particular solutions of the
Maxwell’s equations. Guided modes propagating along the fiber
are clustered into families in which modes have almost sim-
ilar propagation constant. From the WKB analysis the propaga-
tion constant of mode groups can be derived analytically, which
leads to [8]

(2)

where stands for the principal mode number and is the
total number of mode groups that can be potentially guided in
the fiber. is given by [8]

(3)

A. Dispersion Analysis

We consider a multimode fiber characterized by the-class
refractive index profile defined in (1) as linear in its input-output

relationship [11]. In this case, we have recently shown that
within some conditions that are expected to be satisfied in
practice, the complex transfer function of such MMF’s can be
modeled by a product of two filter functions as follows [12]:

(4)
where and represent
chromatic dispersion and modal dispersion, respectively. The
parameters appearing in argument of both functions are the
baseband angular frequency, the transmission wavelength

, and the transmission length.
Equation (4) expresses the latent idea that chromatic and

modal dispersions are independent effects and can be evaluated
separately. Under the assumption that the power spectral
density of the driving source has a Gaussian lineshape with
an rms linewidth , the chromatic transfer function can be
calculated exactly, yielding [13], [14]

(5)

in which and have been introduced as abbreviations for

(6)

(7)

where is the modal velocity dispersion averaged over all
guided modes and is the averaged dispersion slope. It is
important to realize that for a system operated around a zero ma-
terial dispersion wavelength, the chromatic effect is not neces-
sarily negligible because of the presence of the dispersion slope.
Therefore, this term cannot be systematically ignored even in
the zero dispersion region. It is also worth noting that (5), (6)
and (7) are the same as those describing chromatic dispersion in
single-mode fibers. The difference for MMF’s is only that av-
eraged values have to be used for and in order
to include the contribution of all guided modes. This causes the
chromatic transfer function as defined in (5) to slightly depend
on all parameters that determine the propagation, i.e., launch
conditions, distributed loss and mode-coupling.

The modal transfer function involved in (4) is given by [12]

(8)

where and is
the modal power in Fourier domain. The numerator in the right
hand side of (8) is a normalization factor representing the total
power at position . The modal power distribution is described
by the following power flow equation which incorporates not
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only modal delay but also distributed loss and mode-coupling
effects [4], [15]

(9)

where is the modal delay per unit length, is the
modal attenuation and is the mode-coupling coefficient
normalized to .

B. Solutions of the Power Flow Equation

Equation (9) can be solved exactly using certain approxi-
mations [3], [4]. Here, we consider the more general situation
where all the coefficients are mode-dependent. In that case, no
simple analytical solutions are available and the modal transfer
characteristics can be obtained only by using a numerical
method. Before presenting the numerical procedure, let us first
specify the functional forms of the mode-dependent parameters
[i.e., and ] as well as the fiber
launching conditions.

1) Mode-Dependent Parameters:The modal delay per unit
length can be derived from (2) using the definition

where the prime denotes the derivation with re-
spect to wavelength andis the speed of light in vacuum. The
calculation leads to

(10)

in which is the group index and is the profile dis-
persion parameter, respectively, given by

(11)

(12)

In case the weak guidance rule is sufficiently satisfied, formula
(10) can be approximated by [8]

(13)

in which

with (14)

It should be mentioned that it is the differences in modal delay
(differential mode delay, DMD) that determines the intermodal

dispersion. The constant term in (13) leads to an overall
factor to the complex transfer function and

can be ignored in frequency response simulations.
The modal attenuation is incorporated in the model by fitting

a proper function to the measured data. For this the following
functional expression is proposed as approximation

(15)

where is the attenuation of low-order modes, is the
th-order modified Bessel function of the first kind, andis a

weighting constant. Of course, as in the case of modal delay, it is
the difference in modal attenuation (differential mode attenua-
tion, DMA) that determines the influence of the distributed loss.
The first term in (15) leads to an overall factor to
the solution and can be dropped. To obtain the numerical values
of the DMA parameters, we have fitted (15) to the measured
data presented in [16], which yielded and .

Finally, the mode-coupling coefficient needs to be specified
to proceed to the solutions of the power flow equation. The
coupling between guided modes may result from multiple ori-
gins including internal imperfections as well as external per-
turbations. Consequently, it is an impossible task to evaluate
the coupling phenomenon in the general case and one can suc-
ceed only through simplifying assumptions. Internal sources of
mode-coupling may be the consequences of core noncircularity
[17], crookedness in the lie of the fiber axis or refractive index
fluctuations [18] caused by the fiber fabrication process. In prin-
ciple, in modern glass fibers,the influence of the core diameter
variations due to the fiber fabrication process should be negli-
gible because those perturbations should extend over many cen-
timeters, so that the phase matching condition is unsatisfied for
modes belonging to different mode groups to exchange energy.
On the other hand, because we deal with modern silica glass
fibers made on using the high-performance PCVD method, we
will also neglect the effect of refractive index variations. In other
words, we will consider only random microbends caused by ex-
ternal forces to be the most dominant source of mode-coupling.
A valuable study of this subject was previously presented by Ol-
shansky [4]. We adopt here the same approach together with the
selection rules of next neighboring mode group approximation,
but we modify the form of the curvature spectrum to bring in
the fiber external diameter [19]. In so doing, we found the fol-
lowing functional expression for the normalized mode-coupling
coefficient

(16)

with

(17)

where is the mode-coupling constant,is the rms height of
the deformation and is the total radius of the fiber.

To allow for computation, numerical values are required for
the coupling parameters . For this, we formally set to
1 m and choose such a way that the predicted attenuation
at a given transmission length coincides with the measurement.
We obtained km which quite yields the 1.24
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dB/km value supplied by Plasma Optical Fiber for a 93/125-m
fiber operated at the 1300 nm wavelength.

From (16), it can be noticed that for two different fibers
drawn such a way that the ratio remains constant, the one
having the largest outside diameter will be less susceptible to
microbending. On the other hand, if the fiber size is maintained
to a constant value, the mode-coupling coefficient increases
with larger core. Another comment that can be made from the
above relations is that for large values of, the parameter is
positive, which causes the coupling coefficient to increase with
decreasing . In the step-index case , in particular,

and accordingly varies inversely with . This
demonstrates that low-order modes are more strongly coupled
than high-order modes in step-index fibers. The result is the
converse in the nearly parabolic-index version. This difference
in behavior between the two types of profiles was previously
confirmed by measurements [20].

2) Launching: A variety of light-coupling methods can be
applied to multimode fibers [6], [7]. For the present applica-
tion, we consider two cases, namely, the uniform launching
and the axial excitation with a Gaussian input beam. In the
former case, the initial power distribution is by assumption
the same for each mode and can be formally set to unity.
In the latter case, the mode excitation can be simulated by
computing the launching efficiency as the overlap integral
of the electrical field of each fiber mode with the electrical
field of the incident light. Strictly speaking, this calculation
should be carried out for the proper refractive index pro-
file of the fibers in consideration. But, this is not an easy
task since the modal fields can be determined analytically
in terms of known functions only for and .
However, as long as the refractive index remains nearly par-
abolic, as it is the case here, the distribution of the initial
power is not expected to differ significantly from that of
the perfectly parabolic profile. It is therefore appropriate to
use the results of overlap integral calculation displayed in
[21], [22]. We equally assume that the fiber axis is well
aligned with the beam axis, and that its end surface is well
positioned in the focal plane.

Together with the power distribution, the initial modal dis-
tribution plays a large part in the determination of the signal
response of the fiber. Even though the number of initially ex-
cited modes is not directly involved in the dispersion model,
its derivation as a function of the beam parameters should help
to physically understand the bandwidth behavior. More impor-
tantly, such a development can provide a veritable theoretical
basis for a more controlled choice of the input conditions during
a real implementation of the selective-mode excitation. There-
fore, we will quantitatively evaluate the initial mode group dis-
tribution when the fiber is axially launched with a Gaussian
beam.

Let us consider a light ray entering the fiber at incident angle
and propagating at an anglewith respect to the fiber axis

as explained in Fig. 1(b). We have the following relation for the
axial propagation constant of that ray

(18)

By taking (1) into account and introducing the Snell–Descartes
law

(19)

where is the refractive index of the medium in which the
incident ray is propagating ( for air), (18) becomes

(20)
Equating expressions (20) and (2) shows that the principal mode
number corresponding to the propagated ray is given by

(21)

The axial launching of the fiber by a Gaussian beam is schemat-
ically described in Fig. 1(a) where represents the spot radius.
It should be mentioned that Gaussian-shaped beams can readily
be obtained from semiconductor lasers using classical projec-
tion means (e.g., lens doublet). In such a launch technique, the
highest order mode group is excited by the plane-wave com-
ponent striking the fiber input surface at the maximal offset dis-
tance from the core center and at the maximal numerical aper-
ture . The latter can be viewed as the minimum be-
tween the numerical aperture (NA) of the incident beam and the
fiber local NA at the lateral distance. This approach is correct
since our theory approximates guided modes by a continuum
[12].

The numerical aperture of the Gaussian beam is approxi-
mately given by the relation . For nm and

m, for example, we obtain an NA of 0.14, which is less
than the NA of current glass fibers (0.16–0.65). Accordingly, we
can reasonably assume that for relatively large spots, the NA of
the Gaussian beam is smaller than the local NA at. In that case
we have , according to the above definition.
Hence, by substitution into (21) and denoting the number of ex-
cited mode groups by , we obtain

(22)

Inspection of relation (22) shows that the number of excited
mode groups goes to infinity when approaches zero or when

goes to infinity. It should be kept in mind, however, that
must not exceed the maximum number of mode groups imposed
by waveoptics and expressed in (3). More precisely, the input
light will excite all the modes supported by the fiber if the beam
overfills the core region or if it forms a small enough spot. Be-
tween the two situations, it is noteworthy that an optimum op-
eration point exists for which a few modes as possible can be
excited. The optimal spot radius that we will denote by is
obtained by solving , which yields

(23)
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Fig. 1. Description of the launching. (a) Geometry of fiber excitation with an
axial Gaussian beam and (b) ray trajectory.

Formula (23) is well-known from waveoptics-based calcula-
tions in the particular case of parabolic index fibers .
Thus, was usually considered to be the spot radius of the
beam that excites only the fundamental modes. However, it is
anticipated that the matched Gaussian beam does excite two
mode groups and not only one, regardless of the core diam-
eter. This will be more appreciated through illustrative curves
but can readily be verified by inserting (23) into (22) for .
This corresponds to six excited modes when taking the two-fold
degeneracy of the mode groups into account. So, in contrast to
the previous suggestions, this result quite demonstrates, that one
mode group cannot solely be launched with a central Gaussian
beam, even though in practice the fundamental modes will be
maximally excited. This finding gives the explanation why the
calculated optimum bandwidth of a standard 62.5/125-m fiber
at 1310 nm was found to be relatively small (10 GHz) [7]. If
the fundamental modes were excited alone the fiber would have
much behaved like the corresponding single-mode version and
the bandwidth would have been several times or even an order of
magnitude larger than the obtained 10 GHz, owing to the small
material dispersion around the wavelength of measurement. The
recorded small value means that the fiber response was addition-
ally influenced by modal dispersion due to the presence of the
second-order mode family.

The discrepancy between ray optics and wave optics is to be
connected with the fact that Hermite-Gaussian and Laguerre-
Gaussian mode fields are often used in the derivation of the
overlap integrals, which results in nonzero coupling efficiencies
only for odd values of the principal mode number[22]. The
problem is that the Hermite–Gaussian and Laguerre–Gaussian
modes follow from the assumption of an infinitely extended
square-law medium. This theory that regards the core as an un-
bounded region is not very realistic for a real fiber surrounded
by a cladding, so “even” modes should practically carry some
energy as well. For this reason, the Hermite–Gauss and La-
guerre–Gauss approach should not, in a strict sense, be used in
the dispersion model. Instead, the overlap integrals should be
computed numerically from the Maxwell’s equations in order
to include the contribution of every propagated mode. However,
because the mode-continuum approximation is presumed to be

valid in our model [12], the error involved using the simpli-
fied representation by Hermite–Gaussian or Laguerre–Gaussian
modal fields should not be significant. It is therefore convenient
to adopt the calculation results of [21], [22].

3) Numerical method:The numerical integration consists of
discretizing the and variables to form a rectangular lattice.
At each point of the grid the derivatives are approximated
by an appropriate finite difference which determines the choice
of method. A variety of such schemes are given in the litera-
ture. Here, we will adopt the Crank–Nicholson implicit proce-
dure which yields a stable solution that converges more rapidly
than ordinary difference methods [16], [23]. For this, let
and be the segmentation steps of the variablesand , re-
spectively. The power flow equation with can be
replaced by a set of finite-difference equations with

where and . Using
the Crank–Nicholson implicit scheme, (18) is transformed into

(24)

with

(25)
where

(26)

The unknowns can be computed from (24) if the boundary
conditions are specified. For this, our choice is the following:

(27)

for (28)

The boundary condition (27) stands for the propagation equa-
tion of the fundamental modes, while the upper boundary con-
dition (28) is established by considering that leaky modes do not
transport significant power, which should be a realistic assump-
tion. It is worth mentioning that once the are determined,
the modal transfer function can be derived by approximating
(8) by any suitable numerical integration method. Here we have
used Simpson’s rule in the frequency response simulations. The
results will now be shown and discussed.

III. RESULTS AND DISCUSSION

We analyzed the dispersion characteristics of ternary GRIN
fibers with a GeO–F–SiO core and F–SiOcladding. These
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Fig. 2. Refractive-index profile of the studied glass fibers: (���) Measurement
on PCVD preform,(———) Best fitted index differencen(r; � ) � n(0; � )
with � = 1:9.

fibers are fabricated by Plasma Optical Fiber by the high-per-
formance PCVD method. A small amount of fluorine (0.004
mol-%) is uniformly doped over the core and cladding regions.
The core center has a 13.5 mol-% of germanium which is grad-
ually decreased in the lateral direction to form the grading. To
enable computer evaluations, it is assumed that the refractive
indices of the core and cladding materials follow three-term
Sellmeier functions of wavelength [24]. These choices of pa-
rameters yield a numerical aperture in the 1300-nm
wavelength region, and the core exhibit a refractive index pro-
file that can be approximated with an-factor close to 1.9 (see
Fig. 2). On the other hand, the material dispersion versus wave-
length characteristic shows a zero crossing near 1300 nm and
a ps/nmkm value at 850 nm. The dispersion slopes at the
same wavelengths are found to be 0.1 and 0.4 ps/nmkm, re-
spectively. For the rest of the work, the 1300 nm region will be
uniquely considered. The frequency responses as embodied by
(4) are simulated based on three different fibers spooled on sep-
arate 30 cm-drums and measuring 2014 m in length and having
62.5/125, 93/125, 148/200m core/cladding diameters, respec-
tively.

The number of mode groups excited by an axial Gaussian
beam is reported in Fig. 3 as a function of the spot radius, for
the three different fibers under consideration. It can be observed
first that projecting a small spot onto the center does not neces-
sarily constitute a restricted launching, but a large number of
modes, or even all the modes that can potentially propagate,
could be excited. This is so because the local numerical aper-
ture is the highest in the core center and corresponds to the very
numerical aperture of the fiber. In other words, the positioning
of a small beam spot against the center of the core should lead to
the same bandwidth than the overfilling of the core region with
a large spot.

In accordance with earlier indication, each characteristic in
Fig. 3 is seen to exhibit a minimum corresponding to two mode

Fig. 3. Total number of excited mode groups as a function of spot radius for
varying core diameter:(———) 2a = 148 �m, (– –) 2a = 93 �m, (� � � � � �)
2a = 62:5 �m.

groups, regardless of the size of the core. More importantly, the
effect of the core diameter can be analyzed in the same figure by
comparing the curves by pair. The presence of crossover points
can be noticed. Because the number of guided modes determines
the level of modal dispersion, these regions mark the points from
which the considered fibers will practically show inverse band-
width performance. More precisely, for an incident beam having
a spot radius lower than the crossover value, the largest core
sample will propagate more modes than the thin-core one and
therefore will exhibit less bandwidth. This result will be the con-
verse if the beam spot radius is larger than the crossover value.
Of course, these qualitative predictions should hold true only
for transmission distances not exceeding the characteristic cou-
pling length. It should equally be noticed that because the fiber
response depends not only on the number of guided modes but
also on the power distribution and further parameters as indi-
cated earlier, the crossover points may slightly shift in the band-
width domain. The results of Fig. 3 will be more appreciated by
reference to further curves.

Fig. 4 shows the frequency responses of a m fiber
at transmission length of 2014 m. The simulations are made for
two types of launching, that is, the SMF-to-MMF butt-joining
and the complete mode filling showing the influence of mode-
coupling. In the former case, measured data are also reported.
The driving source was an SMF-pigtailed module employing a
classical Fabry–Perot laser emitting at the central wavelength
of 1308 nm. The measured frequency response was recorded
using a 3-GHz network analyzer (HP 8702A). From Fig. 3,
the following observations can be made. First, we see that in
the SMF-to-MMF launch case for which both experiment and
theory are compared, the characteristics show excellent agree-
ment. Second, the results confirm that more bandwidth can be
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Fig. 4. Frequency responses of the 93/125�m fiber at 1308 nm wavelength
under two different excitation conditions:(———) SMF-to-MMF launching
(theory), (� � �) SMF-to-MMF launching (experiment),(– –) Theoretical
simulation under overfilled launching (OFL) including distributed loss and
random perturbation effect,(� � � � � �) Theoretical simulation under OFL
excluding random perturbation effect.

gained by mode-coupling. This improvement follows from
the fact that the mixing process forces the total light energy
to travel at an overall speed that is an average of the modal
group velocities [25]. Since no extra mode is excited during
propagation, the average speed is less than that of an otherwise
similar fiber having no mode mixing. This explains the higher
signal response. Another observation that can be made from
Fig. 4 is that the full-mode excitation yields a much lower
frequency response with respect to that of the SMF-to-MMF
launching. This behavior remains true in the presence of
random perturbations. The 3-dBo bandwidth is found to be
0.87 GHz in the full launch case and 9.10 GHz (not shown in
Fig. 4) in the SMF-to-MMF launch case, which is far beyond
the detection limit of the measurement system. These results
clearly demonstrate that the input conditions play a much more
significant role in providing a large bandwidth than the random
perturbations combined with a normal excitation. Intentional
microbends could be built in the fiber to increase the coupling
strength and rise the potential signal response, but this will
cause extra power penalty as a result of the tradeoff relation
between bandwidth and coupling-induced losses.

In order to analyze the influence of the core/cladding
diameters, we have reported the frequency responses of the
148/200 m sample in Fig. 5 where the curves have the same
significance as in Fig. 4. Again, a good agreement is obtained
between simulation and measurement for the SMF-to-MMF
launching case. The corresponding 3-dBo bandwidth is 2.23
GHz, whilst it is found to be 0.75 GHz for the complete and
uniform mode excitation regime. Compared to the previous
values, we see that the bandwidth for the same launching
condition is reduced with higher diameter. This result is quite in
agreement with the theoretical studies. Indeed, in the full-mode
launch case the bandwidth reduction follows from (16) which
shows that the coupling strength reduces with larger outside
diameter. In the SMF-to-MMF launch case the reduction in the

Fig. 5. Frequency responses of the 148/200�m fiber at 1308 nm wavelength
under two different excitation conditions:(———) SMF-to-MMF launching
(theory), (� � �) SMF-to-MMF launching (experiment),(– –) Theoretical
simulation under overfilled launching (OFL) including distributed loss and
random perturbation effect,(� � � � � �) Theoretical simulation under OFL
excluding random perturbation effect.

bandwidth is to be connected with the larger number of excited
modes. This interpretation is in line with the solid curve in
Fig. 3 since the SMF beam results in a spot radius of 6m,
approximately.

It is convenient to verify further in terms of fiber bandwidth
the initial modal distribution as displayed in Fig. 3. For this, a
series of frequency responses were simulated showing the ef-
fects of the spot radius and that of the core diameter, separately.
Some of these results are reported in Figs. 6 and 7. The upper
part of Fig. 6 plots the dependence of the standard fiber band-
width on launch spot radius, whilst Fig. 7 plots the frequency
responses of the three fibers for a constant spot radius of 19m.
We see that the shape of the curve in Fig. 6 is consistent with the
shape of the dotted characteristic in Fig. 3. In particular, the op-
timum spot radius providing the highest bandwidth is found to
be 7.8 m, which coincides with the optimum operation point in
Fig. 3. From Fig. 6, it can also be noticed that the optimum spot
radius is not critical but its value can vary over a certain range
without significantly altering the bandwidth performance. This
is of interest if a practical implementation of this technique is to
be realized.

Fig. 7 also reflects quite well the modal picture shown in
Fig. 3. Indeed, we see that the 3-dBo bandwidth increases
with larger core. We found it useful to compare the highest
3-dBo bandwidth in Fig. 7 (16 GHz) with that of the standard
62.5/125 m fiber under optimal launching. The latter can be
derived either from the upper part of Fig. 6 or from the lower
part which shows the full optimum frequency response. The
result is 8 GHz, which corresponds to a twofold reduction
with respect to the bandwidth of the 148/200m sample
in Fig. 7. This clearly demonstrates that the large-core fiber
has more bandwidth potential. The physical reasons behind
this trend are not thoroughly understood yet. We believe that
this should mainly result from the fact that the difference in
propagation constant between next-neighboring mode groups
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(a)

(b)

Fig. 6. Characteristics of the 62.5/125�m fiber at 1308 nm wavelength: (a)
dependence of bandwidth on beam spot radius and (b) optimum frequency
response.

is inversely proportional to the core diameter [26] and therefore
reduces as the core is enlarged. It can be noticed, however,
that a low-frequency dip sometimes appears in the frequency
response. The presence of the dip was already slightly apparent
from Fig. 4 (in the SMF-to-MMF launch case). It may affect a
broad-band transmission performance and therefore may cause
the limitation of the potential bandwidth to values much lower
than the the 3-dBo cutoff frequency available. Future work will
be done to investigate this phenomenon in more detail.

To end this discussion, we believe that the axial launch
into the core provides a promising alternative for enhancing
the bandwidth-distance performance of LAN’s wired with
multimode fibers. It is clear from the above study that under
selective operation, MMF’s can transmit much larger bit rates
over longer distances than usual. In particular, using this tech-
nique, the speed and distance requirements of Gigabit Ethernet
could easily be met. As far as restricted-mode launching is
concerned we dare say that the thick-core fiber is the most
appropriate. As we saw, its bandwidth is not necessarily lower
than that of an otherwise similar fiber but having thinner core.
Instead, the forgoing work shows that the large-core fiber can
exhibit equal or even higher response than the thin-core one if
the launch conditions are properly chosen. On the other hand,
the size of the fiber is useful for minimizing the microbending

Fig. 7. Theoretical frequency responses of three different fibers at 1308 nm
wavelength for a constant spot radius of 7.8�m: (———) 2a = 148 �m, (– –)
2a = 93 �m, (� � � � � �) 2a = 62:5 �m.

effect, thereby allowing for a large coupling length. The easy
connectorization of large-core fibers can also be mentioned as
an additional advantage. The main worry concerns the modal
noise immunity of such selective systems and eventually their
higher sensitivity to mechanical agitation compared to those
using the classical overfilled launching. The latter problem
can be prevented by properly optimizing the input connector
and by reinforcing the cabling. The modal noise aspect is not
investigated yet, but we are of the opinion that the immunity
should not degrade significantly. It may even rather improve
for the following reasons. The light energy will essentially be
contained in a few low-order modes guided near the fiber axis.
In that case, indeed, Saijonmaa and Halme have shown that the
modal noise may be dramatically reduced at fiber-fiber joint
[22]. On the other hand, because low-order modes have the
smallest divergence, the outgoing beam will be easier to image,
thereby minimizing its susceptibility to produce modal noise on
the receiver side. It is also worth mentioning that if the modal
noise cannot be completely suppressed, the resulting residual
power penalty can be compensated by the greatly reduced
dispersion penalty that will necessarily follow from the large
bandwidth enhancement. As a result of this study, we propose
that, because the size of the input beam spot determines the
selective operation, this parameter be considered, from now on,
as a figure of merit for optical transmitters that are to be used
in MMF networks.

IV. CONCLUSION

The dispersion behavior of GRIN silica-glass fibers is theo-
retically and experimentally presented. The theoretical results
are obtained using a newly-developed dispersion model which
includes both distributed loss and mode-coupling effects. In this
model the fiber frequency response is described as a product of
two separate functions regarded as frequency responses caused
by chromatic and modal dispersions.

The analysis of computer simulations and measurements are
mainly focused on the influence of the core/outside diameters
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in conjunction with the input conditions. It is emerged that
the latter parameter plays a much more significant role in
minimizing the intermodal dispersion than the mode-coupling
from random perturbations. The results also show that the size
of the fiber core does not constitute an obstacle to achieving a
low dispersion. On the contrary, this study quite demonstrates
that thick-core MMF’s may exhibit larger bandwidth than
thin-core ones if the input conditions are properly chosen.
Because thick-core fibers additionally present little sensitivity
to microbending and also because they are easier to connect,
we believe that they are the best appropriate if a selective-mode
excitation technique is to be implemented.

Let us mentiona posteriori that the selective-mode launch
which consists of initially coupling energy only into a given
subset of propagating modes should not be too difficult to
achieve in practice. As we saw, the direct butt-joining of an
SMF to the MMF could lead to a selective-mode excitation de-
pending on the core diameter. This is convenient because most
commercially available optical transmitter modules terminate
with single-mode fiber pigtails. On the other hand, for MMF’s
with arbitrary cross sections, suitable input spots can generally
be obtained from SMF’s and semiconductor lasers using
conventional projection means such as lens doublets. In other
words, there is no apparent tradeoff of having to control the
mode-launch versus the bandwidth gain in larger core region.
More work will be done in future to complete the evaluation
of the potential of large core MMF’s under selective-mode
operation.
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