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Norm-Conserving Finite-Difference
Beam-Propagation Method for TM Wave
Analysis in Step-Index Optical Waveguides
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Abstract—Nonconservation of power is a perplexing problem words, the term “power conservation” in this paper is used in
in the propagating beam analysis of transverse magnetic (TM) terms of the conservation of the squared norm.
waves in az-variant step-index optical waveguide. To conserve  gince the violation of power conservation is clearly un-

the power in terms of a squared norm, a modified finite-differ- derstood i two-di . | id . tioat
ence (FD) formula is introduced that allows a general position erstood In a two-dimensional waveguiae, we investigaie

of a core-cladding interface. The use of the modified formula Propagation characteristics in symmetrical and asymmetrical
contributes to a reduction in a field profile error caused by a slab waveguides. We first introduce the exact propagation equa-
staircase approximation with subsequent conservation of power, tion for TM waves in planar geometry, and then summarize

particularly for a symmetrical waveguide. To obtain the power the reason why the power is not conserved by neglecting the

conservation even in the analysis of an asymmetrical waveguide, S o . It
a =-derivative of the refractive index is taken into account. An  2-derivative of the refractive index. We next derive a modified

asymmetrical taper and tilted waveguides placed in parallel are finite-difference (FD) formula that allows a general position of

investigated to validate the present technique. a core-cladding interface. After demonstrating the effectiveness
Index Terms—Finite-difference (FD) methods, optical beam of the modified FD formula in the e'geande anegS|s,. we
propagation, optical waveguides. apply the FD formula to the propagation problem in a tilted

waveguide. It is found that the use of the modified FD formula
improves accuracy in terms of power conservation, particularly
|. INTRODUCTION for a symmetrical waveguide.
HE STUDY of light propagation through waveguide struc- To achieve power conservation even for the analysis of
tures is indispensable in designing complex photonics d@? asymmetrical waveguide, we solve a more exact Fresnel
vices. For this purpose, the beam-propagation method (BPRfuation, taking into account th@.n~? term. Evaluation
has extensively been used. For the analysisfariant struc- of the d.n~2 term serves to conserve the power even in a
ture by the semivectorial or fullvectorial BPM, one is often corstrongly asymmetrical waveguide tilted from theaxis. As an
fronted with the problem that the power is not conserved duriggpplication of the present technique, we solve an asymmet-
the propagation process. For example, imaariant slab wave- rically tapered waveguide, which was used in a benchmark
guide, nonconservation of power occurs when simulating ttest [6]. The reciprocity of the propagation is demonstrated in
propagating beam of transverse magnetic (TM) waves. Thistégms of the guided-mode power. Furthermore, a tilted coupler
due to the fact that a simple Fresnel equation, which is similaréomposed of two parallel waveguides is investigated for several
that in transverse electric (TE) waves, is used even for the TiNt angles.
analysis. Vassallo [1] clearly indicated necessity of including a Complete power-conserving analysis is made using full-wave
z-derivative of the refractive index along the propagation diretechniques, such as the FDTD method [7], the MAFIA [8], and
tion, i.e.,0.n2 term. Meanwhile, Hoekstra [2] introduced thethe finite-element method [9]. The finite-element method can
transformation ofH field to H/n. Subsequently, Poladian andalso reduce a discretization error, since the grid can be defined
Ladouceur [3] extended Hoekstra’s idea to a more general cadgthe geometry of the refractive index. It should be noted, how-
and succeeded in analyzing TM waves in a tilted graded-indexer, that the full-wave techniques require extensive computa-
waveguide. It should be noted, however, that the transformatiisdnal effort for the analysis of the propagating beam in an op-
technique does not work well for a step-index waveguide [4].tical waveguide. In this paper, we focus our attention on the anal-
This paper is devoted to a detailed study on the BPM analy®js of the Fresnel equation by the Crank—Nicholson scheme,
of TM waves in a step-index waveguide with emphasis on powsince this scheme is simple to use, computationally efficient, and
conservation. It is known that the Fresnel wave equation doaere importantly it has been used in many BPM algorithms in
not conserve the power defined by Poynting vector [5]. In thte past.
work we evaluate the power using the squared norm defined by
[ (1/n?)|H|? dz as was used in a benchmark test [6]. In other [l. FORMULATION AND EFFECTS OFz-DERIVATIVE OF THE
REFRACTIVE INDEX
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€p andug  are the free space permittivity and permeability, 1 t _ =1
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respectively;
w is the angular frequency;
n = is t_he refractive index profile of a planar wave-Fig. 1. Sampling points near a discontiniy.
n(x, z) guide.
By definingH = H(z, z)4 and eliminatingtl from Maxwell's

) ; . . Vassallo [1] has derived the properties @fwhen the TM
equations, we obtain the following exact wave equation for the . : ) .
™ wave: wave propagates in a step-index slab waveguide tilted by an

angle® from the »z-axis, neglecting the-derivative of the re-
fractive index in (5)
1 1
n? o (Lan —i—7123 1 on +kan*H =0 (3)
Oz \ n? 0z Oxr \ n? Ox < [ ]¢?
2/3/ CrdX =—tan©® > ¢
n

wherek, = w/c is the free-space wavenumber. discont.

We now derive a propagatipn equation for the _TMvhered)(X) andg satisfye” (X) + (k2n2(X) — A2)$(X) = 0,
wave su\?g,ir tg\?t slowly vqrylnghen\;gllt?j[;j approxXimag;iy, the continuity ofn=2(¢' —j 3¢ tan ©) at core-cladding in-
;'_?n ( = )H er expr(?zsmg t eh ield?(z, ﬁ) afs terfaces, and is the imaginary part o8. The sum is performed

(#,2) = H(x, z) exp(—jhonoz), Whereng is the ref- o e giscontinuities 0f(X) and theln=2[* terms are the
erence refractive index to be appropriately chosen, we obtalrj1umIOS ofn—2. Note that the coordinat’ is taken to be normal

to the core-cladding interface, i.€\, = z cos © — z sin ©.
= ) + jikono oH Needless to say, the appearancg oésults in loss or ampli-
9z n? 9z fication of the approximated fields. This is particularly obvious
9 /1 6H when the refractive index profile is asymmetrical. At first sight,
2 2.2 2 . .
=naz <ﬁ %> + kg[n*(x, z) — nglH. (4) the power seems to be conserved for a symmetrical waveguide,
since the tern}_ |#|%|(1/n%)|T is cancelled. Actual calculation,
Since the relationjkonoH| > |0H/9z| is maintained within however, shows that the field is lossy or amplified as soon as the

the framework of the SVEA, (4) can be reduced to the followinfg!d ¢ contains an error (with its symmetry being lost) due to
Fresnel equation: a staircase approximation. In other words, the power for a sym-

metrical waveguide must be well conserved, provided that the
oH 50 <i 8H> { o 40 < 1 )}H © field is evaluated more properly without using the staircase ap-

—_— —_— ) — — roximation. This fact will be verified in Section lll.
Oz " Oz \ n? Ox ! 271 Oz P
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I1l. M oDIFIED FINITE-DIFFERENCEFORMULA FOR A GENERAL

whereo = 2jkonog andr = Ek2[n?(x, z) — n2]. Equation
Jworo oln°(@, 2) ol- Bq POSITION OF AN INTERFACE

(5) is the basis of the present work and is solved by the
Crank—Nicholson scheme. The finite-difference equation It can be said from the discussion in Section Il that reducing

becomes the discretization error is crucial to power conservation. We
should recall that the discretization error has successfully been
Az ( o ,8 (1 H+1 141 reduced in the eigenmode analysis by the aid of a modified FD

{U T {5.7: +v 5" 5, <§> H H formula for a general position of an interface [4], [10]. Since

the field profile error caused by the negligencé&of —2 is small
Az { 5 o 50 < 1 )Hl . [1], we are encouraged to employ the modified FD formula even
0r+v——n H (6) . : ; .

2 27 Oz in the propagating beam analysis:e¥ariant structures. In par-

ticular, for a symmetrical waveguide, the power must be con-
whereé? is the finite difference for the second derivative, whiclserved even if we negleét.n=2, as long as the discretization
will be introduced in Section 111 error is substantially reduced. In this section, we describe how

The d.n~2 term in (5) has often been neglected in previoutie modified FD formula contributes to a reduction in the dis-

works. Vassallo [1] has indicated that neglecting théeriva- cretization error with subsequent power conservation for a sym-
tive of the refractive index causes two problems: a field profilmetrical waveguide.
error and nonconservation of power. Fortunately, the field pro- Three consecutive sampling points shown in Fig. 1 are con-
file error is not significant within the framework of the paraxiakidered, in which the interface of different indexes is located at
approximation. It should be noted, however, that the consendistance Az (with 0 < £ < 1) from pointi. We assume that the
tion of power is seriously violated. We, therefore, focus our aitaterface is perpendicular to theaxis. This assumption is ap-
tention on power conservation. proximate when treating a tilted waveguide. Nevertheless, we
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can expect improvement in accuracy within the framework of (a)
the paraxial approximation, as will be seen later. a
Starting from the one-dimensional (1-D) Helmholtz equation, -4
. . 10 ¥ 1 rrrrn L] 1 L
we first express the field&,;_; and H;; based on Taylor-se- o present
ries expansions, as described in [4], [10], and [11]. Using the 10°°E 2 Stem
continuity relations at the interface, we obtain [10]
Yt .6
9’H . asH;_1 + boH,; + coH;t A.’IZ 93H % 10
Ox? i_ doAx? 3 O3 = 107
(1)
+ O(Az?) (8) 2
= -8
where s 10
S -9
az =14+ (60 —1)(1 — &) + mAz*I z 10
by=—2—(0—1)(1—¢&) —mAz2(1+T) 107
Co = 1 1"
_1 2 1 AQ]-_‘ 10' - ] 1 IIIIIII- 1 1 IIIIII-
dy =14 5(6 — 1)(1 - )2 +1) + jmia 0 e o

ea =(0 — DEE—1)(26 —1)/dy

inwhich ¢ = n?,, /n?, m = k3(1 — €)*(n? — n2,,)/2, and (b)
Fr=£&+0(1-¢)/3.

Incidentally, the formula for the first derivative, which will -
be required to calculate the adaptive reference index in (12)(5%

Ax [4m]

3. Overlap integral error as a function of transverse sampling width
symmetrical slab and (b) asymmetrical slab.

given by
4 ‘ ‘ dy =1 6 —1)E(3—2 Lo/ AT
8_H _ alefl + ble +61HZ+1 + O(A.QZQ) (9) 2 "j‘ ( )5( 5) + Qm &
oz |, di Az =0 - DEE-1)(26 - 1)/dy

where =-1

— / m/ .1‘2
ar = —1+261-6)(1-¢) b— 20’ ~1)(1 - &) —m'A

1)
e =1-2(1-6)(1-¢
b1 235(9 — D= —mda? dy =2+ (0 — 1)E(3 — 26) + m/ A2
C] =

di =2+ (60— 1)(1 — €)(2¢ 4+ 1) + mAzT. inwhich@ = n? | /n?, m' = k3&%(n? —n?_)/2, andl’ =
— &) +0°¢/3.

Similarly, we can also derive modified FD formulas when the One may notice that the present FD schemes are asymmet_
discontinuity lies between points— 1 ands. In this case, the rical near the core-cladding interface, resulting in slight loss
coefficients are changed to or gain even for a straight waveguide. Preliminary calculation,
however, shows that the spurious loss or gain caused by the
asymmetry is much smaller than that caused by the staircase
by = —2— (¢ = 1)¢ —m'Az?(1+17) approximation or the negligence 8fn 2 term in az-variant
co =14 (0 — )¢+ m' Azl waveguide. For example, the spurious gain is about0~% dB

CLQI].
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Fig. 4. Overlap integral error as a function of interface position(a) symmetrical slab and (b) asymmetrical slab.
symmetrical slab and (b) asymmetrical slab.

. . . ., 1.55 pm is launched. The modal profile is determined by the
_at a_propaganop dlstgnce of pfn for the syn_mjetrl_c quegmde imaginary distance procedure [14][16].
in Fig. 2(a), which will be found to be negligible in Fig. 6(b). Fig. 3 shows the numerical error evaluated by the overlap in-
The third derivative in (8) can be evaluated using either thggral between the numerical and exact fields as a function of
Helmholtz or Fresnel equation [12] With the Helmholtz €gu3ransverse Samp”ng widthhz. For Comparison’ the data ob-
tion, the second term in the right-hand side (RHS) in (8) beained by the Stern formula are also plotted. In this analysis,
comes|(kgni_; — f*)H;—1 — (kgni — %) Hile2/3 for adis- ¢ is fixed to be 0.5, since the Stern formula is valid only for
continuity betweer andi + 1 or [(k§n7 — %) H; — (k3ni11 — ¢ = 0.5. Itis found that the present modified formula is more
(3%)H;11]e2/3 for a discontinuity between— 1 andi. The al- zccurate than the Stern one.
ternative technique based on the Fresnel equation is suitable ifhe advantage of the modified formula lies in the fact that
no information onj is available [12]. Although all the datathe interface position can arbitrarily be chosen without moving
in the following are generated by the technique based on th&ampling grid. Although this advantage will be clearly found
Helmholtz equation, the effects of the third-derivative term ajg Fig. 6, we first demonstrate the effectiveness of the present
much smaller than those caused by the discretization errorfiiimula, while checking the effects caused by a staircase error
the staircase approximation. It follows that this term may be ngrthe core width. Investigation is made in terms of the overlap
glected, as will be shown in Figs. 4 and 5. integral error and the effective index error. For the overlap in-
We now demonstrate the effectiveness of the modified Riegral, an appreciable error occurs when a reference waveguide
formula, comparing it with the well-known Stern formula [13]is connected to the same size waveguide with a lateral offset by
Before discussing propagating beam problems, we assesstktieorder ofAz. For the effective index, an appreciable error oc-
accuracy of each formula through the eigenmode analysis. Betirs when a reference waveguide is connected to a waveguide
symmetrical and asymmetrical waveguides shown in Fig. 2 amose core width differs from that of the reference waveguide
treated. The refractive indexes are= 3.512, no = 3.17, and by the order ofAz.
n3z = 1.0, respectively. The core width is taken to bé = Fig. 4 shows the overlap integral error as a function of in-
0.5 pm, and the fundamental mode at a wavelengthhof  terface positiorf. In this analysisAz is fixed to bed/21. For
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(b) For reference, the data fgr= 0.5 corresponding to the stair-

case approximation and for the Stern formula are also presented.
Tthe sampling widths are taken to Ber = d/(21 cos ©) and
Az =005 pm. The reference index is chosen tohe= ns.
At the edge of the computational window, Hadley’s transparent
boundary condition is imposed [17]. Fig. 6 indicates that im-
comparison, the data obtained by the staircase approximatigByement of the present formula over the Stern one is slight
are also plotted, in whici = 0 corresponds to the data whergyg long as the staircase approximatién= 0.5) is adopted. In
the field in the connected waveguide is shifted toward-the  other words, the formulas based on the staircase approximation
direction by0.5Ax, while § = 1 when shifted toward the-x  make a fatal error. It is worth mentioning that the modified for-
direction by0.5Az. Although evaluation of the third derivative jy1a for a general position of an interface greatly contributes
almost eliminates the dependency of the numerical results gg only to a reduction in the overlap-integral error but also to
the interface position, the effect is much smaller than the err@snservation of power.
caused _by the staircase approximation even in the asymmetricahe may have some interest in comparing the present scheme
waveguide. with that derived by Poladian and Ladouceur [3]. Note that the
Fig. 5 shows the effective index error as a function of interfaggheme in [3] only holds true for a graded-index waveguide.
position{. The data for the staircase approximation are agaifwe blindly apply the scheme in [3] to the step-index wave-
plotted, in which$ = 0 corresponds to the data when the corguide in this section, the overlap-integral error and the normal-
width of the connected waveguide is smaller than that of ﬂi@d power are, respective|y, in the orderiof 3 and 0.9 at a

reference waveguide by, while{ = 1 when the core widthis propagation distance of 5am, which are out of scale in Fig. 6.
larger than that of the reference waveguideMy. The behavior

of numerical results is similar to those in Fig. 4.
. . IV. EVALUATION OF z-DERIVATIVE OF THE REFRACTIVE INDEX

We now turn to the propagating beam analysis. From the dis-
cussion made in the last part of Section I, we can expect thatt is clear that the evaluation of thederivative of the refrac-
the power is conserved for a symmetrical waveguide tilted ltiye index in the TM-wave Fresnel equation is absolutely neces-
an angle®, provided that the discretization error is substantiallgary to conserve the power for an asymmetrical waveguide. In
reduced. To verify this fact, we calculate the normalized powthis section, we try to evaluate » 2, although only an approx-
together with the overlap integral error as a function of propanate evaluation is available because of discontinuous profile of
gation distance. Fig. 6(a) and (b) shows these dat&®fer 5°. a step-index waveguide.

Fig. 6. (a) Overlap integral error and (b) normalized power as a function
propagation distance (symmetrical slab).
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One way is to evaluate it directly using the finite difference L
B ; propagation distance [m |
formula. Application of the central difference formula to the
z-derivative of the refractive index leads to Fig. 10. Guided-mode power as a function of propagation distance.
g [1 dln n=2
2
n =) =—) =ln(ni_1/n Az, (10 TABLE |
0z <”2>1 < Oz )l (ne=s/msa)/ (10) SUMMARY OF THE FUNDAMENTAL MODE

POWER LOSSVALUES
This type of formula has often been used for evaluating the

transverse field components for the TM wave analysis. Alter- ©=0.1° Q=10
natively, we can use the following formula:
Forward | Backward | Forward | Backward
g 1 Upp1 — Up—
2 +1 -1
n =) =—" 11
9 <”2>1 A, (11) Twente 3.37 3.40 9.15 9.14
where Thomson 3.39 3.40 9.13 9.15
92 AAR-UCL | 3171 3.17 9.43 9.64
Up = —5 12 p=Il+1 or [—1.
ny +ng Hagen 3.39 3.45 9.15 9.20
The latter equation has first been employed in.afL_JII—vectorigI FD  IREE 337 3.37 9.10 9.10
scheme based on tHé-field to evaluate polarization coupling
terms [18]. Gent 3.37 3.37 9.13 9.13
To compare (10) and (11), we calculate the normalized power
pare (10) and (11), oM P Hosei 3364 | 3367 | 9003 | 9.003
of the asymmetrical waveguide at a propagation distance of 50

#m. Note that the waveguide geometry to be considered here
corresponds to the worst case (a strongly guiding structure with
the largest asymmetry) studied by Vassallo [1] in terms of non-
conservation of power. The data as a function of tilt angle are
presented in Fig. 7, in whichx is chosen to bd/(21 cos ©),
and the condition ofAz = Az/ tan © is applied. The refer-
ence index is taken to be) = /3 cos ©/ky. In this model, (11)
exhibits better power conservation behavior than (10). Further
comparison between (10) and (11) shows that they do not yield
significant difference for a waveguide with slight asymmetry.
We adopt (11) in the following analysis, but (10) yields nearly
the same results in the models in Figs. 9 and 11. Fig. 11. Geometry of coupled waveguides placed in parallel.

Fig. 8 shows a typical example of the normalized power evo-
lution for an asymmetrical waveguide tilted by an angl®of be noted that discrepancy of the reciprocity is observed when
5°. It is obvious that the negligence 6fn—2 results in power d.n~2 is neglected. In contrast, the reciprocity is recovered
amplification, while its inclusion serves to maintain the initialvhen including this term. More specifically, the guided-mode
power. power loss is calculated to be 9.093% for forward propagation,

As an application of the present method, we discuss two sgad 9.093% for backward propagation withix = 0.01 . m,
cific models. We first deal with an asymmetrically tapered wavehz = 0.573 ;. m, andN,, = 2048. We also calculate the case
guide shown in Fig. 9. This taper was used in a benchmark tést © = 0.1° under the condition of the same sampling pa-
[6]. The configuration parameters ang... = 3.30, ngy, = rameters. The guided-mode power loss is found to be 3.364 and
317, Neover = 3.17, and©® = 1.0°. A wavelength ofA = 3.367% for forward and backward propagations, respectively.
1.55 1 mis used, and,, is fixed to ben..,,. To verify the reci- Detailed comparison with the data in [6] is made in Table I.
procity of the propagation, we calculate the guided-mode powerWe next investigate the propagation properties of coupled
as a function of propagation distance. The results are presentedeguides shown in Fig. 11. Two identical waveguides tilted
in Fig. 10. The end points for forward and backward propdy an angle® are located in parallel, and one of the waveg-
gations should be the same due to the reciprocity. It shouldles is launched by the fundamental mode. The coupling of

0
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conserved whef.n~2 is included. This is particularly obvious
when the guided-mode power becomes maximal.

V. CONCLUSION

A power (norm)-conserving beam propagation technique has
been investigated for TM waves in step-index slab waveguides.
We first review the necessity of including thederivative of the
refractive index@.n 2. The effectiveness of introducing a mod-

0.2 i | ified finite-difference formula for a general position of an inter-
0.0 ! ! ! . : ! . face is demonstrated through the propagating beam analysis of a
0 10 20 30 40 tilted symmetrical waveguide. For the analysis of an asymmet-
propagation distance [zm | rical waveguided.n~2 must be taken into account. With this
(2) in mind, comparison between the finite-difference equations for
d.n~% is made. As an application, an asymmetrical taper and
1.2 ‘ i o 0'0 ‘ ' ' tited waveguides placed in parallel are analyzed to validate the
©=35 present technique.
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Fig. 12. Guided-mode power along the input waveguide for several tilt angles:
(a) 9.n—2 is evaluated and (k).n—2 is omitted.

the power is easily expected as the field propagates. Ideally, the
coupling length should be the same regardless of the tilt angle}7
with the power being conserved.

To compute the coupling properties, the choice of the refer-
ence indexq is important. We adopt the technique of adapting
ng after each propagation step [5], [19}; is determined by

2

1 |OH 9
/ RIHP = 5|50 | ) ®
nt = . (12) [0
H
k%/—| 2| dz
n [11]

The three-point finite-difference formula of (9) that takes into
account the discontinuity of the first derivative is employed tol12]
evaluatedH /dx.
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