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Abstract—Nonconservation of power is a perplexing problem
in the propagating beam analysis of transverse magnetic (TM)
waves in a -variant step-index optical waveguide. To conserve
the power in terms of a squared norm, a modified finite-differ-
ence (FD) formula is introduced that allows a general position
of a core-cladding interface. The use of the modified formula
contributes to a reduction in a field profile error caused by a
staircase approximation with subsequent conservation of power,
particularly for a symmetrical waveguide. To obtain the power
conservation even in the analysis of an asymmetrical waveguide,
a -derivative of the refractive index is taken into account. An
asymmetrical taper and tilted waveguides placed in parallel are
investigated to validate the present technique.

Index Terms—Finite-difference (FD) methods, optical beam
propagation, optical waveguides.

I. INTRODUCTION

T HE STUDY of light propagation through waveguide struc-
tures is indispensable in designing complex photonics de-

vices. For this purpose, the beam-propagation method (BPM)
has extensively been used. For the analysis of a-variant struc-
ture by the semivectorial or fullvectorial BPM, one is often con-
fronted with the problem that the power is not conserved during
the propagation process. For example, in a-variant slab wave-
guide, nonconservation of power occurs when simulating the
propagating beam of transverse magnetic (TM) waves. This is
due to the fact that a simple Fresnel equation, which is similar to
that in transverse electric (TE) waves, is used even for the TM
analysis. Vassallo [1] clearly indicated necessity of including a
-derivative of the refractive index along the propagation direc-

tion, i.e., term. Meanwhile, Hoekstra [2] introduced the
transformation of field to . Subsequently, Poladian and
Ladouceur [3] extended Hoekstra’s idea to a more general case,
and succeeded in analyzing TM waves in a tilted graded-index
waveguide. It should be noted, however, that the transformation
technique does not work well for a step-index waveguide [4].

This paper is devoted to a detailed study on the BPM analysis
of TM waves in a step-index waveguide with emphasis on power
conservation. It is known that the Fresnel wave equation does
not conserve the power defined by Poynting vector [5]. In this
work we evaluate the power using the squared norm defined by

as was used in a benchmark test [6]. In other
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words, the term “power conservation” in this paper is used in
terms of the conservation of the squared norm.

Since the violation of power conservation is clearly un-
derstood in a two-dimensional waveguide, we investigate
propagation characteristics in symmetrical and asymmetrical
slab waveguides. We first introduce the exact propagation equa-
tion for TM waves in planar geometry, and then summarize
the reason why the power is not conserved by neglecting the
-derivative of the refractive index. We next derive a modified

finite-difference (FD) formula that allows a general position of
a core-cladding interface. After demonstrating the effectiveness
of the modified FD formula in the eigenmode analysis, we
apply the FD formula to the propagation problem in a tilted
waveguide. It is found that the use of the modified FD formula
improves accuracy in terms of power conservation, particularly
for a symmetrical waveguide.

To achieve power conservation even for the analysis of
an asymmetrical waveguide, we solve a more exact Fresnel
equation, taking into account the term. Evaluation
of the term serves to conserve the power even in a
strongly asymmetrical waveguide tilted from the-axis. As an
application of the present technique, we solve an asymmet-
rically tapered waveguide, which was used in a benchmark
test [6]. The reciprocity of the propagation is demonstrated in
terms of the guided-mode power. Furthermore, a tilted coupler
composed of two parallel waveguides is investigated for several
tilt angles.

Complete power-conserving analysis is made using full-wave
techniques, such as the FDTD method [7], the MAFIA [8], and
the finite-element method [9]. The finite-element method can
also reduce a discretization error, since the grid can be defined
by the geometry of the refractive index. It should be noted, how-
ever, that the full-wave techniques require extensive computa-
tional effort for the analysis of the propagating beam in an op-
tical waveguide. In this paper, we focus our attention on the anal-
ysis of the Fresnel equation by the Crank–Nicholson scheme,
since this scheme is simple to use, computationally efficient, and
more importantly it has been used in many BPM algorithms in
the past.

II. FORMULATION AND EFFECTS OF -DERIVATIVE OF THE

REFRACTIVE INDEX

We derive the TM-wave propagation equation for planar ge-
ometry. We start from Maxwell’s equations

(1)
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(2)

where
and are the free space permittivity and permeability,

respectively;
is the angular frequency;
is the refractive index profile of a planar wave-
guide.

By defining and eliminating from Maxwell’s
equations, we obtain the following exact wave equation for the
TM wave:

(3)

where is the free-space wavenumber.
We now derive a propagation equation for the TM

wave under the slowly varying envelope approxima-
tion (SVEA). After expressing the field as

, where is the ref-
erence refractive index to be appropriately chosen, we obtain

(4)

Since the relation is maintained within
the framework of the SVEA, (4) can be reduced to the following
Fresnel equation:

(5)

where and . Equation
(5) is the basis of the present work and is solved by the
Crank–Nicholson scheme. The finite-difference equation
becomes

(6)

where is the finite difference for the second derivative, which
will be introduced in Section III.

The term in (5) has often been neglected in previous
works. Vassallo [1] has indicated that neglecting the-deriva-
tive of the refractive index causes two problems: a field profile
error and nonconservation of power. Fortunately, the field pro-
file error is not significant within the framework of the paraxial
approximation. It should be noted, however, that the conserva-
tion of power is seriously violated. We, therefore, focus our at-
tention on power conservation.

Fig. 1. Sampling points near a discontinuity.

Vassallo [1] has derived the properties ofwhen the TM
wave propagates in a step-index slab waveguide tilted by an
angle from the -axis, neglecting the-derivative of the re-
fractive index in (5)

(7)

where and satisfy ,
with the continuity of at core-cladding in-
terfaces, and is the imaginary part of . The sum is performed
over the discontinuities of and the terms are the
jumps of . Note that the coordinate is taken to be normal
to the core-cladding interface, i.e., .

Needless to say, the appearance ofresults in loss or ampli-
fication of the approximated fields. This is particularly obvious
when the refractive index profile is asymmetrical. At first sight,
the power seems to be conserved for a symmetrical waveguide,
since the term is cancelled. Actual calculation,
however, shows that the field is lossy or amplified as soon as the
field contains an error (with its symmetry being lost) due to
a staircase approximation. In other words, the power for a sym-
metrical waveguide must be well conserved, provided that the
field is evaluated more properly without using the staircase ap-
proximation. This fact will be verified in Section III.

III. M ODIFIED FINITE-DIFFERENCEFORMULA FOR A GENERAL

POSITION OF AN INTERFACE

It can be said from the discussion in Section II that reducing
the discretization error is crucial to power conservation. We
should recall that the discretization error has successfully been
reduced in the eigenmode analysis by the aid of a modified FD
formula for a general position of an interface [4], [10]. Since
the field profile error caused by the negligence of is small
[1], we are encouraged to employ the modified FD formula even
in the propagating beam analysis of-variant structures. In par-
ticular, for a symmetrical waveguide, the power must be con-
served even if we neglect , as long as the discretization
error is substantially reduced. In this section, we describe how
the modified FD formula contributes to a reduction in the dis-
cretization error with subsequent power conservation for a sym-
metrical waveguide.

Three consecutive sampling points shown in Fig. 1 are con-
sidered, in which the interface of different indexes is located at
distance (with ) from point . We assume that the
interface is perpendicular to the-axis. This assumption is ap-
proximate when treating a tilted waveguide. Nevertheless, we
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Fig. 2. Configuration of (a) symmetrical and (b) asymmetrical slab
waveguides.

can expect improvement in accuracy within the framework of
the paraxial approximation, as will be seen later.

Starting from the one-dimensional (1-D) Helmholtz equation,
we first express the fields and based on Taylor-se-
ries expansions, as described in [4], [10], and [11]. Using the
continuity relations at the interface, we obtain [10]

(8)

where

in which , , and
.

Incidentally, the formula for the first derivative, which will
be required to calculate the adaptive reference index in (12), is
given by

(9)

where

Similarly, we can also derive modified FD formulas when the
discontinuity lies between points and . In this case, the
coefficients are changed to

Fig. 3. Overlap integral error as a function of transverse sampling width�x:
(a) symmetrical slab and (b) asymmetrical slab.

in which , , and
.

One may notice that the present FD schemes are asymmet-
rical near the core-cladding interface, resulting in slight loss
or gain even for a straight waveguide. Preliminary calculation,
however, shows that the spurious loss or gain caused by the
asymmetry is much smaller than that caused by the staircase
approximation or the negligence of term in a -variant
waveguide. For example, the spurious gain is about dB
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Fig. 4. Overlap integral error as a function of interface position�: (a)
symmetrical slab and (b) asymmetrical slab.

at a propagation distance of 50m for the symmetric waveguide
in Fig. 2(a), which will be found to be negligible in Fig. 6(b).

The third derivative in (8) can be evaluated using either the
Helmholtz or Fresnel equation [12]. With the Helmholtz equa-
tion, the second term in the right-hand side (RHS) in (8) be-
comes for a dis-
continuity between and or

for a discontinuity between and . The al-
ternative technique based on the Fresnel equation is suitable if
no information on is available [12]. Although all the data
in the following are generated by the technique based on the
Helmholtz equation, the effects of the third-derivative term are
much smaller than those caused by the discretization error in
the staircase approximation. It follows that this term may be ne-
glected, as will be shown in Figs. 4 and 5.

We now demonstrate the effectiveness of the modified FD
formula, comparing it with the well-known Stern formula [13].
Before discussing propagating beam problems, we assess the
accuracy of each formula through the eigenmode analysis. Both
symmetrical and asymmetrical waveguides shown in Fig. 2 are
treated. The refractive indexes are , and

, respectively. The core width is taken to be
m, and the fundamental mode at a wavelength of

Fig. 5. Effective-index error as a function of interface position�: (a)
symmetrical slab and (b) asymmetrical slab.

m is launched. The modal profile is determined by the
imaginary distance procedure [14]–[16].

Fig. 3 shows the numerical error evaluated by the overlap in-
tegral between the numerical and exact fields as a function of
transverse sampling width . For comparison, the data ob-
tained by the Stern formula are also plotted. In this analysis,

is fixed to be 0.5, since the Stern formula is valid only for
. It is found that the present modified formula is more

accurate than the Stern one.
The advantage of the modified formula lies in the fact that

the interface position can arbitrarily be chosen without moving
a sampling grid. Although this advantage will be clearly found
in Fig. 6, we first demonstrate the effectiveness of the present
formula, while checking the effects caused by a staircase error
in the core width. Investigation is made in terms of the overlap
integral error and the effective index error. For the overlap in-
tegral, an appreciable error occurs when a reference waveguide
is connected to the same size waveguide with a lateral offset by
the order of . For the effective index, an appreciable error oc-
curs when a reference waveguide is connected to a waveguide
whose core width differs from that of the reference waveguide
by the order of .

Fig. 4 shows the overlap integral error as a function of in-
terface position . In this analysis, is fixed to be . For
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Fig. 6. (a) Overlap integral error and (b) normalized power as a function of
propagation distance (symmetrical slab).

comparison, the data obtained by the staircase approximation
are also plotted, in which corresponds to the data when
the field in the connected waveguide is shifted toward the
direction by , while when shifted toward the
direction by . Although evaluation of the third derivative
almost eliminates the dependency of the numerical results on
the interface position, the effect is much smaller than the error
caused by the staircase approximation even in the asymmetrical
waveguide.

Fig. 5 shows the effective index error as a function of interface
position . The data for the staircase approximation are again
plotted, in which corresponds to the data when the core
width of the connected waveguide is smaller than that of the
reference waveguide by , while when the core width is
larger than that of the reference waveguide by. The behavior
of numerical results is similar to those in Fig. 4.

We now turn to the propagating beam analysis. From the dis-
cussion made in the last part of Section II, we can expect that
the power is conserved for a symmetrical waveguide tilted by
an angle , provided that the discretization error is substantially
reduced. To verify this fact, we calculate the normalized power
together with the overlap integral error as a function of propa-
gation distance. Fig. 6(a) and (b) shows these data for .

Fig. 7. Normalized power as a function of tilt angle� (asymmetrical slab).

Fig. 8. Normalized power as a function of propagation distance (asymmetrical
slab).

For reference, the data for corresponding to the stair-
case approximation and for the Stern formula are also presented.
The sampling widths are taken to be and

m. The reference index is chosen to be .
At the edge of the computational window, Hadley’s transparent
boundary condition is imposed [17]. Fig. 6 indicates that im-
provement of the present formula over the Stern one is slight
as long as the staircase approximation ( ) is adopted. In
other words, the formulas based on the staircase approximation
make a fatal error. It is worth mentioning that the modified for-
mula for a general position of an interface greatly contributes
not only to a reduction in the overlap-integral error but also to
conservation of power.

One may have some interest in comparing the present scheme
with that derived by Poladian and Ladouceur [3]. Note that the
scheme in [3] only holds true for a graded-index waveguide.
If we blindly apply the scheme in [3] to the step-index wave-
guide in this section, the overlap-integral error and the normal-
ized power are, respectively, in the order of and 0.9 at a
propagation distance of 50m, which are out of scale in Fig. 6.

IV. EVALUATION OF -DERIVATIVE OF THE REFRACTIVE INDEX

It is clear that the evaluation of the-derivative of the refrac-
tive index in the TM-wave Fresnel equation is absolutely neces-
sary to conserve the power for an asymmetrical waveguide. In
this section, we try to evaluate , although only an approx-
imate evaluation is available because of discontinuous profile of
a step-index waveguide.
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Fig. 9. Geometry of asymmetrically tapered waveguide.

One way is to evaluate it directly using the finite difference
formula. Application of the central difference formula to the
-derivative of the refractive index leads to

(10)

This type of formula has often been used for evaluating the
transverse field components for the TM wave analysis. Alter-
natively, we can use the following formula:

(11)

where

or

The latter equation has first been employed in a full-vectorial FD
scheme based on the-field to evaluate polarization coupling
terms [18].

To compare (10) and (11), we calculate the normalized power
of the asymmetrical waveguide at a propagation distance of 50

m. Note that the waveguide geometry to be considered here
corresponds to the worst case (a strongly guiding structure with
the largest asymmetry) studied by Vassallo [1] in terms of non-
conservation of power. The data as a function of tilt angle are
presented in Fig. 7, in which is chosen to be ,
and the condition of is applied. The refer-
ence index is taken to be . In this model, (11)
exhibits better power conservation behavior than (10). Further
comparison between (10) and (11) shows that they do not yield
significant difference for a waveguide with slight asymmetry.
We adopt (11) in the following analysis, but (10) yields nearly
the same results in the models in Figs. 9 and 11.

Fig. 8 shows a typical example of the normalized power evo-
lution for an asymmetrical waveguide tilted by an angle of

. It is obvious that the negligence of results in power
amplification, while its inclusion serves to maintain the initial
power.

As an application of the present method, we discuss two spe-
cific models. We first deal with an asymmetrically tapered wave-
guide shown in Fig. 9. This taper was used in a benchmark test
[6]. The configuration parameters are

and . A wavelength of
m is used, and is fixed to be . To verify the reci-

procity of the propagation, we calculate the guided-mode power
as a function of propagation distance. The results are presented
in Fig. 10. The end points for forward and backward propa-
gations should be the same due to the reciprocity. It should

Fig. 10. Guided-mode power as a function of propagation distance.

TABLE I
SUMMARY OF THE FUNDAMENTAL MODE

POWER LOSSVALUES

Fig. 11. Geometry of coupled waveguides placed in parallel.

be noted that discrepancy of the reciprocity is observed when
is neglected. In contrast, the reciprocity is recovered

when including this term. More specifically, the guided-mode
power loss is calculated to be 9.093% for forward propagation,
and 9.093% for backward propagation with m,

m, and . We also calculate the case
for under the condition of the same sampling pa-
rameters. The guided-mode power loss is found to be 3.364 and
3.367% for forward and backward propagations, respectively.
Detailed comparison with the data in [6] is made in Table I.

We next investigate the propagation properties of coupled
waveguides shown in Fig. 11. Two identical waveguides tilted
by an angle are located in parallel, and one of the waveg-
uides is launched by the fundamental mode. The coupling of



YAMAUCHI et al.: NORM-CONSERVING FD-BPM FOR TM WAVE ANALYSIS 727

Fig. 12. Guided-mode power along the input waveguide for several tilt angles:
(a)@ n is evaluated and (b)@ n is omitted.

the power is easily expected as the field propagates. Ideally, the
coupling length should be the same regardless of the tilt angle,
with the power being conserved.

To compute the coupling properties, the choice of the refer-
ence index is important. We adopt the technique of adapting

after each propagation step [5], [19]. is determined by

(12)

The three-point finite-difference formula of (9) that takes into
account the discontinuity of the first derivative is employed to
evaluate .

The configuration parameters of the coupled waveguides are
taken to be the same as those investigated by the finite-element
BPM [19], i.e., m, and

m. The computation parameters are ,
except for ( m for

), and . Fig. 12 shows the guided-mode
power along the input waveguide for several tilt angles. The cou-
pling length and the power remain relatively unchanged when

is changed. For comparison, the data without are also
presented in Fig. 12(b). We can again find that power is well

conserved when is included. This is particularly obvious
when the guided-mode power becomes maximal.

V. CONCLUSION

A power (norm)-conserving beam propagation technique has
been investigated for TM waves in step-index slab waveguides.
We first review the necessity of including the-derivative of the
refractive index . The effectiveness of introducing a mod-
ified finite-difference formula for a general position of an inter-
face is demonstrated through the propagating beam analysis of a
tilted symmetrical waveguide. For the analysis of an asymmet-
rical waveguide, must be taken into account. With this
in mind, comparison between the finite-difference equations for

is made. As an application, an asymmetrical taper and
tilted waveguides placed in parallel are analyzed to validate the
present technique.
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