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Effect of Velocity Mismatch and Microwave
Attenuation on Time-Domain Response of
Traveling-Wave Electrooptic Modulators

Jing Zhou and Henry F. Taylor, Fellow, IEEE, Fellow, OSA

Abstract—The dynamic response of a traveling-wave (TW)
electrooptic phase modulator is treated using a Fourier transform
technique. An integral expression for the induced phase shift
which takes into account the optical-microwave velocity mis-
match and the microwave attenuation is derived. In the case of a
Gaussian modulating pulse and negligible microwave attenuation,
the temporal dependence of the modulated pulse amplitude can
be expressed in terms of error functions. Calculated pulse shapes
showing the transition from a Gaussian to a flat top output pulse
with increasing phase mismatch in the absence of microwave
attenuation are presented. The effect of microwave attenuation
on pulse shape, amplitude, and width is also explored. The
method used to obtain these results is generally applicable to the
time-domain analysis of TW modulators.

Index Terms—Electrooptic, integrated optics, modulators, pulse,
phase, traveling-wave, velocity matching.

I. INTRODUCTION

I NTERFEROMETRIC electrooptic modulators in lithium
niobate (LN) are widely used in digital communication

systems operating at 2.5 and 10 Gb/s and in analog systems
for cable television. Not only are rise and fall times ps
achieved with this technology, but interferometric designs
provide the chirp free performance needed for long-distance
transmission. These devices utilize a traveling-wave (TW)
configuration in which the modulating microwave signal propa-
gates in a strip line or coplanar waveguide on the surface of the
insulating substrate in the same direction as the modulated light
wave [1], [2]. Present practice for the highest bandwidths (
GHz) is to use very thick ( – m) electrodes to achieve
velocity matching by increasing the microwave propagation
speed to match that of the optical carrier [3]–[5].

In spite of the widespread interest in such modulators and
the recognized importance of velocity matching and microwave
attenuation, however, it appears that a quantitative analysis of
modulator response in the time domain has not been reported.
This paper presents the results of such an analysis in which
general expressions for the temporal dependence of the mod-
ulated pulse amplitude are derived. These results are applied in
obtaining a closed form expression for the case of a Gaussian
modulating pulse in the absence of microwave attenuation, and
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Fig. 1. Traveling-wave electrooptic phase modulator.

in exploring the effect of microwave attenuation on modulator
response.

II. TW M ODULATOR RESPONSEMODEL

The model assumes a uniform electrode and waveguide struc-
ture in the modulation region extending from to , as
in Fig. 1. The TW modulating pulse produces a refractive index
change . Analysis of the phase change in
the modulated light wave makes use of the Fourier transform of
the input pulse , given by

(1)

with the radian frequency component of the modulating mi-
crowave signal. The refractive index change is given by the in-
verse Fourier transform of , which can be written

(2)

with the propagation constant and the microwave
amplitude attenuation constant. Expressing the dependence of

on as

(3)

with , the microwave group velocity, given by

(4)

it follows that

(5)
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Thus, the refractive index change propagates along the wave-
guide at the microwave group velocity.

To relate the refractive index change in the modulating mi-
crowave signal to the phase change it induces in the optical
wave, we start with the scalar wave equation

(6)

with the complex electric field amplitude for the waveguide
mode, the effective refractive index for that mode, andthe
free-space speed of light. The solution to (6) can be written

(7)

with a real constant equal to the magnitude of the field,the
radian frequency of the optical carrier,the propagation con-
stant of the optical wave, andthe phase change in the optical
wave due to the electrooptic modulation. The propagation con-
stant is related to the radian frequency by

(8)

with the effective refractive index of the optical waveguide
mode in the absence of modulation.

Since the refractive index change in (5) is expressed as an
integral over spectral components, it is convenient to express the
induced phase change as a function of frequency and position,
i.e., . The modulated refractive index can then be
expressed in terms of its spectral components as

(9)

It will be assumed that the change inis much less than .
Then, substituting (7) and (9) into (6), differentiating, neglecting

, and canceling common terms yields

(10)

where , the optical group velocity, is given by

(11)

and . Equation (10) thus gives a spectral decomposition
of the optical phase change. By analogy with (5), the net change
in phase for the modulated output is given by

(12)

where

(13)

and the velocity mismatch factoris given by

(14)

The integral in (13) is evaluated as

(15)

In the case that microwave attenuation can be neglected,
, (12) becomes

(16)

where , and is defined as

(17)

To facilitate the evaluation of , it is noted that

(18)

where, from (2)

(19)

Integrating this expression from , where vanishes
under the assumption of a finite modulating pulse, yields

(20)

The electrooptic phase shift can be determined using (16) and
(20), for the case that microwave attenuation can be neglected.
In the next section, these results are applied to the case of a
Gaussian modulating pulse.

III. M ODULATOR RESPONSE TO AGAUSSIAN MODULATING

PULSE

A Gaussian modulating pulse produces a refractive index
change for given by

(21)

where the maximum refractive index change is and the full
width of the modulating microwave pulse to electric field
amplitude is .

For the case that microwave attenuation can be neglected, it
follows from (20), with the substitution , that

(22)

The integral in (22) can be written as

(23)

where the error function is defined as

(24)
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Fig. 2. Temporal dependence of modulated phase shift for�t=� = 0; 1; 2; 4,
and8 and no microwave attenuation. The plot is normalized with respect to
the maximum phase shift for perfect velocity matching and no microwave
attenuation�� . The horizontal axis (time) variable(t � t � 0:5�t)=� is
offset so that the plots will be symmetric about the vertical axis.

Finally, combining the results in (16), (22), (23), and (24), it
follows that

(25)

with , the phase shift which would occur in the case of
perfect velocity matching , given by .

Plots of the temporal modulator response calculated from
(25) are given in Fig. 2 for the cases that and
, where is the microwave/optical delay difference

over the modulator length due to velocity mismatch.
If microwave attenuation cannot be neglected, the

closed-form result of (25) is no longer applicable and the
temporal response of the modulator must be calculated nu-
merically from (12), (13), and (15), with , the Fourier
transform of (21), given by

(26)

The product of microwave attenuation and modulator length,
which is taken into account via (15), can be written

(27)

for the case that the microwave attenuation is proportional
to the square-root of the microwave frequency (skin-effect
loss)—generally a good approximation in the frequency range
from a few tens of megahertz to a few tens of gigahertz. The
factor can be evaluated from a known value of the mi-
crowave attenuation coefficient using (32) in the Appendix.

Plots of the temporal modulator response calculated numeri-
cally are given in Fig. 3 for the case of perfect velocity matching

, for and . Fig. 4(a) and (b)
plots the response for cases in which velocity mismatch and mi-
crowave attenuation are both present.

Dependence on of peak modulation amplitude, and
pulse width at 10% of peak amplitude, are plotted in Figs. 5
and 6, respectively, for and .

Fig. 3. Temporal dependence of modulated phase shift with no velocity
mismatch for values of the microwave attenuation factor� =� = 0; 1; 2; 4,
and8.

(a)

(b)

Fig. 4. Temporal dependence of modulated phase shift for�t=� = 0; 1; 2; 4;,
and8: (a) � =� = 1 and (b)� =� = 4.

Fig. 5. Dependence on�t=� of the peak amplitude of the modulated pulse
�� , normalized with respect to the maximum phase shift for perfect
velocity matching and no microwave attenuation�� , for � =� = 0; 1; 2; 4;
and8.
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Fig. 6. Dependence of the temporal width�T of the modulated pulse on
�t=� , with �T the full width measured at a modulation depth of 10% of the
peak amplitude, for� =� = 0; 1; 2; 4 and8.

IV. DISCUSSION

The closed form expression in (25) is, to the best of our
knowledge, the first such result for the response of a TW
electrooptic modulator. This result is useful in cases where the
effect of velocity mismatch dominates over microwave attenu-
ation and dispersion. As an example, we consider a modulator
in LN with thin electrodes operating at a wavelength near 1.5

m. In that case, the optical and microwave group velocities
are given, respectively, by and , with
and the optical and microwave group refractive indices. It
follows from (14) that

(28)

With , and cm/s, it is
calculated that ps/cm. For an incident pulse with
ps, the curves in Fig. 2 correspond, respectively, to
cm, cm, and cm, and cm.

To account for microwave attenuation, the value of can
be calculated from (32) of the Appendix if the microwave power
attenuation coefficient is known. For example, with

dB/cm- GHz [3] and cm, it follows from (32) that
ps. Thus, for ps, for a modulator

length cm. Using the same value of but with
decreased to 5 ps, cm for .

From Figs. 2 and 3, it is evident that, for a Gaussian modu-
lating pulse, the output pulse shape remains symmetric for the
case of velocity mismatch with no microwave attenuation, or
microwave attenuation with no velocity mismatch. However, the
output pulse becomes asymmetric when both velocity mismatch
and microwave attenuation are present. The asymmetry results
from the larger modulating voltage amplitude near , where
the leading edge of the pulse is modulated the strongest, than
near , where the effect is greatest on the trailing edge.

V. CONCLUSION

A general method for treating time-domain response of TW
electrooptic modulators has been presented. The method is
applied in the derivation of closed-form expressions for the
temporal dependence of modulated pulse amplitude for the case

of a Gaussian modulating pulse in the absence of microwave
attenuation. The pulse broadening has been expressed in terms
of , the ratio of the velocity mismatch delay to the
halfwidth of the incident pulse amplitude. The temporal plots
illustrate the transition in the modulated pulse shape from
Gaussian to flat top with increasing velocity mismatch. The
effect of microwave attenuation has also been treated using the
general method by means of numerical integration.

APPENDIX

RELATION BETWEEN AND MICROWAVE POWER

ATTENUATION COEFFICIENT

It is assumed that the microwave power attenuation in the
modulator electrodes is proportional to the product of the square
root of the microwave frequency and propagation distance
along the electrodes. The power attenuation constant has
units dB/cm- GHz. In calculating the effect of microwave at-
tenuation on modulator response, it is necessary to relateto
the constant used in the model calculations. If we write

(29)

for the dependence of the modulating voltage on distance
along the modulator, with a constant, it follows that the

(30)

It follows from (29) and (30) that

(31)

If we now recall

(27)

with in cm and , it follows from (31) that

ps (32)

Using this expression in conjunction with (12), (13), (15), and
(26), a quantitative calculation can be made of the effect of mi-
crowave attenuation on modulator response.
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