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Effect of Velocity Mismatch and Microwave
Attenuation on Time-Domain Response of
Traveling-Wave Electrooptic Modulators

Jing Zhou and Henry F. TaylpFellow, IEEE, Fellow, OSA

Abstract—The dynamic response of a traveling-wave (TW)
electrooptic phase modulator is treated using a Fourier transform V(1)
technique. An integral expression for the induced phase shift incident —_ transmitted
which takes into account the optical-microwave velocity mis- light wave OO light wave
match and the microwave attenuation is derived. In the case of a > —>
Gaussian modulating pulse and negligible microwave attenuation, O R
the temporal dependence of the modulated pulse amplitude can waveguide — L — —
be expressed in terms of error functions. Calculated pulse shapes substrate 2
showing the transition from a Gaussian to a flat top output pulse electrode

with increasing phase mismatch in the absence of microwave _ _
attenuation are presented. The effect of microwave attenuation Fig. 1. Traveling-wave electrooptic phase modulator.
on pulse shape, amplitude, and width is also explored. The

method used to obtain these results is generally applicable to the j exploring the effect of microwave attenuation on modulator
time-domain analysis of TW modulators. response

Index Terms—Electrooptic, integrated optics, modulators, pulse,

phase, traveling-wave, velocity matching. Il. TW M ODULATOR RESPONSEM ODEL

The model assumes a uniform electrode and waveguide struc-

ture in the modulation region extending fram= 0to > = L, as
NTERFEROMETRIC electrooptic modulators in lithiumin Fig. 1. The TW modulating pulse produces a refractive index
niobate (LN) are widely used in digital communicatiorthangeAn(z,t),0 < z < L. Analysis of the phase change in

systems operating at 2.5 and 10 Gb/s and in analog systdfgmodulated light wave makes use of the Fourier transform of
for cable television. Not only are rise and fall times0 ps the input pulsed(w,,), given by
achieved with this technology, but interferometric designs 1 0o ‘
provide the chirp free performance needed for long-distance Alwn) = —/ An(0,t)e "t dt (2)
transmission. These devices utilize a traveling-wave (TW) V2T Jeoo
configuration in which the modulating microwave signal propawith w,,, the radian frequency component of the modulating mi-
gates in a strip line or coplanar waveguide on the surface of th@wave signal. The refractive index change is given by the in-
insulating substrate in the same direction as the modulated ligitse Fourier transform of(w,,, ), which can be written
wave [1], [2]. Present practice for the highest bandwidtkd ( -
GHz) is to use very thick%15-30 um) electrodes to achieve Ap(z, 1) = L/ A(wm)ei(wmt—ﬂmz)—ain(wm)z dw,m,
velocity matching by increasing the microwave propagation V2T ) oo
speed to match that of the optical carrier [3]-[5]. (2)

In spite of the widespread interest in such modulators and . :
the recognized importance of velocity matching and microwa\‘f\@th {3’" the propag_atlon constant aﬂd”(wf"’) the microwave
attenuation, however, it appears that a quantitative analysisagﬂpl'tUde attenuation constant. Expressing the dependence of
modulator response in the time domain has not been report@@. onwm as
This paper presents the results of such an analysis in which B = wWin [ Vm ©)
general expressions for the temporal dependence of the mod-
ulated pulse amplitude are derived. These results are appliegvith v,,,, the microwave group velocity, given by
obtaining a closed form expression for the case of a Gaussian .
modulating pulse in the absence of microwave attenuation, and N <3/3m> @)

m awnl

I. INTRODUCTION
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Thus, the refractive index change propagates along the waVée integral in (13) is evaluated as
guide at the microwave group velocity.
. . . k . L ] —iwmpL—al, (wm)z _ 1
To relate the refractive index change in the modulating ml—l/ o iwmpz—an, (wm)z 1 — ¢
crowave signal to the phase change it induces in the optical/q —twmpt — o, (W)
wave, we start with the scalar wave equation

(15)

In the case that microwave attenuation can be neglected,

P?a  n?%a ©) (o (wm) = 0), (12) becomes
022 2 Of? w
with @ the complex electric field amplitude for the waveguide AP(L,1) = QWC[G(t ) - GE-At-t)l (16)

mode,n the effective refractive index for that mode, anthe ) ]
free-space speed of light. The solution to (6) can be written Wheret, = L/v, At = pL, andG(#) is defined as

(wot—B82)—i oo W t
a = age!@t=H)=id (7 G(t) z/ —A(in)e AWy, - 17)
— oo W
with ag a real constant equal to the magnitude of the fielthe - _ o
radian frequency of the optical carrigt,the propagation con- T0 facilitate the evaluation af(¢), it is noted that

stant of the optical wave, antithe phase change in the optical dG(t)

wave due to the electrooptic modulation. The propagation con- V2rAn(0,t) = P (18)
stant is related to the radian frequency by t
where, from (2)
p=" ®)

C

1 eo .
An(0,t) = — Alwn) et dwp,. 19
with ng the effective refractive index of the optical waveguide n(0,%) V2 /,Oo (wm)e “ (19)

mode in the absence of modulation. ) ) ) _
Since the refractive index change in (5) is expressed as '8tfgrating this expression fromoc, whereAn(0, t) vanishes

integral over spectral components, it is convenient to express Hder the assumption of a finite modulating pulse, yields

induced phase change as a function of frequency and position, Nl

i.e.,¢(z,w + wy,). The modulated refractive index can then be G(t)= — / An(0,t)dt. (20)

expressed in terms of its spectral components as oo

The electrooptic phase shift can be determined using (16) and
(9) (20), for the case that microwave attenuation can be neglected.
Var In the next section, these results are applied to the case of a

It will be assumed that the changesinis much less tham,. Gaussian modulating pulse.
Then, substituting (7) and (9) into (6), differentiating, neglecting
9%¢/022, and canceling common terms yields [1l. M ODULATOR RESPONSE TO AGAUSSIAN MODULATING

PULSE
g *7t7 + wm A mJ qw — 2/ U )= Qo (Wi ) 2 H H H H
Wt w Fom) _ OADm) i (t=s o) =t () A Gaussian modulating pulse produces a refractive index
dz V2re

change forz = 0 given by

A(wnl)@iwm (t_ ﬁ ) _a',m, (wm)z

n(z,t,wm) = no +

(10)
_ _t2/7_2
wherew, the optical group velocity, is given by An(0,1) = Ange (21)
a3 -1 where the maximum refractive index changéiis, and the full
v= <%> (11)  width of the modulating microwave pulse &+ electric field

amplitude is27.
andt = z/v. Equation (10) thus gives a spectral decomposition For the case that microwave attenuation can be neglected, it
of the optical phase change. By analogy with (5), the net charigdows from (20), with the substitutios = ¢/, that
in phaseA¢(L,t) for the modulated output is given by

t/T .
o T e e G =S [Ceda @)
A L,t - B m W, (F— 1 /0 d " 12 I’L oo
The integral in (22) can be written as
where
t/T
b / & g _ VT
B(wm) = Alwm) / eTienmEm o en)z 4y (13) /_ o de= Sl ed(y/)] (23)
0
and the velocity mismatch facteris given by where the error functionrf(x) is defined as
1 1 2 e
T f(z) = — v dy. 24
=y (14) erf(z) ﬁ/o ™V dy (24)
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Fig. 2. Temporal dependence of modulated phase shifkfgr- = 0,1,2,4,  Fig. 3. Temporal dependence of modulated phase shift with no velocity
and8 and no microwave attenuation. The plot is normalized with respect taismatch for values of the microwave attenuation faeter/+ = 0,1, 2,4,

the maximum phase shift for perfect velocity matching and no microwaghds.

attenuationA¢g. The horizontal axis (time) variablg — ¢; — 0.5A¢)/7 is

offset so that the plots will be symmetric about the vertical axis. 0.7
0.6F
Finally, combining the results in (16), (22), (23), and (24), it go 05¢
follows that = 04}
2 osb
VTT A t—t t— At —t b
A¢(L) = oL erf . — erf — 02
(25) 01¢f
0.0 :
with Agy, the phase shift which would occur in the case of -10.0 50 0.0 5.0 10.0
perfect velocity matchingu = 0), given byAg¢, = wAngL/c. (t-t;-0.5 A0/
Plots of the temporal modulator response calculated from (a)
(25) are given in Fig. 2 for the cases thst/r = 0,1,2,4 and 0.5
8, whereAt = uL is the microwave/optical delay difference o4k = At/t

over the modulator length due to velocity mismatch.
If microwave attenuation cannot be neglected, the
closed-form result of (25) is no longer applicable and the

ANL/AY,

temporal response of the modulator must be calculated nu- 02f
merically from (12), (13), and (15), witk(w,,), the Fourier
transform of (21), given by 0.1
AngT _ 2 12, %800 5.0 00 50 10.0
Alwp,) = e wmT /4, (26)
V2 (t-t;-0.5 A0/

The product of microwave attenuation and modulator length, Q)
which is taken into account via (15), can be written Fig.4. Temporal dependence of modulated phase shiftfgr = 0, 1,2, 4,,

and8: (@) Tt /7 = 1 and (b)7aee /7 = 4.

Oé;n(wnl)L =V 7_a,tt|(*‘)rn| (27) 1.0

01 2 4 8

for the case that the microwave attenuation is proportional  _ 0.8}
to the square-root of the microwave frequency (skin-effect &
loss)—generally a good approximation in the frequency range \é 06
from a few tens of megahertz to a few tens of gigahertz. The _F
factor 7,.; can be evaluated from a known value of the mi- < 04F
crowave attenuation coefficienty using (32) in the Appendix.

. 02

Plots of the temporal modulator response calculated numeri-

cally are given in Fig. 3 for the case of perfect velocity matching 0.0 . . . .
(At = 0), for 7o /7 = 0,1,2,4, and8. Fig. 4(a) and (b) 0.0 20 4.0 6.0 8.0 10.0
plots the response for cases in which velocity mismatch and mi- At/

crowave attenuation are both present.

Dependence orzﬁt/T of peak modulation amplitude andFig- 5. Dependence aat/7 of the peak amplitude of the modulated pulse
; Admax, NOrmalized with respect to the maximum phase shift for perfect

pulse width at_ 10% of peak amplitude, are plotted in Figs. ' locity matching and no microwave attenuatiibo, for 7,¢: /7 = 0,1, 2,4,
and 6, respectively, for,;. /7 = 0,1, 2,4, ands. ands.
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200 of a Gaussian modulating pulse in the absence of microwave
attenuation. The pulse broadening has been expressed in terms
150r1 of At/r, the ratio of the velocity mismatch delay to the!
o halfwidth of the incident pulse amplitude. The temporal plots
E 100F illustrate the transition in the modulated pulse shape from
Gaussian to flat top with increasing velocity mismatch. The
soE effect of microwave attenuation has also been treated using the
01 2 4 38 general method by means of numerical integration.
0.0 : ‘ : ‘
0.0 2.0 4.0 6.0 8.0 10.0 APPENDIX
At/t RELATION BETWEEN 7,:; AND MICROWAVE POWER
Fig. 6. Dependence of the temporal widtil" of the modulated pulse on ATTENUATION COEFFICIENT aro

peak amplitude, for.., /7 = 0,1, 2,4 and8. . .

modulator electrodes is proportional to the product of the square
root of the microwave frequencfj,, and propagation distance
along the electrodes. The power attenuation constam§ has

units dB/cm+/GHz. In calculating the effect of microwave at-

The closed form expression in (25) is, to the best of our . o

. nuation on modulator response, it is necessary to relate

knowledge, the first such result for the response of a T . . i
e constant,;; used in the model calculations. If we write

electrooptic modulator. This result is useful in cases where the
effect of velocity mismatch dominates over microwave attenu-
ation and dispersion. As an example, we consider a modulator

in LN with thin electrodes operating at a wavelength near 1.5 ) )
um. In that case, the optical and microwave group velocitié@" the dependence of the modulating voltagg(z) on distance
are given, respectively, by = ¢/N andv,, = ¢/N., with N along the modulator, witfry a constant, it follows that the

and NN,,, the optical and microwave group refractive indices. It

IV. DISCUSSION

Vin(2) = Vo~ @m(@m)? (29)

follows from (14) that a0 fmz = —2010g10[Vin(2)/ Vi (0)]- (30)
N, —N It follows from (29) and (30) that
W= - . (28)
o (wm)z = o/ fmz/8.68. (31)
With N = 2.18, N,,, = 4.22, andc = 3.0 x 10*° cm/s, it is
calculated that: = 68 ps/cm. For an incident pulse with= 25  If we now recall
ps, the curves in Fig. 2 correspond, respectively, te 0,0.37
cm, 0.74 cm, and1.47 cm, and2.94 cm. (W)L = \/Tatt|wm| 27)

To account for microwave attenuation, the valuergf can
be calculated from (32) of the Appendix if the microwave powegith L in cm and|w,,,| = 27 f,.., it follows from (31) that
attenuation coefficientyg is known. For example, witkxg =
0.6 dB/cm-/GHz [3] andL = 1 cm, it follows from (32) that
Tatt = 0.76 ps. Thus, forr = 25 ps,7,:1 /7 = 1 for a modulator

length L = 5.7 cm. Using the same value of, but with 7 sing this expression in conjunction with (12), (13), (15), and

decreased to 5 pg; = 2.56 cm for 7y /7 = 1. . (26), a quantitative calculation can be made of the effect of mi-

lating pulse, the output pulse shape remains symmetric for the
case of velocity mismatch with no microwave attenuation, or
microwave attenuation with no velocity mismatch. However, the

Tate = 2.11(aoL)? ps. (32)
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