2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Journal of Lightwave Technology
Volume 18 Number 6, June 2000

Table of Contents for this issue

Complete paper in PDF format

Temperature Determination in Optoelectronic Waveguide Modulators

M. Allard, R. A. Masut and M. Boudreau

Page 813.

Abstract:

Optoelectronic devices are particularly sensitive to temperature changes induced by the absorption of light and the passage of current. In order to study the thermal issues arising in a InGaAsP-based Mach-Zehnder (MZ) optical modulator, a nonlinear finite-element thermal model of the device was constructed. The model considers the variation with temperature of both the thermal conductivity of the semiconductors composing the device and the optical absorption. To that effect, the optical absorption was measured inside the waveguide as a function of temperature. An experimental method using liquid crystals to measure the surface temperature was also developed. Both were used to evaluate the temperature inside a variable optical attenuator present on the modulator. Good agreement with the model and the experiment is found over a wide range of operating conditions. These tools are expected to play a key role in understanding thermal issues in future photonic devices, in view of the desire to integrate multiple devices on a common substrate and the continuous increase of the optical powers in fiber systems.

References

  1. M. Allard, M. Boudreau and R. A. Masut, "Thermal modeling and temperature measurements in optoelectronic waveguide devices", in Proc. ICAPT'98, SPIE, vol. 3491, Dec. 1998, pp.  478-481. 
  2. C. Rolland, R. Moore, F. Shepard and G. Hiller, "10 Gbit/s, 1.56 µ m multiquantum well InP/InGaAsP Mach-Zehnder optical modulator", Electron. Lett., vol. 29, no. 5, pp.  471-472, Mar.  4, 1993.
  3. M. Nishiguchi, M. Fujihara, A. Miki and H. Nishizawa, "Precision comparison of surface temperature for GaAs IC's", IEEE Trans. Comp., Hybrids, Manufact. Technol., vol. 16, pp.  543-549, Aug.  1993.
  4. M. Ashauer, J. Ende, H. Glosh, H. Haffner and K. Hiltmann, "Thermal characterization of microsystems by means of high-resolution thermography", Microelectron. J., vol. 28, no.  3, pp.  327-335, Mar.  1997.
  5. P. W. Epperlein, G. L. Bona and P. Roentgens, "Local mirror temperatures of red-emitting (Al)GaInP quantum-well laser diodes by Raman scattering and reflectance modulation measurements", Appl. Phys. Lett., vol. 60, no. 6, pp.  680-682, Feb.  10, 1992.
  6. P. W. Epperlein, P. Buckmann and A. Jakubowicz, "Lattice disorder, facet heating and catastrophic optical mirror damage of AlGaAs quantum-well lasers", Appl. Phys. Lett. , vol. 62, no. 5, pp.  455-457, Feb.  1, 1993.
  7. D. C. Hall, L. Goldberg and D. Mehuys, "Technique for lateral temperature profiling in optoelectronic devices using a photoluminescence microprobe", Appl. Phys. Lett., vol. 61, no. 4, pp.  384-386, July  27, 1992.
  8. 150 Beta Drive 15 238-2932 "Algor is a product of Algor, Inc.", Pittsburgh, PA, USA.
  9. S. Adachi, "Thermal conductivity of InGaAs,"in Properties of Lattice-Matched and Strained Indium Gallium Arsenide, P. Bhattacharya, Ed. INSPEC (IEEE), 1991, pp.  35-40 . 
  10. J. C. Brice, "Thermal conductivity of indium phosphide", Properties of Indium Phosphide: EMIS Data Series 6, pp.  20-21, 1991.
  11. S. Adachi, "Chapter 4: Thermal properties,"in Physical Properties of III-V Semiconductor Compounds: InP, InAs, GaAs, GaP, InGaAs, InGaAsP , New York: Wiley Interscience, 1992, pp.  55-62. 
  12. S. Adachi, "Lattice thermal resistivity of III-V compounds", J. Appl. Phys., vol. 54, no. 4, pp.  1844-1848, Apr.  1983.
  13. Y. S. Touloukian, R. W. Powell, C. Y. Ho and P. G. Clemens, "Thermophysical properties of matter:Thermal conductivity, nonmetallic solids,"in The TPRC Data Series, New York: IFI/Plenum, 1970,vol. 2.
  14. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed.   Oxford: U.K.: Oxford, 1959, pp.  10-11. 
  15. A. Goel and A. Gray, "Liquid crystal technique as a failure analysis tool", in Proc. IEEE Int. Reliability Phys. Symp., 1981, p.  115. 
  16. J. Hiatt, "A method of detecting hot spots using liquid crystals", in Proc. IEEE Int. Reliability Phys. Symp., 1981, pp.  130-133.