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Mode Classification in Cylindrical Dielectric
Waveguides

Achint Kapoor and G. S. Singh

Abstract—We discuss an analytical approach which leads to changes in an arbitrary fashion in the cladding mode region and
a global scheme for mode classification in two- and three-layers hence this scheme cannot be utilized to classify unambiguously
step-profile cylindrical dielectric waveguides, based on the re- the hybrid modes of a cladded fiber.

quirements of analytical continuity HE — TE and EH — TM L .
in the limit such that the system under consideration becomes Consequent upon reviewing the works in [1]-[4] and [7] and

a circular metallic wave-guide. Technically, HE and EH hybrid ~finding that there was not any precise, well defined, and global
modes correspond to the two roots of the problem’s quadratic scheme for the classification of hybrid modes in cylindrical
characteristic equation. It turns out that the mode designation has waveguides, authors in [6] attempted to propose a new suit-
the universality in the sense that the equation obtainable from the able scheme. They obtained the characteristic equation for a
root involving positive (negative) sign always describes HE (EH) ) . . . .
mode. three-layers structure in the form of a quadratic equation using
_ ) _ _ ) _ the approach which is basically the same as that adopted by
Index Terms—Dielectric rods, dielectric tubes, dielectric waveg- Kapany and Burke [5] for the mode designation in a cylindrical
uides, mode classification, step-index fiberd¥ -type fibers . - - ) .
dielectric rod. The characteristic equations corresponding to
two roots of the quadratic equation were used to describe two
hybrid modes; equation which gives dominant HEnode
. INTRODUCTION corresponds to the HE mode while the other one corresponds to

HE information regarding the mode classification of ththe EH mode. The analysis in [6] yields that the characteristic
T guided electromagnetic waves are of paramount Sigmﬁquation with positive (negative) sign of the root should be used
cance in microwave and optical communications. The axialfgr HE (EH) mode in step-index ani’-type fibers whereas
symmetric modes in cylindrical dielectric waveguides are trandegative (positive) sign should be used in dielectric tubes.
verse electric (TE) and transverse magnetic (TM) which prgLence their scheme too fails sort of being global because the
serve the conditio®, = 0 or H. = 0 in course of their prop- reversal of sign convention is taking place in their analysis in
agation. But the nonsymmetric modes are hybrid ones; they &@signating HE and EH modes for the two classes of optical
superpositions of TE and TM fields, due to the fact that boffPers. Moreover, in their approach, one has first to identify
Debye potential#. andH.. are needed to construct angular-deth® equation containing dominant fEmode and, therefore,
pendent solutions in cylindrical dielectric waveguides. Thegsimerical calculation becomes an essential component even
superpositions are named as HE or EH according to whetf@f mode classification.
the TE or TM term dominates in a suitable norm. A number of The purpose of our work is to develop a global scheme which
workers [1]-[6] have made attempts to search out the systef@ be utilized to classify the hybrid modes through an an-
atics that could be utilized to associate a characteristic equatfditical approach in two- and three-layers step-profile cylin-

with HE or EH mode and thereby to investigate the details gfical dielectric waveguides. We take recourse to three steps
the corresponding mode theoretically. in our endeavor. First, we separate the dispersion relation for a

out of the various proposals in [1]-[4], Snitzer's scheme ithree-layers structure into two distinct equations corresponding
[3] is the most satisfactory one. This is based on the values!8ftwo roots of a quadratic equation in terms of the Bessel func-
an amplitude coefficient rati® which essentially accounts for tion appearing in the outermost medium. We then substitute
the relative amount of, and H. in the hybrid modes. Snitzer the appropriate conditions in the dispersion relation for cladded
found that? = —1 for HE,, far from cutoff and hence he fibers (step-index o#¥-type fibers) or dielectric tubes to ar-
proposed to designate the modes giviig= —1 (+1) as HE rive atthe characygristic equation for a dielectric rod. Finally, we
(EH). This sign convention was further used by Kuhn [7] to de§TPose the condition to get the well known TE and TM mode
ignate hybrid modes in a cladded optical fiber. Although trduations, see for example in [8], corresponding to a circular
Snitzer’s criterion works well in a dielectric rod, the investigatetallic waveguide. The physical basis for mode classification

tion by Safaai-Jazi and Yip [6] has revealed that the sig# of in our approach is the fact that in the limiting situation HE (EH)
mode equation would yield TE (TM) mode condition because

of the dominance of the magnetic (electric) field. This is inher-
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course, the essential ingredient as in that of Lee et al. [10] inThe cylindrical geometry of the system allows us to express
which modes of a metallic cylinder coated with a thin dielectrif9] the transverse components of the fields in term&éfand
layer is identified through the limiting case of a vanishingly thidZ? as
coating leading to HE,,, — TE,,,,, and EH,,,, — TM,,.,,. . p p
Ing leading to H. — TE, Fhin = o0 (OB wpu; OHY
Ep = 3 ﬁa—p + )
J

Il. BASIC EQUATIONS AND SOLUTIONS % . " 8(7)'
) ) ) o ) ) j 1 0H! we; OF]
We consider a concentric three media cylindrical dielectric H) = 2 B ap - 7 9% ;
waveguide with the outermost medium, region lll, extending up 7 h .
to infinity. The innermost and the middle cylindrical media, re- = <ﬁ OF; _ Wit 8H;> :
gions | and II, have radii&” and “b,” respectively. The per- a3 \p 0¢ dp
mittivity and permeability of the three media &g, 11;), 7 = ; i (BOH! OFI
1,2, 3. We choose a cylindrical polar coordinate systemp, z) Hy = a_3 ; 9o wej ap ) (7

with z-axis taken as the guide axis. The complete translational '
invariance of the waveguide allows us to single outttiepen- The continuity of the tangential componelﬂg‘}, H;,', E; and
dence giving the form ofz, t) dependence asp[i(8z — wit)],  H7 at the interface boundaries at= « as well as ap = b

wherew is the angular frequency anitlis the axial propagation |eads to a set of eight linear homogeneous equations in unknown
constant to be determined by the interface boundary conditiong. 47 B/ andB?,. The nontrivial solution of these equa-

tions gives us a determinantal equation whose zeros yield the
A. Step-Index andél’-Type Fibers cutoff values of the system under consideration. Now evaluating
We consider the discrete index profile such that theom- the determinant and rearranging the various terms we ultimately
ponent of the field satisfies the scalar wave equation. The st@st, after a large amount of algebra, a quadratic equation in the
index fiber is characterized bty > 32 > ey > espg  1OMM
whereas in &V -type fiber we have i1 > 32 > espsg > eapin 2
o = . . R R R3=0 8
with 8 = 3/ky as the normalized propagation constant agnd Ly Fat A ®)
as the free-space propagation constant. The expressions fofghere
z-components of the fields in these cladded optical fibers are
expressed in the forms Ry = pges [v300bP1 (P> + F3)
+’y§a§b2(P2P3—P4P5)+P12] (9)
E; = Arln‘]rn(alp)Frn; H; = Brlnjrn(alp)Grn (1)
Ry = v3vs02b(poes + pzer)(PolP3 — PuPs)
— Py P3(pseanzysanb — piocays)
E? = [A2 Ln(2p) + A% K (02p)] Fons — PLPa(poesnsyzanb — piseava)
H? = [B2 I,(c2p) + B2, K (ap)] Gom @) — n3Pf (po€s + paca) (10)

in the core (region 1§ < p < a),

in the cladding (region llg < p < b) and and

A s s Rs = pses [vi(PaPs — PuP5) — vans Pi(Ps + P3) +n3 P
B = A K (csp) s HY = B Km(asp)Gn () + & Pi(va +m3Fs) (25 + paPy)

2 2
in the jacket (region lll) < p < ). — & [Pl + PPy(P + By)

Here + P§(PyP3 — PyP;)] (11)
. with
Fry = cos(me + ¢o) expli(Bz — wi)], (4)
Py = (pav2 + pumyioza)(ezyz + exmyiaza)

- (X’Yla2a)2 (12)

G, = sin(me + ¢o) expli(Bz — wt)] 5)
Py = x*yia0a + (e2m2 — e1m)(pay2 + pumyicea)  (13)

and

a; = kolej; — 22 ) Ps = x*yiona+ (uana — pam) (272 + ecmymaa)  (14)

with j = 1,2,3 and¢, as a phase constant. Alsf,, (z) is the
Bessel function of the first kind, anf,,(x) and K., (x) are the
modified Bessel functions of the first and second kinds, respec-

tively. A7, AJ . BJ andB?, are the constants of integrations. Ps = x[(p2v2 + pumyiaza) + yicealpene — pim)] (16)

1m0 m?

Py = x[(eay2 + eamyicna) + y1azaleans —em)]  (15)
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and with
Ps = cvarysh. 17) Q1 = (xb10020)* = (262 — p1(1610020)
X (62(52 — (:1(1(51042@) (29)
Also
1 J) (aqa) 1 I (aga) )
M= a Tm(cra)’ = " 20 In(aza)” Q2 = x~61a2a — (e2(2 — €1C1) (202 — p1(16102a)  (30)
1 I (agb 1 K| (ash
3= — “(2); Na=— Emlash) (18) 2
a2 I (a2b) asb K (ash) Q3 = x"61aoa — (22 — p1¢1) (€262 — €1¢16102a)  (31)
and
1 Ky (aga) 1 K] (aga)
N T a In(ana) . 1?7 asa In(asa) Qs = x[(e262 — evmmaza) — braza(e2(e — e1(1)]  (32)
1 K, (a2b 1 K. (agb
V3= b% M=o o Qb) (19)
ash I, (a2b)’ ceob I, (ceab) Q5 = x[(p262 — p1l1dr1aza) — draga(pae — p1é)] (33)
where d
mg [ 1 1 mﬁ 1 an
= S5+5); = +—). (20
A <04% 04%) * wb? <04§ 04%) (20) Q6 = 263b. (34)
The characteristic equation for a cladded optical fiber is now
obtained from (8) by solving the quadratic equatiominWe Also
thus get 1 Il (ova) 1 J (aza)
1/2 a=- aya Ly (a a). 27 aaa (o a);
2Rins = —Ry + (R} — 4R Rs) (21) ) 1J/ z bl) 20 Jm Q2
These two roots lead to two separate equations which corre- (3= b ]’"’ (ZQb) (35)
spond separately to the hybrid modes HE and EH of the syste{j{rr}.d 27 mAt2
B. Dielectric Tubes g = 2 Yo () fy = Y. (a2a)
_ Adielectric tube is characterized by the condition that, > O‘fa; ’(OQZL) O‘fay‘]/m(a?ba)
/32 > €11 > €3tz OF eain > /32 > €zl > E1fi1- The 83 = m(a2 )7 8y = _M (36)
solutions for the three regions are now expressed in the forms b T (02D) azb Jm(?é?b)
El=Cl 1, F,. H'=D'I. a,, 29 The counterpart of (21) is now obtained on simply repladi)g
- (alp) ) z m (alp) ( ) by SJ
in region |
E? = [CF, T (2p) + C2Ym(a2p)] Fin; l1l. M ODE CLASSIFICATION
H? = [D}, Jp(cop) + D3 Yom(c2p)] Gy (23)  The classification into HE or EH mode equation of the
in region Il and two equations corresponding to any three-layers dielectric
B3 = C% Kon(asp) P H? = D3 Ko (sp)G (24) waveguide as contained in (8) or (25) is being done through

in region ll1.

a process in which at first we put the condition to get the
characteristic equation of a dielectric rod. In case of cladded

Here the resultant equation obtained after substitution of thgtical fibers, this can be achieved from (8) if one considers the

boundary conditions is expressed in the quadratic form as

5115 + Sang + S5 =0,
where
Sy = N363 [63002bQ1(Q2 + Q3)
30307 (Q2Q3 + Q1Q5) — QF]

Sy = —0304002b(pu2€3 + pze2)(Q2Q3 + QuQs)
— Q1Q3(p3€2(363002b + pinezby)
— Q1Q2(p2e3(303000h + pizeads)
+ (3Q7 (zes + psea)
and

Sy = poea [67(Q2Qs + Q1Q5) + 61(3Q1(Q2 + Q3)
— G + £4Q1(61 — (3Q6)(€2Q5 + 112Q4)

+ &1 [Q7 — Q1Q6(Q2 + Q3)
+ Qa(Q2Q3 — QuQs)]

(25)

(26)

(27)

(28)

limit « — b orb — a implying that the regions 1 and 2 become
identical. The former limit was followed in [6] but the latter one
turns out to be mathematically simpler approach and we adopt
it here. We pub = a, e = ¢; andus = p;. Hence we have

az = iy giViNg v3 = 1, 74 = 2 @andnz = n2 = 1. Thus
each ofy andP; (5 = 2, 3,4, 5) vanishes, and (8) reduces to

(pam — pana)(e1m — €3na)

3\? /1 1)\
- (%) () @

which is the well-known characteristic equation [3] for a dielec-
tric rod.
In case of the dielectric tubes, we substitate = ¢, and
i1 = peo, and therebyy; = ias. We then pub = ¢ and write
« in place ofa,. This procedure leads @ = (& = {3 = 1,
63 = 61 andéy = 65. Thus, if we replace now. by 1; andes
by ¢1, (37) is immediately retrieved from (25).
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In order to proceed further, we find that (37) can be regardégpbes of three-layers dielectric waveguides, like step-index
as a quadratic equation in and gives fibers, W-type fibers and dielectric tubes together with that

2pzesng = (el + paea)m

in dielectric rods. In this scheme, the characteristic equation
with the positive (negative) sign corresponding to two roots of

e a quadrgtip_equation always_ yields TE (TM) mode qondition
in the limiting case of a circular metallic waveguide and
) 011/2 corresponds to HE (EH) mode equation due to dominance of
+ dpises <m_/3> <i i) ] . (3) the magnetic (electric) field. The beauty of our approach lies
aw o Al in the fact that there is uniqueness in the mode designation

It is to be noted here that the above equations w#itkigns can
be obtained directly from those with signs in (21).

We now consider the condition such that a dielectric ro
would become a circular metallic waveguide. Whegrnis very
large, the equation with positivet) sign of the second term
on the right hand side in (38) yields

[1

34 = 1M1 (39)
whereas that with negative-) sign gives 2]
€374 = €171 (40) [3]

If we let e3 — —oo so thato — 400, we haven, — 0 and [4]
na€ez — oo. Thus, (39) and (40) give, respectively, — 0 and
m — oo. Now using the expression fey, given in (18), we (5]
accordingly find that 6]

related to the sign convention for various types of waveguides
while analytical continuity is preserved throughout the process
%f mode designation. Moreover, it has its physical basis and is
not merely based on mathematical nicety.
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