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Mode Classification in Cylindrical Dielectric
Waveguides

Achint Kapoor and G. S. Singh

Abstract—We discuss an analytical approach which leads to
a global scheme for mode classification in two- and three-layers
step-profile cylindrical dielectric waveguides, based on the re-
quirements of analytical continuity HE TE and EH TM
in the limit such that the system under consideration becomes
a circular metallic wave-guide. Technically, HE and EH hybrid
modes correspond to the two roots of the problem’s quadratic
characteristic equation. It turns out that the mode designation has
the universality in the sense that the equation obtainable from the
root involving positive (negative) sign always describes HE (EH)
mode.

Index Terms—Dielectric rods, dielectric tubes, dielectric waveg-
uides, mode classification, step-index fibers, -type fibers
.

I. INTRODUCTION

T HE information regarding the mode classification of the
guided electromagnetic waves are of paramount signifi-

cance in microwave and optical communications. The axially
symmetric modes in cylindrical dielectric waveguides are trans-
verse electric (TE) and transverse magnetic (TM) which pre-
serve the condition or in course of their prop-
agation. But the nonsymmetric modes are hybrid ones; they are
superpositions of TE and TM fields, due to the fact that both
Debye potentials and are needed to construct angular-de-
pendent solutions in cylindrical dielectric waveguides. These
superpositions are named as HE or EH according to whether
the TE or TM term dominates in a suitable norm. A number of
workers [1]–[6] have made attempts to search out the system-
atics that could be utilized to associate a characteristic equation
with HE or EH mode and thereby to investigate the details of
the corresponding mode theoretically.

Out of the various proposals in [1]–[4], Snitzer’s scheme in
[3] is the most satisfactory one. This is based on the values of
an amplitude coefficient ratio which essentially accounts for
the relative amount of and in the hybrid modes. Snitzer
found that for HE far from cutoff and hence he
proposed to designate the modes giving as HE
(EH). This sign convention was further used by Kuhn [7] to des-
ignate hybrid modes in a cladded optical fiber. Although the
Snitzer’s criterion works well in a dielectric rod, the investiga-
tion by Safaai-Jazi and Yip [6] has revealed that the sign of
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changes in an arbitrary fashion in the cladding mode region and
hence this scheme cannot be utilized to classify unambiguously
the hybrid modes of a cladded fiber.

Consequent upon reviewing the works in [1]–[4] and [7] and
finding that there was not any precise, well defined, and global
scheme for the classification of hybrid modes in cylindrical
waveguides, authors in [6] attempted to propose a new suit-
able scheme. They obtained the characteristic equation for a
three-layers structure in the form of a quadratic equation using
the approach which is basically the same as that adopted by
Kapany and Burke [5] for the mode designation in a cylindrical
dielectric rod. The characteristic equations corresponding to
two roots of the quadratic equation were used to describe two
hybrid modes; equation which gives dominant HEmode
corresponds to the HE mode while the other one corresponds to
the EH mode. The analysis in [6] yields that the characteristic
equation with positive (negative) sign of the root should be used
for HE (EH) mode in step-index and -type fibers whereas
negative (positive) sign should be used in dielectric tubes.
Hence their scheme too fails sort of being global because the
reversal of sign convention is taking place in their analysis in
designating HE and EH modes for the two classes of optical
fibers. Moreover, in their approach, one has first to identify
the equation containing dominant HEmode and, therefore,
numerical calculation becomes an essential component even
for mode classification.

The purpose of our work is to develop a global scheme which
can be utilized to classify the hybrid modes through an an-
alytical approach in two- and three-layers step-profile cylin-
drical dielectric waveguides. We take recourse to three steps
in our endeavor. First, we separate the dispersion relation for a
three-layers structure into two distinct equations corresponding
to two roots of a quadratic equation in terms of the Bessel func-
tion appearing in the outermost medium. We then substitute
the appropriate conditions in the dispersion relation for cladded
fibers (step-index or -type fibers) or dielectric tubes to ar-
rive at the characteristic equation for a dielectric rod. Finally, we
impose the condition to get the well known TE and TM mode
equations, see for example in [8], corresponding to a circular
metallic waveguide. The physical basis for mode classification
in our approach is the fact that in the limiting situation HE (EH)
mode equation would yield TE (TM) mode condition because
of the dominance of the magnetic (electric) field. This is inher-
ently analogous to the idea that the hybrid modes on a circular
fiber can be visualized using the concept of helical ray path as
described, e.g., in the classic book by Snyder and Love [9], and
can be classified according to the dominant polarization prop-
erties of the rays at the core boundary. Our final step has, of
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course, the essential ingredient as in that of Lee et al. [10] in
which modes of a metallic cylinder coated with a thin dielectric
layer is identified through the limiting case of a vanishingly thin
coating leading to HE TE and EH TM .

II. BASIC EQUATIONS AND SOLUTIONS

We consider a concentric three media cylindrical dielectric
waveguide with the outermost medium, region III, extending up
to infinity. The innermost and the middle cylindrical media, re-
gions I and II, have radii “” and “ ,” respectively. The per-
mittivity and permeability of the three media are

. We choose a cylindrical polar coordinate system
with -axis taken as the guide axis. The complete translational
invariance of the waveguide allows us to single out the-depen-
dence giving the form of dependence as ,
where is the angular frequency andis the axial propagation
constant to be determined by the interface boundary conditions.

A. Step-Index and -Type Fibers

We consider the discrete index profile such that the-com-
ponent of the field satisfies the scalar wave equation. The step-
index fiber is characterized by
whereas in a -type fiber we have
with as the normalized propagation constant and
as the free-space propagation constant. The expressions for the
-components of the fields in these cladded optical fibers are

expressed in the forms

(1)

in the core (region I; ),

(2)

in the cladding (region II; ) and

(3)

in the jacket (region III; ).
Here

(4)

(5)

and

(6)

with and as a phase constant. Also, is the
Bessel function of the first kind, and and are the
modified Bessel functions of the first and second kinds, respec-
tively. and are the constants of integrations.

The cylindrical geometry of the system allows us to express
[9] the transverse components of the fields in terms ofand

as

(7)

The continuity of the tangential components and
at the interface boundaries at as well as at

leads to a set of eight linear homogeneous equations in unknown
and . The nontrivial solution of these equa-

tions gives us a determinantal equation whose zeros yield the
cutoff values of the system under consideration. Now evaluating
the determinant and rearranging the various terms we ultimately
get, after a large amount of algebra, a quadratic equation in the
form

(8)

where

(9)

(10)

and

(11)

with

(12)

(13)

(14)

(15)

(16)
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and

(17)

Also

(18)

and

(19)

where

(20)

The characteristic equation for a cladded optical fiber is now
obtained from (8) by solving the quadratic equation in. We
thus get

(21)

These two roots lead to two separate equations which corre-
spond separately to the hybrid modes HE and EH of the system.

B. Dielectric Tubes

A dielectric tube is characterized by the condition that
or . The

solutions for the three regions are now expressed in the forms

(22)

in region I

(23)

in region II and

(24)

in region III.
Here the resultant equation obtained after substitution of the

boundary conditions is expressed in the quadratic form as

(25)

where

(26)

(27)

and

(28)

with

(29)

(30)

(31)

(32)

(33)

and

(34)

Also

(35)

and

(36)

The counterpart of (21) is now obtained on simply replacing
by .

III. M ODE CLASSIFICATION

The classification into HE or EH mode equation of the
two equations corresponding to any three-layers dielectric
waveguide as contained in (8) or (25) is being done through
a process in which at first we put the condition to get the
characteristic equation of a dielectric rod. In case of cladded
optical fibers, this can be achieved from (8) if one considers the
limit or implying that the regions 1 and 2 become
identical. The former limit was followed in [6] but the latter one
turns out to be mathematically simpler approach and we adopt
it here. We put and . Hence we have

giving and . Thus
each of and vanishes, and (8) reduces to

(37)

which is the well-known characteristic equation [3] for a dielec-
tric rod.

In case of the dielectric tubes, we substitute and
, and thereby . We then put and write

in place of . This procedure leads to
and . Thus, if we replace now by and

by , (37) is immediately retrieved from (25).
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In order to proceed further, we find that (37) can be regarded
as a quadratic equation in and gives

(38)

It is to be noted here that the above equations withsigns can
be obtained directly from those with signs in (21).

We now consider the condition such that a dielectric rod
would become a circular metallic waveguide. Whenis very
large, the equation with positive sign of the second term
on the right hand side in (38) yields

(39)

whereas that with negative sign gives

(40)

If we let so that , we have and
. Thus, (39) and (40) give, respectively, and

. Now using the expression for given in (18), we
accordingly find that

(41)

and

(42)

which in turn are the well-known conditions [8] for TE and TM
modes, respectively. Thus we observe that in the limiting sit-
uation the characteristic equation, which is obtained with the
positive sign corresponding to the roots of (21) or (38), yields
the condition for TE modes whereas that with the negative sign
gives the condition for TM modes. This establishes dominance
of magnetic (electric) field enshrined in the characteristic equa-
tion obtainable from the root with sign.

IV. SUMMARY

We have presented an approach which has resulted into
a global scheme for classification of hybrid modes in all

types of three-layers dielectric waveguides, like step-index
fibers, -type fibers and dielectric tubes together with that
in dielectric rods. In this scheme, the characteristic equation
with the positive (negative) sign corresponding to two roots of
a quadratic equation always yields TE (TM) mode condition
in the limiting case of a circular metallic waveguide and
corresponds to HE (EH) mode equation due to dominance of
the magnetic (electric) field. The beauty of our approach lies
in the fact that there is uniqueness in the mode designation
related to the sign convention for various types of waveguides
while analytical continuity is preserved throughout the process
of mode designation. Moreover, it has its physical basis and is
not merely based on mathematical nicety.
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