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General Eigenvalue Equations for Optical Planar
Waveguides with Arbitrarily Graded-Index Profiles

Min-Sub Chung and Chang-Min Kim

Abstract—Accurate eigenvalue equations for planar waveguides
with arbitrarily graded-index profile are derived and expressed in
closed forms. A combination of the modified Airy functions and the
Wenzel–Kramers–Brillouin (WKB) solutions are employed as field
solutions, which turn out to represent almost exact field profiles.
The use of new trial solutions enables us to calculate phase shifts
at turning points very precisely, allowing us almost exact eigen-
values. It is demonstrated that the results obtained by the proposed
method are in excellent agreement with those by the finite element
method, achieving significant improvement over the conventional
WKB method.

Index Terms—Eigenvalue/eigenfunction, graded-index profile,
modified Airy functions, planar waveguides, Wenzel–Kramers–
Brillouin (WKB) method.

I. INTRODUCTION

GUIDED modes of optical waveguides can be analyzed
either by numerical techniques such as the finite ele-

ment method (FEM), or by purely mathematical treatments.
Numerical techniques guarantee higher accuracy as long as
larger memories are available. These methods are not, however,
so successful in delivering physical insights throughout the
analytical procedure. Mathematical treatments are attractive in
this respect since each mathematical expression is accompanied
by a corresponding physical meaning. Among mathematical
treatments, the Wenzel–Kramers–Brillouin (WKB) method has
been extensively used and is still popular with many scientists
as the method is simple in its derivation and gives reasonably
accurate results under the condition of slow index variations
across waveguides [1]–[9].

In the WKB method, appropriate trial solutions are defined
depending on regions separated by turning points. The field so-
lutions are expressed by the asymptotic forms of the Airy func-
tions when the field point is far away from the turning point.
The asymptotic field expressions enable us to obtain its eigen-
value equation in concise integral forms by imposing the proper
boundary conditions. Unfortunately, this method yields large er-
rors for a fundamental mode and for other modes near their cut-
offs, since the field solutions diverge at a turning point and the
phase shift at a turning point in graded slopes is fixed to be a
constant value of . To improve these inherent errors of the
conventional WKB approximation, the authors in [4] introduced
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the concept of virtual turning points and tried to express fields
near index discontinuities elaborately, thereby reducing the er-
rors in the conventional WKB method significantly. However,
the introduction of virtual turning points in their method not
only brought about the complexity in the derivation of eigen-
value equations, but also yielded the ambiguity in appreciating
the field solutions.

More rigorous solutions by the modified airy functions
(MAF’s) were first proposed by Langer [5] and have recently
been used by several researchers. Royet al.employed the MAF
to calculate tunneling coefficients [6]. Goyalet al. improved
the accuracy of the MAF by readjusting the argument of the
Airy functions, although trial solutions were not presented in
cladding regions [7].

In this paper, we present a mathematical yet rigorous ana-
lytical procedure for planar waveguides with arbitrarily graded
index profiles and derive the closed form of general eigenvalue
equations. In our analysis, a new set of field solutions are em-
ployed, a combination of the modified Airy functions and the
conventional WKB solutions. In the region of a core, the mod-
ified Airy functions are employed to describe wave form prop-
erly. In cladding regions, the conventional WKB solutions are
used to ensure the field to decay in an exponential form. It
turns out that the defined field solutions of the proposed method
not only converge at turning points but also present very ac-
curate field solutions, thus improving the precision of phase
shifts at turning points. Analyzes by the conventional WKB
method and the FEM are also performed to enable comparison.
It is demonstrated through computer simulations that results ob-
tained by the proposed method agree well with those by the
FEM, showing significant improvement over the conventional
WKB method.

II. DERIVATION OF EIGENVALUE EQUATIONS

One-dimensional (1-D) Helmholtz equation for planar
waveguides with arbitrary index profile is

(1)

where

(2)

In (2), is the mode index. denotes refractive index pro-
file and typical figures are plotted in Fig. 1. In the figure, is ar-
bitrarily positioned between two turning points.

Case A: , as in Fig. 1
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Fig. 1. Index profilen (x) and a mode indexN . Turning pointsa < x ,
x < b.

Field solutions for each region may be put as (3a)–(3c) and
(4a)–(4c), as shown at the bottom of the page, where

(5a)

(5b)

Field solutions and decay exponentially in re-
gions , . In regions and ,
we use the modified Airy functions with positive argument to
express a combination of purely decreasing and increasing prop-
erties, respectively. Field solutions in need to
show oscillatory natures and, therefore, are expressed in terms
of the modified Airy functions with negative argument. The
modified Airy functions are most suitable for describing field

behaviors in guided regions since the functions not only con-
verge at turning points but also their asymptotes yield the same
field expressions as in the WKB method. Asymptotic forms of
the modified Airy functions are expressed as follows:

(6a)

(6b)

When a field point is far away from both turning points, (3c)
and (4a) can be replaced by a linear combination of the sinu-
soidal functions in (6). By imposing the boundary condition that

and and their derivatives should be continuous at
, we obtain the following:

i)

(7)

(3a)

(3b)

(3c)

(4a)

(4b)

(4c)
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ii)

(8)

Dividing (7) by (8) and manipulating, we have

(9)

Further manipulation leads us to the eigenvalue equation of

(10)

Phase shift term and at each turning point are calculated
to be

(11a)

(11b)

Applying the continuity of and at , we can
obtain the expression of in a closed form. The continuity of

and at also leads us to the expression of
.

i)

(12)

ii)

(13)

From (12) and (13), is deduced and is accordingly ex-
pressed as a combination of Airy functions and their derivatives

(14)
where

(15)

Applying the boundary condition of at , we deduce
as follows:

(16)

where

(17)

Since , and for sym-
metric profile, becomes equal to . of (14) and (16) are
represented in terms of Airy functions and their derivatives, and
the expression of may be expanded in terms of Bessel func-
tions (Appendix A).

In case of in (3) and (4), it follows that
. In such a case, the eigenfunctions and corresponding

eigenvalue equations of (10) become the results of the conven-
tional WKB method. While the phase shift at every turning point
in the WKB method becomes the fixed value of regardless
of the relative position of a mode index, the phase shift by the
proposed method becomes a variable value of and
this reflects the influence of the relative position of an ob-
tained mode index.
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Fig. 2. Index profilen (x) and a mode indexN turning pointsx = a, x = b.

Case B: , as in Fig. 2
This is the case where both turning points are on index dis-

continuities. In this case, field solutions of and are
decreasing exponentially outward in the regions of and

, and show oscillatory behavior in the region of .
To preserve consistency with the contents of Case A, trial solu-
tions in this case are expressed as a functions of asymptotes of
the Airy functions. Field functions are then represented by (18a)
and (18b) and (19a) and (19b) shown at the bottom of the page.

Imposing the boundary conditions that and and
their derivatives are continuous at , we come to have an
eigenvalue equation of

(20)

Definition of and are same as in (11). and are
calculated from the boundary conditions on at and

at , respectively. Following the same procedure as
Case A, we have the expressions ofand as

(21)

where

(22)

(23)

n (b ) � N � n (a )

(a)

n (a ) � N � n (b )

(b)

Fig. 3. Index profilen (x) and a mode indexN (a)x = a,a < x < b,
(b) a < x < b, x = b.

where

(24)

In case of a step index profile, and of (22) and (24) be-
come and , respectively. Hence, when inserting
these results into (21) and (23), (20) yields the same eigenvalue
equation as is obtained by directly solving the Helmholtz equa-
tion of (1).

Case C: and , or
and as in Fig. 3.

Typical cases are plotted in Fig. 3, where one of two turning
points is at a discontinuity in the index profile. is positioned
arbitrarily between two turning points.

(18a)

(18b)

(19a)

(19b)
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Fig. 4. A symmetrically parabolic index profile.

In the case of Fig. 3(a), and .
Field solutions of the region I and the region II are the same as
(18) and (4), respectively. From the condition of field continuity
at and boundary conditions at and , an
eigenvalue equation is derived as follows:

(25)

where and in (25) are the same with (21) and (16), respec-
tively.

In the case of Fig. 3(b), and .
and are the same with (3) and (19). From the boundary
condition at , the eigenvalue equation is obtained as
follows:

(26)

where and are deduced to be the same expression as (14)
and (23).

III. N UMERICAL SIMULATIONS

In order to evaluate the accuracy of eigenvalue equations and
their corresponding eigenfunctions obtained in Section II, we
take two types of waveguide index profiles as examples, a sym-
metrically parabolic and a truncated parabolic index profile.

Case A: Symmetrically Parabolic Index Profile::Index pro-
file for Fig. 4 may be given by

(27)
For this index distribution, the field solutions follow the ex-

pressions of (3) and (4), and the eigenvalue equation corre-
sponds to (10). For the sake of convenience in computation, the
eigenvalue equation is rewritten as a function of the normalized

Fig. 5. v–b curves for waveguides with symmetrically parabolic index profile.

frequency v and the normalized propagation constant b shown
in (28) at the bottom of the page where

(29)

(30)

v and b are conventionally defined by

v (31)

b (32)

Physical quantities of and are equal although they look
different in mathematical expression since the index profile is
symmetric. is expressed to be the arctangent term in (28) in-
dependent of index profile shape.

v–b curves calculated from (28) for waveguides with sym-
metrically parabolic index profile are illustrated in Fig. 5. Ac-
curate results obtained by the FEM are plotted for reference and
results by the conventional WKB method are drawn as well for
comparison’s purpose. It is shown that results obtained by the
proposed method are in excellent agreement with those by the
FEM.

Field profiles for the fundamental and first-order modes are
shown in Fig. 6(a) and (b), respectively. It is observed that field
profiles obtained by the proposed method not only converge
at the turning points but also coincide with those by the FEM,
while the field forms calculated by the conventional WKB
method diverge at the turning point.

v b

(28)
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Fig. 6. Field profiles of waveguides with symmetrically parabolic index profile
at v = 4:0.

Case B: Truncated Parabolic Index Profile:Index profile of
Fig. 7 may be expressed as

(33)
Field trial solutions are given as in (18) and (4) in this case,

and the eigenvalue equation is same as (25). Under the assump-
tion of , as is mostly the case, (25) is
expressed in terms of v and b as below.

v b last term of (28) (34)

v–b curves calculated from (34) for the waveguides with trun-
cated parabolic index profile are presented in Fig. 8. The dis-
persion curves obtained by the proposed method are exactly co-
incident with those by the FEM, while the conventional WKB
method still fails to give a reasonable accuracy near the cutoff
regions.

Fig. 7. A truncated parabolic index profile.

Fig. 8. v–b curves for waveguides with truncated parabolic index profile.

Fig. 9. Field profiles of waveguides with truncated parabolic index profile at
v = 4:0.

Field profiles are plotted for v in Fig. 9 to confirm again
the precision of the proposed method. As shown in the figure,
the results exactly overlap with that obtained by the FEM, while
the field profiles by the WKB method diverge at the turning
point.

IV. DISCUSSIONS

A mathematically rigorous and physically intuitive analysis
for optical planar waveguides with arbitrary index profiles is
presented. A combination of the modified Airy functions and
the WKB solutions are employed as eigenfunctions to ensure
correct phase shift at turning points, which consequently leads
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us to precise eigenvalue equations. Through the numerical anal-
ysis, it is demonstrated that v–b curves obtained by the pro-
posed method excellently agree with those by the finite element
method, while the results calculated by the conventional WKB
method yields large errors, especially for the fundamental mode
and for other modes near their cutoff. It also turns out that field
solutions obtained by our method are very accurate when com-
pared with the exact field profiles by the finite element method.

APPENDIX A

REPRESENTATION INTERMS OFBESSELFUNCTIONS

Recursive equations of Bessel functions are

(A1)

(A2)

Using the (A1) and (A2), , , , and are
expressed in terms of Bessel functions as follows:

(A3)

(A4)

(A5)

(A6)

where

(A7)

With the aid of (A1)–(A6), we change the denominator and nu-
merator in to more easily calculable forms.

i) Terms in the numerator

(A8)

(A9)

ii) Terms in the denominator

(A10)

(A11)

Substituting (A8)–(A11) into of (16) and manipulating, we
have (A12) shown at the bottom of the page where

(A13)

(A14)

can again be represented as a function of only

(A15)

can also be obtained by following the same procedure as
above. is then represented by the same form as (A12), except
that the variables and are replaced by and ,
respectively.

(A16)

(A12)
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and

(A17)

The fact that, for symmetric index profile,
and leads to .
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