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General Eigenvalue Equations for Optical Planar
Waveguides with Arbitrarily Graded-Index Profiles

Min-Sub Chung and Chang-Min Kim

_Abstract—Accurate eigenvalue equations for planar waveguides the concept of virtual turning points and tried to express fields
with arbitrarily graded-index profile are derived and expressed in  near index discontinuities elaborately, thereby reducing the er-
closed forms. A combination of the modified Airy functions and the rors in the conventional WKB method significantly. However

Wenzel-Kramers—Brillouin (WKB) solutions are employed as field the introducti f virtual turni ints in thei thod not
solutions, which turn out to represent almost exact field profiles. € INoaucton ot viftual timing PoInts i their Metnod no

The use of new trial solutions enables us to calculate phase shiftsONly brought about the complexity in the derivation of eigen-
at turning points very precisely, allowing us almost exact eigen- value equations, but also yielded the ambiguity in appreciating
values. Itis demonstrated that the results obtained by the proposed the field solutions.

method are in excellent agreement with those by the finite element g rigorous solutions by the modified airy functions
method, achieving significant improvement over the conventional , .
WKB method. (MAF’s) were first proposed by Langer [5] and have recently
_ ) _ ) ~ been used by several researchers. 8&®lemployed the MAF
Index Terms—&igenvalue/eigenfunction, graded-index profile, 14 caicylate tunneling coefficients [6]. Goyat al. improved
modified Airy functions, planar waveguides, Wenzel-Kramers— e
Brillouin (WKB) method. th_e accuracy of the MAF by read!ustlng the argument of the
Airy functions, although trial solutions were not presented in
cladding regions [7].
. INTRODUCTION In this paper, we present a mathematical yet rigorous ana-
UIDED modes of optical waveguides can be analyzd¥tical procedure for planar waveguides with arbitrarily graded
G either by numerical techniques such as the finite elldex profiles and derive the closed form of general eigenvalue
ment method (FEM), or by purely mathematical treatment@duations. In our analysis, a new set of field solutions are em-
Numerical techniques guarantee higher accuracy as longP4yed, a combination of the modified Airy functions and the
larger memories are available. These methods are not, howeggrventional WKB solutions. In the region of a core, the mod-
so successful in delivering physical insights throughout tHéed Airy functions are employed to describe wave form prop-
analytical procedure. Mathematical treatments are attractiveSfly- In cladding regions, the conventional WKB solutions are
this respect since each mathematical expression is accompatig’fl 0 ensure the field to decay in an exponential form. It
by a corresponding physical meaning. Among mathematiddns out that the defined field solutions of the proposed method
treatments, the Wenzel-Kramers—Brillouin (WKB) method h4¥t only converge at turning points but also present very ac-
been extensively used and is still popular with many scientigidrate field solutions, thus improving the precision of phase
as the method is simple in its derivation and gives reasonafhyifts at turning points. Analyzes by the conventional WKB
accurate results under the condition of slow index variatiofgéthod and the FEM are also performed to enable comparison.
across waveguides [1]-[9]. Itis demonstrated through computer simulations that results ob-
In the WKB method, appropriate trial solutions are definetfined by the proposed method agree well with those by the
depending on regions separated by turning points. The field §&M. showing significant improvement over the conventional
lutions are expressed by the asymptotic forms of the Airy fun¥YKB method.
tions when the field point is far away from the turning point.
The asymptotic field expressions enable us to obtain its eigen- Il. DERIVATION OF EIGENVALUE EQUATIONS
value equation .ir_l concise integral forms by imposi_ng the propergne-dimensional (1-D) Helmholtz equation for planar
boundary conditions. Unfortunately, this method yields large 8fraveguides with arbitrary index profile is
rors for a fundamental mode and for other modes near their cut-
offs, since the field solutions diverge at a turning point and the d?
phase shift at a turning point in graded slopes is fixed to be a dx2
constant value of-/4. To improve these inherent errors of the
conventional WKB approximation, the authors in [4] introducehere

E(x) +T*(z)E(z) =0 1)

2 20,2 2
I*(z) = kg(n”(x) — N7). @)
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was supported by the 1998 University Research Program, Ministry of Informa (2), IV is the mode indexa?(x) denotes refractive index pro-
tion and Communication. _ o file and typical figures are plotted in Fig. 1. In the figure, is ar-
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n(x) behaviors in guided regions since the functions not only con-
region I region II verge at turning points but also their asymptotes yield the same
field expressions as in the WKB method. Asymptotic forms of
N2 the modified Airy functions are expressed as follows:
e Ai(-(2))
W — T
—— (1)1 ()
axag Xo Xob x 1 I @
=5 ——— sin | (—1)" z) dr + — 6a
(v [ aw ) e
(@ )<SN <n} 1 ]
e Bi-Gi())
Fig. 1. Index profilen?(x) and a mode inde®’. Turning pointsea < w1, (_ ) & (a:)
T2 < b 1 ] * T
= ——— cos —1”_1/ a:da:—i——). 6b
5 (07 [ eware ) o)
Field solutions for each region may be put as (3a)—(3c) and
(4a)—(4c), as shown at the bottom of the page, where When a field point is far away from both turning points, (3c)
- 2/3 and (4a) can be replaced by a linear combination of the sinu-
ni(z) = <§ (—1)° / P(z) da:) soidal functions in (6). By imposing the boundary condition that
2 @4 E;(z) andErr(z) and their derivatives should be continuous at
P(z) =v/-TI'%(z), i=1,2 (5a) =z = xo, we obtain the following:
i)
3 L 2/3 El@)| ey = Eu(®)| eyt
s = (507 [ ewaw) ° :
o i ’ dx + T
Q) =VIT(@), =12 (5) T </ @ 4)
. Field solutionsFr(x) anldEH(a:) decay exponentially in re- T3 cos /%_ O(x) da + ™
gionsz < a,x > b.Inregionsa < z < x4 andzye < 2 < b, o1 4

we use the modified Airy functions with positive argument to Ein

express a combination of purely decreasing and increasing prop- =c4 sin </ Q(x) dz + f)

erties, respectively. Field solutionsif; < = < x4 need to zy 4

show oscillatory natures and, therefore, are expressed in terms Tz -

of the modified Airy functions with negative argument. The +¢5 cos </+ Q(z) dz + Z) (7)
o

modified Airy functions are most suitable for describing field

(3a)

(3b)

(3c)
644141'— T —|—C—SB'L'— T zo < x < 2y 4a
@ ( 52( )) c\'/% ( 52( )) 0= > 2 ( )
4 ' Bi(nz(x)) T <z <b (4b)

— Ai A% —
Bule) = § gt O @
m exp <—/b P(x) da:) z>b (4c)
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i) if)
d d d d
dx EI($)|m=mg - dl‘ EH(.’L')|$=er dx I(x) z=a— d.T I(x) r=at

= ¢y COs </:0_ Q(x) dx—i—%) = %exp <—/: P(x) dx)
— c3 sin </g:10_ Qx) dx + %) ) { L _al(w) + ablz) }

2 P(z)\/7P(z) +/7P(z)

& { ) . )
2oz = - Ai(ni ()
= — ¢4 COS </ Qx) dz + %) —ni(z) L 2ni(z)
2
+ ¢5 sin </TO+ Q(x) dr + Z) . (8 N s {_ ! (x) Bit())
—n (@) L 2ni(z)
Dividing (7) by (8) and manipulating, we have +n’1(x)Bi’(m(x))} (13)
r=at
zy _ c
tan </ Q(x) de — tan™* <—£>> From (12) and (13);3/c» is deduced and; is accordingly ex-
o - pressed as a combination of Airy functions and their derivatives
= tan / ’ Q(zx) dzx ‘ ‘
51 = tem ! { ) () Ai' (s (@) + PaAi(mi(a*))
rz _ Ccs ‘ —ni (at)Bi'(m(at)) + P Bi(n(at
_</ () dr — tan 1(7)—3)) © (a*)BY (i (a¥)) XTIV
o * where
Further manipulation leads us to the eigenvalue equation of /= oo+
Pa:P(a—)_l P(CL )_771(“ ) (15)
2 | Plam)  mlat)

Tz T T
yde=mr+(—=+061)+(—=+62). 10
/gm Q=) (4 1) (4 2) (10) Applying the boundary condition dfy;(z) atz = b, we deduce

6, as follows:
Phase shift ternd; andé, at each turning point are calculated
to be 1 { (b~ ) A’ (n2(b7)) +PbAi(772(b))}
§o = tan - : 16
: 2 B0 + BBim@) f 00
51 = tan™! <——3) (11a)
€2 where
L [Ph)  ny(7)
) P:Pb++—{ -2 } 17
=t (-2). (11b) L= PO E S Ve o) )
Cq

Applying the continuity ofEy(z) and E{(z) atz = a, we can Sincern (a*) = —ns(b7), andP'(a™) = —P'(b*) for sym-
obtain the expression &f in a closed form. The continuity of Metric profile,s, becomes equal t6;,. 6; of (14) and (16) are
En(z) and El (z) atz = b also leads us to the expression ofepresented in terms of Airy functions and their derivatives, and
the expression af; may be expanded in terms of Bessel func-

6.
’ i tions (Appendix A).
In case ofcz = ¢; = 0in (3) and (4), it follows that; =
62 = 0. In such a case, the eigenfunctions and corresponding
Er(2)]pma— = F1(2)]omar eigenvalue equations of (10) become the results of the conven-

tional WKB method. While the phase shift at every turning point
in the WKB method becomes the fixed valuenofd regardless

= #}(@ exp <— /x " P da:)

r=a~ of the relative position of a mode index, the phase shift by the
— ©2 ; ‘3 ¥ d method becomes a variable valuérgtl + &) and
— Ai(mi () + Bi(n(z))|y—qr Proposed me i
—m(z) (m()) v —ni(x) (m (@) this §; reflects the influence of the relative position of an ob-

(12) tained mode index.
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region 1 region II region 1 region IT

ST (N
N? - k

a Xo Xob X

a Xo b X

W@ )< N <n’(a’) n?2(b~) < N2 < n2?(at)
Fig. 2. Index profilen?(2) and a mode indeX’ turning pointst = a,x = b. (a)

Case B: x = a,z = b as in Fig. 2 n(x)/
This is the case where both turning points are on index dis-
continuities. In this case, field solutions bf(x) and Ey(x) are SN
decreasing exponentially outward in the regions:of « and N2
x > b, and show oscillatory behavior in the regioruof = < b.
To preserve consistency with the contents of Case A, trial solu- J
tions in this case are expressed as a functions of asymptotes of e
the Airy functions. Field functions are then represented by (18a) a Xn Xo b X
and (18b) and (19a) and (19b) shown at the bottom of the page.
Imposing the boundary conditions thét(z) and Err(z) and
their derivatives are continuousat= z,, we come to have an
eigenvalue equation of

region | region II

n(at) < N2 < n?(b-)

(b)

b
_ m z Fig.3. Indexprofiler?(z) and amode inde¥ (a)z:; = a,¢ < x4 < b,
/a Q) do=mn+ (348 ) + (G +0).  @0) Fo> inderofion(an
Definition of §; andé, are same as in (1193 /c; ande; /c4 are
calculated from the boundary conditions Bf(z) atz = a and
Ey(x) ate = b, respectively. Following the same procedure as Py =P + 1 {Pl(bﬂ Q'(b_)} (24)

where

Case A, we have the expressionsspfandé; as 2 | P(bT)  Q(b)
T . P, In case of a step index profilé}, and P, of (22) and (24) be-
o1 = a7 tan {Q(a+)} (21) come P(a™) and P(bt), respectively. Hence, when inserting
these results into (21) and (23), (20) yields the same eigenvalue
where equation as is obtained by directly solving the Helmholtz equa-
. 1 (P(a”) Qf(a*) tion of (1).
Py=P(a™)— 3 {P(a) " Ol (22) CaseC:zyy =aanda < xp < b, ora < xpy < b

andxz>; = b as in Fig. 3.
Typical cases are plotted in Fig. 3, where one of two turning
= " 1 Py 23 points is at a discontinuity in the index profile. is positioned
2= + tan (23) arbitrarily between two turning points.

Bi(e) - 5 :}’(x) exp <_/: P(z) da:) r<a (18a)
C2 3 z c3 T -
—,—WQ(.’L’) sin ) Q(x) dx + —) + T Cos < ) Qz) dz + Z) a <z <z (18b)
c sin /b Qz)de+ — | + % cos b Qz)de+—] z0<xz<b (19a)
Ep(x) = TQ(z) @ TQ(x) i 1 0
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Fig. 4. A symmetrically parabolic index profile. 0.2
0.1

In the case of Fig. 3(a)y1 = aanda < x40 < b 00,
Field solutions of the region | and the region Il are the same a
(18) and (4), respectively. From the condition of field continuity
atx = xq¢ and boundary conditions at = ¢ andx = b, an Fig.5. v-bcurves for waveguides with symmetrically parabolic index profile.
eigenvalue equation is derived as follows:

. frequency v and the normalized propagation constant b shown
/ Q(x) dx = mn + (% + 51) + (% + 52) (25) in (28) at the bottom of the page where

wheres; andé, in (25) are the same with (21) and (16), respec- p(d™) = / P(z) dx (29)
tively.

In the case of Fig. 3(bly < x4 < bandz = b. Fr(x) 11 1
and Ey;(x) are the same with (3) and (19). From the boundary pp=1—-= —— (30)
condition atz = =z, the eigenvalue equation is obtained as 2 vbvb  6p(d7)
follows: v and b are conventionally defined by

/b O(x) dr = mn + (% v 51) v (% v 52) (26) V= kody/n3 —n3 (31)

whereé; andé, are deduced to be the same expression as (14)

N2 _n2
and (23). b=y 3, (32)
Ny — N3
[1l. NUMERICAL SIMULATIONS Physical quantities of; andé. are equal although they look

dlgerent in mathematical expression since the index profile is

In order to evaluate the accuracy of eigenvalue equations a
symmetric.6; is expressed to be the arctangent term in (28) in-
their corresponding eigenfunctions obtained in Section Il, W ) .

ependent of index profile shape.

take two types of waveguide index profiles as examples, a sy v—b curves calculated from (28) for waveguides with sym-

metrically parabolic and a truncated parabolic index profile. . . . . S
Case A: Symmetrically Parabolic Index Profilelndex pro- metrically parabollf: index profile are illustrated in Fig. 5. Ac-
file for Fig. 4 may be given by curate results obtalneq by the FEM are plotted for reference and
results by the conventional WKB method are drawn as well for
n2 z < —d comparison’s purpose. It is shown that results obtained by the
2
n2(2) = 4 nd + (n3 — n2) <1 B (3) ) o d<z<d EE&(.)sed method are in excellent agreement with those by the
n3, r>d Field profiles for the fundamental and first-order modes are
(27) shown in Fig. 6(a) and (b), respectively. It is observed that field
For this index distribution, the field solutions follow the exprofiles obtained by the proposed method not only converge
pressions of (3) and (4), and the eigenvalue equation coreg-the turning points but also coincide with those by the FEM,
sponds to (10). For the sake of convenience in computation, thikile the field forms calculated by the conventional WKB
eigenvalue equation is rewritten as a function of the normalizetethod diverge at the turning point.

V(l—b):(2m+1)+;

o {i —(p2p(d™) + $)L13(9(d7)) + ((d™) + § p2) aya(d7)) =
V3 (P2<P(d_)+§)11/3(¢(d_)) (p(d) + 3P2)I2/3( (d=)) +

o(d™)Ly3(0(d™)) + pap(d™) s 3 (p(d)) }
o(d~

Mayz(o(d™)) + pasp(d=) L5 s3(0(d™))
(28)
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Fig. 7. A truncated parabolic index profile.
0 Leboobd : ¥ dood !
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Xy, Xy, X 3
08+ ____ :Proposed Method
07t
(@) m=0 b T
051
04t
4t —— : Proposed Method 03
E(x) o :FEM 5 02
2k L WKB N 04|
0.0
0 X 0
2r 'L" Fig. 8. v-b curves for waveguides with truncated parabolic index profile.
4L 5
Az 0 6 6 4 2 0 2 4 6 5 10 12 18 — : Proposed Method
X 4l o :FEM
E(x)
3k
b m=1
Fig.6. Field profiles of waveguides with symmetrically parabolic index profil¢ 2F
atv = 4.0.
1k
Case B: Truncated Parabolic Index Profildndex profile of
Fig. 7 may be expressed as 0 Lo . .

4 2 14
n3, <0 X
\2
n?(x) = { ni+(nk —nd) 1—(—) , 0<z<d
d Fig. 9. Field profiles of waveguides with truncated parabolic index profile at
ns, z>d. v =4.0.

(33)

Field trial solutions are given as in (18) and (4) in this case, Field profiles are plotted for = 4.0 in Fig. 9 to confirm again
and the eigenvalue equation is same as (25). Under the assuthg-precision of the proposed method. As shown in the figure,
tion of N2 — n3 > N? — ni, as is mostly the case, (25) isthe results exactly overlap with that obtained by the FEM, while
expressed in terms of v and b as below. the field profiles by the WKB method diverge at the turning

oint.
V(1 —b) = (4m + 3) + [last term of (28) (34) P

v—b curves calculated from (34) for the waveguides with trun- IV DiscUssIONs
cated parabolic index profile are presented in Fig. 8. The dis-A mathematically rigorous and physically intuitive analysis
persion curves obtained by the proposed method are exactly fy-optical planar waveguides with arbitrary index profiles is
incident with those by the FEM, while the conventional WKBresented. A combination of the modified Airy functions and
method still fails to give a reasonable accuracy near the cutdie WKB solutions are employed as eigenfunctions to ensure

regions. correct phase shift at turning points, which consequently leads
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us to precise eigenvalue equations. Through the numerical anal-) Terms in the numerator
ysis, it is demonstrated that v—b curves obtained by the pro- , [,, _
posed method excellently agree with those by the finite elemenfi2(t7) A7 (n2(67))

method, while the results calculated by the conventional WKB ~ V/me(b7) P(b) 11 a(0(67))

method yields large errors, especially for the fundamental mode — 3p(b) T3 s

and for other modes near their cutoff. It also turns out that field

solutions obtained by our method are very accurate when com- + (b7 ) 2/3(0(b7)) — ‘P(b_)f4/3(¢(b_))} (A8)

pared with the exact field profiles by the finite element method.
Py Ai(na(b7))

APPENDIX A )
2 — _
01 REPRESENTATION INTERMS OFBESSELFUNCTIONS = 3¢(b ) B { P07 /5((07))
Recursive equations of Bessel functions are _ _ _
d + 3 Byalelt) + ) B0 | (89)
2_[1//(2) = Iz/—l(z) + Iu-l-l(z) (Al)
ii) Terms in the denominator
/77— o/ —
2 1 (b7) Bi' (112(b7))
= 1(2) = Lma(2) — La(2). (A2) ) 0
: = VRO ) {5 Lste))
Using the (A1) and (A2)A:(y), Ai'(y), Bi(y), andBi’ (y) are V3p(b) 3

expressed in terms of Bessel functions as follows:

(b sl (b)) + w(b)h/g(w(b))} (A10)
i) = Y0 (11 s(2) — Lyal2)

P, Bi(n2(07))
= \3/7@ { 2lyy3(2) + . 5 L2732 )+Z—75/3(Z)} (A3) b V) -
—W(b_) b{<P( )1/3(<P( )
A1) = 5= Uyl = Tyal) + 3 Talolt) + )07 | (ALY
+ % (IL15(2) = I} j3(2)) Substituting (A8)—(A11) inta$, of (16) and manipulating, we

9 have (A12) shown at the bottom of the page where
i {—3 I 3(2) + 21a3(2) — 2’14/3(3)} (A4)

, B . P(b%) (b))
. = 55 = 7 [P0 2 P
. Y
Bi = (I_ +1 Al3
i(y) \/3( 1/3( %) 1/3( %)) ( )
3
- {zh/g<z>+Z 12/3<z>+215/3<z>} (A5) G
2 o(b™) = / P(z) da (AL4)
Bil(y) = \/3 (I_1/3(2) + I 3(2) p2 can again be represented as a function of d?(¥)
6
\/g / / _ P(bt) Pt P n 1 (AL5)
+ 3 (yya(2) +11/5(2)) P2=Pl-) T 2P )P(b-)  2P2(b-) | 6p(bm)
Y 2 61 can also be obtained by following the same procedure as
=— <=1 2 21 4 21 4 A6 1
V32 { ale) + 2 lyyalz) + 2 4/3(7)} (A0) above 4 is then represented by the same form as (A12), except
where that the variableg, andy () are replaced by; ande(at),
y respectively.
_ 2 ,3/2
2=3Y (A7) B P, B P(CL—) B P/(CL—) N P/(CL+) N 1
With the aid of (A1)—(A6), we change the denominator and A~ P(at)  P(at) 2P(a~)P(at) ' 2P(at) ' 6p(a*)
merator in to more easily calculable forms. (Al16)

5y — tan_l{i —(p290(b7) + $)L1y3(0(b7)) + ((b7) + £ 5 p2)L2/3(0(b7)) — (b7 ) Lay3((b7)) + p2e(b7) I /3(0(b7)) }
V3 (p2p(b7) + $)I1y5( (b)) + (0(b7) + 5 p2)L2/3(0(b7)) + @(b ) Lays(0(b7)) + p2e(b—) L5 s3(0(b7))
(A12)
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